
 

A Genetic Algorithm for Multiprocessor Task 
Scheduling  

Tashniba Kaiser, Olawale Jegede, Ken Ferens, Douglas Buchanan 
Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada 

Ken.Ferens@ad.umanitoba.ca 
  
 
  

Abstract—The goal of task scheduling in a multiprocessor 
system is to schedule dependent tasks on processors such 
that the processing time is minimized. This ensures optimal 
usage of the processing systems. However this problem is 
NP-hard in nature and heuristic based techniques are used 
to obtain a good schedule in polynomial time. Genetic 
Algorithms (GA) have been proposed over other heuristics 
because it can use its genetic processes to find multiple 
solutions faster. The GA proposed is based on a non-pre-
emptive precedence relation between tasks in the task graph. 
Tasks assignment is prioritized based on the number of tasks 
dependencies (NTD) and the earliest start time (EST) of 
each task. For tasks with multiple possible earliest start 
times, the minimum earliest start time is chosen for such 
tasks. Java simulations compared the results obtained using 
the minimum EST and the maximum EST. Our simulation 
shows that the proposed algorithm with minimum EST 
achieves faster processing periods compared with the 
maximum EST. 

Keywords—Genetic Algorithm, Number of Task 
Dependencies, Total Finishing Time, Multiprocessor 
Scheduling. 

I. INTRODUCTION 

The need to achieve optimal usage of a multiprocessing 
system for task allocation cannot be overemphasized. The 
aim is to ensure that the processing period is minimized by 
scheduling tasks on time. However this problem of obtaining 
optimal task scheduling in the multiprocessing system is 
reported to be NP hard [1]. There are different scheduling 
algorithms such as First-in-First-Out, Shortest-Job-First, 
Priority based scheduling, Round-robin scheduling, 
Multilevel Queue scheduling etc. It is important that any 
algorithm chosen is able to address the scheduling problem 
in polynomial time. Due to the computational complexity 
however, different types of machine learning techniques 
have been proposed. Some of the heuristics that have been 
widely used for this problem are simulated annealing, tabu 
search, ant colony optimization, and genetic algorithms 
among others. Genetic algorithms are efficient in solving NP 

hard problems especially in parallel computing such as any 
multiprocessing system.  

 
The common approach to this problem has been to use 

the precedence-relations between tasks to prioritize task 
assignment on the processors. This is also known as the 
height-based tasks assignment, somewhat similar to the first-
in-first-out method as tasks with higher heights are given 
priority than those down the tasks-graph. However to further 
improve the optimization process (by further reducing the 
makespan), a new approach is to assign tasks based on the 
number of task dependencies (NTD) of each task. Which 
means a task must be executed before all the other tasks that 
depends on it can be executed. Thus, irrespective of a task’s 
height in a task graph, priority is given to tasks with higher 
number of task dependencies.  This ensures a decrease in the 
total finishing time (TFT) of the schedule.  

 
The remaining sections of this paper are organised as 

follows. Section 2 represents related work on multiprocessor 
task allocation problem and our contribution to this work. 
Section 3 discusses the GA approach to the multiprocessor 
task allocation problem and methodology. In Section 4, we 
discuss the simulations and results obtained using genetic 
algorithm. Section 5 concludes the paper and gives future 
work. 

II. RELATED WORK 

There have been several approaches to the tasks 
allocation problem in a multiprocessing systems. Most of the 
approaches have been based on non-pre-emptive precedence 
relations between tasks in the task graph. Jin et al [2] carried 
out a comprehensive survey of nine scheduling algorithms 
which are frequently used to solve the multiprocessor task 
scheduling problem and compared the performance of each 
of the algorithms.  The nine algorithms considered were 
min-min, chaining, A*, genetic algorithms, simulated 
annealing, tabu search, Highest Level First Known 
Execution Times (HLFET), Insertion Scheduling Heuristic 
(ISH), and Duplication Scheduling Heuristics (DSH) with 
task duplication. The performance of the nine algorithms 
was benchmarked against two widely used algorithms in 



