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Abstract—Cloud computing services at the SaaS level of the 
cloud computing model are easy to access and utilize. In 
contrast, the self-service approach taken at the IaaS level 
results in difficulties for non-savvy users. Compounding these 
difficulties is the fact that for resiliency, economic, and 
scalability reasons, utilization of IaaS resources across 
multiple cloud providers in a