 

linear algebra which are the LU decomposition and the 
Gauaa-Jordan elimination. With task duplication, the DSH 
performed best while the ISH performed best without task 
duplication. It was also reported that the GA and tabu search 
obtained the best solution out of all the iterative search 
algorithms considered. However, in this work task 
duplication was not considered. Other works have been done 
reporting the performance of the GA. Majority of the works 
[1] [3] [4] [5] [6] assume non-pre-emptive precedence 
relations between tasks in the task graph as well as non-
duplication of tasks. Wu et al [7] however assumed 
duplication of tasks. The non-preemptive characteristics of 
tasks in the task graph ensures that precedence relations are 
adhered to. This necessitates the priority-based task 
scheduling. The most common scheduling method is to 
prioritise task based on their height [1]. The height is used to 
denote the precedence relations between tasks in a task 
graph. The higher a task is in the task graph, the higher the 
priority given to it in allocating it to the multiprocessing 
systems. However, as a result of tasks dependencies, the 
height-based task scheduling  can be inefficient. Tasks at a 
higher height with no task dependencies will be scheduled 
ahead of tasks at a lower height with task dependencies. This 
increases the makespan of the processor. Abdeyazdan and 
Rahmani [8] proposed a new algorithm which prioritizes 
tasks scheduling based on the number of task dependencies 
of each task and the earliest start time of each task. This 
ensures that tasks having higher task dependencies are given 
higher priority irrespective of their height on the precedence 
graph thereby resulting in a further decrease in the makespan 
of the processing system. 

 
In this work, we have considered the algorithm proposed 

by [8]. We observed that in the task graph, there may be 
tasks with multiple possible earliest start times. Our 
contribution is that for tasks with multiple possible earliest 
start times, our algorithm choses the minimum earliest start 
time for such tasks as against the maximum earliest start 
time used by [8]. This is akin to choosing the shortest path as 
against the longest path in a routing problem. Our algorithm 
ensures a further decrease in the makespan. 

III. GA MULTIPROCESSOR TASK SCHEDULING 

The main goal of a scheduling problem is to reduce the 
schedule length (makespan) of the processor. For a 
multiprocessing systems N processors, the time it takes for 
the last on a processor to finish executing is termed the 
finishing time FT. The maximum finishing time among the 
m processors in any schedule is termed the Total Finishing 
Time TFT of that schedule. For k number of schedules, the 
TFT can be represented as in (1) below. 

 

ܨܶ ௞ܶ ൌ෍ݔܽܯ ሼܶܨ	݂݋	ݎ݋ݏݏ݁ܿ݋ݎܲ௜ሽ
௞

ଵ

 

ݎ݋݂ ݉ ൒ ݅ ൒ 1				 

 
(1) 

 
Height-Based Scheduling 

Hou and Ansari [1] based their task priority-scheduling 
in a multiprocessor system on the task height of each task. In 
this model, tasks that are higher up the task graph are given 
priority compared to tasks on lower levels. In a task graph 
where there is a sequence of directed edges from task, say ti 
to tj, then ti is higher up the graph while tj is lower down the 
graph. This precedence relation implies that task ti has to be 
executed before tasks tj and other tasks that precede that task 
ti. According to [1], if PRED(ti) is a set of preceded tasks of 
ti, then we can obtain the height of any of the preceding tasks 
using equation (2). 

 

ݐ݄݄݃݅݁ ሺݐ௜ሻ ቐ

0 ௜ሻݐሺܦܧܴܲ	݂݅								 ൌ ø,
1 ൅ maxሼ݄݄݁݅݃ݐ൫ݐ௝൯ሽ .݁ݏ݅ݓݎ݄݁ݐ݋	

௝ݐ 	 ∊ ௜ሻݐሺܦܧܴܲ
. 

 
(2) 

 
The height function given above is a mathematical 
representation of the precedence relations between the tasks 
in the task graph. Since the task height increases from 0 to a 
finite length, the preceding tasks to the task(s) at height 0 
will have heights greater than 0.  Therefore the lower the 
task height of any task, the higher up the task graph the task 
is. In other words, if task ti is preceded by tasks tj, then ti will 
be executed before tj and height(ti) < height(tj). However if 
there is no precedence relation between any two tasks, the 
order of execution can be arbitrary.  

 
Problem with Height-Based Scheduling 

To explain the drawback of a height-based scheduling 
algorithm, we have used the task graph below [8]. Each of 
the tasks t0 to t15 will have a height and an execution time. 
Task t0 is at height 0 (highest), t1 and t2 have height 1, etc. 
as shown in the table 1 below. The execution time of each 
task is assigned randomly ranging from 0 to 15. The height-
based scheduling is such that tasks at higher heights are 
scheduled before task at lower heights. However for tasks at 
same heights, any of them is randomly chosen to be 
scheduled on the processor. 

 
The implication is that: “tasks such as t7 will be 

scheduled before tasks such as t14.” 



 

 
 

Fig. 1 A task graph, from [8]. 
 
Table 1. Height and Execution time of tasks in Fig. 1. 

Task Height Execution time 
t0 0 3 
t1 1 2 
t2 1 4 
t3 2 1 
t4 2 10 
t5 2 3 
t6 2 6 
t7 3 9 
t8 3 7 
t9 3 11 
t10 3 5 
t11 3 5 
t12 4 8 
t13 4 10 
t14 4 15 
t15 5 2 

 
It is observed that task t7 has no task dependency, 

meaning there is no task that needs task t7 to complete before 
it can start. However, tasks t14 has task dependency; task t15 

cannot be scheduled unless task t14 finishes execution. 
Therefore, scheduling based on height increases the FT of a 
processor and consequently the TFT. For a task graph with a 
high percentage of task dependencies, the height-based 
scheduling will not be suitable to achieve optimal 
scheduling. This is why a new algorithm is needed for 
optimal task scheduling in a multiprocessing systems.  

 
Task Dependency-based Scheduling  

The main goal of a scheduling problem is to reduce the 
TFT (makespan) of the processor. To further reduce the 
TFT, Abdeyazdan and Rahmani [8] proposed a new 
algorithm which prioritizes tasks scheduling based on the 

number of task dependencies and earliest start time (EST) of 
each task. This ensures that tasks having higher task 
dependencies are given higher priority irrespective of their 
height on the precedence graph. For any task ݐ௜ with a j 
number of outgoing edge, i.e. tasks that directly depends on 
 ௜ݐ ௜, the  Number of Task Dependency (NTD) for such taskݐ
is mathematially obtained by equation (3). 
 

௜ሻݐሺܦܶܰ ൌ

ە
ۖ
۔

ۖ
0ۓ 								; ௜ሻݐሺܦܶܰ	݂݅ ൌ ø,

෍ሼ1 ൅ ௝൯ሽݐ൫ܦܶܰ
௝ୀଵ

.݁ݏ݅ݓݎ݄݁ݐ݋	

;௜ݐ	݊݋	ݏ݀݊݁݌݁݀	ݕ݈ݐܿ݁ݎ݅݀	௝ݐ

 

 
(3) 

The NTD function above represents the total number of 
tasks that depends on a task ݐ௜ whether directly or indirectly, 
this [8] termed as number of children. With this, a task with 
more number of tasks dependencies will be scheduled earlier 
than one with lower number of task dependencies. The 
concept of Earlier Start Time was introduced to ensure that 
tasks are scheduled with respect to the earliest time for 
which they are available to be scheduled. The EST of any 
task is a function of the summation of the execution time of 
all the tasks that precedes such tasks. However, because 
there could be one or more path on the task graph along 
which a task could be executed, this implies that there will 
be multiple EST for such task. Our algorithm selects the 
minimum EST. An algorithm to produce the schedule based 
on the number of task dependencies is as below: 
 
1. Arrange the tasks in descending order based on the 

number of task dependencies of each task. 
2. Put tasks with the same NTD in a single group and 

perform steps a and b for all the groups in order of 
higher NPD until every group is empty. 
a. Randomly select a task from the group and then 

delete it from the group. 
b. Allocate the selected task to one of the processors 

based on the EST method such that the starting 
time of the task on that processor is less than other 
processors. 
i. For tasks with multiple EST, choose the 

minimum EST in performing b.  
3. Repeat steps ‘a’ and ‘b’ until all the tasks have been 

selected. 
 
The algorithm is such that every task is assigned only 

once to a processor as there is no repetition of same task on 
the task graph. From the task graph in figure 1, we can 
arrange the tasks according to the NTD of each tasks. The 
execution time of each task is used to compute the EST of 
each task. Table 2 shows the EST of each tasks arranged 
according to the descending order of the NTD of each tasks. 
From Table 2, we see that each of tasks t8, t7, t12, and t13 have 
two ESTs because there are two possible path from which 



 

the EST can be obtained. For instance task t8 have an EST of 
10 along the path t4→ t1→ t0 and an EST of 15 along the path 
t5→ t2→ t10. Our algorithm always chooses the minimum EST. 

 
Scheduling using GA 

The goal of the combinatorial optimization problem in 
this work is to find optimal task schedule in a very short 
time. Since this problem is NP-complete, we have chosen 
the GA to do the task scheduling. GA is a subset of 
evolutionary algorithms that models biological processes to 
optimize highly complex functions.  

 
Table 2. Task Order based on NTD. 

Task NTD EST 
t0 15 0 
t2 10 3 
t1 6 3 
t6 5 7 
t4 4 5 
t5 3 7 
t8 2 10,15 
t10 2 13 
t3 1 5 
t14 1 18 
t7 0 6,15 
t9 0 13 
t11 0 13 
t12 0 17,22 
t13 0 17,22 
t15 0 33 

 
The GA allows a population composed of many 

individuals to evolve under specified selection rules to a 
state that maximizes the “fitness” (i.e. minimize the 
objective function). It is important that a solution is found in 
good time because time plays an important role in real time 
applications for task scheduling in multiprocessing system. 
The main advantage of using GA over other stochastic 
techniques is its parallelism which enables faster 
convergence. GA therefore outsmarts all other meta-
heuristic techniques in terms of the time it takes to arrive at a 
good solution. The GA is able to provide a list of optimum 
solutions at a single iteration; this is particularly good for 
our application because we have multiple processors on 
which the scheduling is done. GA’s are also less likely to get 
stuck in local minima because of its crossover and mutation 
processes. GA is therefore well suited to our problem. The 
GA procedure is shown in Table 3. 

 
The initial population consists of solutions in the search 

space. A solution represents a schedule generated every time 
the algorithm in section 3.3 is run. In GA term a solution is 
termed a chromosome. A particular population size is chosen 
depending on the problem size. Each of the solutions in the 

initial population is examined using the objective function in 
Equation (1). In GA terms, the objective function represents 
the fitness function. The goal is to minimize the function. 
The lower the TFT of a schedule, the better it satisfies the 
objective function. 

 
Table 3. Standard Genetic Algorithm. 

Step Action 

1 
Generate a random initial population of n 
schedules, where n is the population size. 

2 
Evaluate the fitness of each of the schedule in the 
initial population. 

3 
Generate new populations using processes in steps 
4-6 

4 
Selects two schedules among the current 
population using the roulette wheel method based 
on fitness of each schedule. 

5 
Crossover the two selected schedules considering 
the crossover probability, to form the schedules for 
the next generation 

6 
Mutate the one of the selected schedules at each 
defined mutation point, considering the mutation 
probability and place it in the new population. 

7 
Evaluate the fitness of each of the schedules in the 
new population 

8 
Repeat steps 3-7 until the stopping criteria have 
been met. 

 
GA uses selection, crossover and mutation processes to 

generate new solutions (schedules) in the search space.  
 
• Selection deals with the probabilistic survival of the 

fittest, in that the fittest schedules are chosen to survive. 
Fitness is a comparable measurement of how well a schedule 
satisfies the objective function. Once the schedules with the 
better fittest are chosen, others will be eliminated. Simply, 
the probability of a chromosome to be selected is 
proportional to the quality value/fitness; this is also called 
the roulette wheel selection method. There are various 
selection methods but we propose to use the roulette wheel 
selection algorithm because it gives every chromosome a 
chance of survival. The lower the TFT of a schedule, the 
larger the slot it occupies in the roulette wheel and 
consequently the higher the chances of being selected for 
every spin.  

 
• Crossover is a technique considered to be the most 

important step in the context of GAs. At a certain crossover 
rate, GA selects two schedules from the population based on 
roulette wheel method. After selecting these two schedules, 
using the roulette wheel, a task is randomly selected from 
the ordered set of tasks based on their NTD. In one of the 
schedule (first schedule), the algorithm will choose all the 
tasks that have equal or lower number of NTD to the 
selected task. For each processor in the first schedule, the 



 

chosen tasks are exchanged with the other tasks on 
corresponding processor in the second schedule. This 
produces two new schedules with most likely varying TFT 
to the initial schedules. 

 
• Mutation is a genetic operator used to maintain genetic 

diversity, at a certain mutation rate, from one generation of a 
population of schedules to the next. Mutation alters one or 
more gene (task) values in a chromosome from its initial 
state. In mutation, the solution may change entirely from the 
previous solution. Hence GA can come to better or worst 
solution by using mutation. Consequently, mutation aids GA 
to avoid getting stuck in local minimal. To do mutation, the 
two different schedules and task selected for the crossover 
process are used. In the first schedule, the selected task is 
exchanged with another task with equal NTD on another 
processor in the same schedule. This same mutation process 
is done for the second schedule. Like the crossover, this 
procedure also produces two new schedules with most likely 
varying TFT to the initial schedules. 

 
After each cycle of selection, crossover and mutation, the 

newly generated sets of solutions (schedules) are termed new 
generation. Every generation is evaluated based on the 
fitness function to determine if they represent a good enough 
solution to satisfy the fitness function. This determines if the 
GA can stop searching, or if otherwise, for the GA to 
continue searching until the set stopping criteria is met. The 
stopping criteria could be the number of generations, or 
evolution time, or fitness threshold, or fitness convergence, 
or population convergence. In our case, the number of 
generations was set as the stopping criteria. The schedule 
obtained after the stopping criteria will be the optimal or 
near optimal schedule. 

IV. EXPERIMENTAL RESULTS 

The GA Simulation was done in Java to evaluate our 
algorithm. Task graphs were created with number of tasks in 
the graph ranging from 16, 21, and 30. The task dependency 
percentage range between 20 and 60 and the execution time 
for each task is random between 1 and 15 s. The task graphs 
are scheduled on a multiprocessor system with 3 processors 
for the two genetic-based algorithms with maximum earliest 
start time and our algorithm minimum earliest start time. 
The genetic algorithm parameters chosen are population size 
of 40, crossover rate of 0.8 and the mutation rate of 0.1, 
number of generations of 50. 

 
Table 4 shows the schedules and the TFT for each of the 

Max-EST and the Min-EST algorithm. The results shows 
that the Min-EST can schedule tasks either with same TFT 
or lower TFT compared to the Max-EST. The computation 
time is however the same for both algorithms. 

 

Table 4. Schedules for the 2 Algorithms. 
Algorithms Total Finish Time (seconds) 

Number of Processors = 3 
Number of Tasks 

16 21 30 
Max-EST 40 76 146 
Min-EST 40 75 134 
 

Table 5. Schedule with varying NTD of tasks. 
Algorithms Total Finish Time (seconds) 

Number of Processors = 3 
Number of Tasks = 30 

Increase NTD of Tasks with Multiple 
ESTs 

20% 40% 60% 
Max-EST 146 187 209 
Min-EST 134 162 176 
 
Table 5 shows the results obtained when the number of 

task dependencies (NTD) of tasks with multiple ESTs is 
considerably large compared with other tasks in the graph 
with single EST. With a task graph containing 30 tasks, our 
algorithm (Min-EST) outperforms the Max-ESTs algorithms 
with increasing NPD of tasks with multiple ESTs. This 
occurs because since both algorithms are based on NTD, 
tasks with higher NTDs are given priority than those with 
lower NTDs. In effect, if a task with multiple ESTs have a 
higher NTD, it will be scheduled earlier and the minimum 
EST of such task is likely to be less than the current 
available start time on any of the processor. In the same 
vein, if the NTD of a task with multiple ESTs is 
considerably small compared to other tasks with single EST, 
then such tasks will be scheduled late at which time the 
minimum ESTs will be insignificant because the current 
available start time on any of the processors would have 
exceeded the minimum EST. Therefore our algorithm 
outperforms the Max-EST algorithm only when the NTD of 
tasks with multiple ESTs is considerably high compared to 
that for tasks with single EST. 

V. CONCLUSIONS AND FUTURE WORK 

This paper presents a simulation of multiprocessor tasks 
scheduling based on the number of task dependencies using 
GA. GA was used because this problem is NP_Hard and a 
an optimal-or near-optimal schedule is needed in good time. 
Tasks with higher number of task dependencies were given 
priority independent of the height of such tasks. This helps 
to further ensure that all the tasks in the tasks graph are 
scheduled on time using the earliest start time of each task. It 
was observed that some tasks can have more than one EST 
as a result of multiple path of reaching such tasks in the 
tasks graph. Our idea ensures that the minimum of the 
multiple ESTs is chosen. Choosing the minimum ESTs is 
only significant when the tasks with multiple ESTs are given 



 

priority in scheduling which occurs only when the number of 
task dependency is considerably high compared to tasks with 
single ESTs. Simulation shows that our algorithm will 
outperform the Max-EST algorithm only when the tasks 
with multiple ESTs have higher task dependency compared 
to other task with single EST in the task graph. For future 
work, an adaptive adjustment of the algorithm parameters 
(crossover and mutation rate) proposed by Yun-Xiao [9], can 
be implemented in order to reduce the vector distance 
between individual schedules. This should reduce the 
convergence time for our proposed GA. 

 
 

REFERENCES 

[1] E. S. Hou, N. Ansari and H. Ren, "A Genetic Algorithm 
for Multiprocessor Scheduling," in IEEE Transactions 
on Parallel and Distributed Systems, 1994.  

[2] S. Jin, G. Schiavone and D. Turgut, "A Performance 
study of multiprocessor task scheduling algorithms," 
Journal of Supercomputing, vol. 43, no. 1, pp. 77-97, 
January 2008.  

[3] M. U, C. Ho, S. Funk and K. Rasheed, "GART: A 
Genetic Algorithm based Real-time System Scheduler," 
in IEEE Congress on Evolutionary Computation, 2011.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] D. Montana, G. Bidwell and S. Moore, "Using Genetic 
Algorithms for Complex Real Time Scheduling 
Applications," in IEEE Network Operations and 
Management Symposium, 1998.  

[5] R. M. Miryani and M. Naghibzadeh, "Hard Real-Time 
Multiobjective Scheduling in Heterogenous Systems 
Using Genetic Algorithms," in International CSI 
Computer Conference, 2009.  

[6] Y. Monnier, J.-P. Beauvais and A.-M. Deplanche, "A 
Genetic Algorithm for Scheduling Tasks in a Real-Time 
Distributed System," in Euromicro Conference, 1998.  

[7] A. S. Wu, H. Yu, S. Jin, K.-C. Lin and G. Schiavone, 
"An Incremental Genetic Algorithm Approach to 
Multiprocessor Scheduling," in IEEE Transactions on 
Parallel and Distributed Systems, 2004.  

[8] M. Abdeyazdan and A. M. Rahmani, "Multiprocessor 
Task Scheduling using a new Prioritizing Genetic 
Algorithm based on number of Task Children," in 
International Conference on Distributed and Parrallel 
Systems, 2008.  

[9] Z. Yun-Xiao, Z. Jie and Z. Chang-Chang, "Cognitive 
Radio Resource Allocation based on Coupled Chaotic 
Genetic Algorithm," in IOP Science Chinese Physics B, 
2010.  

 

 


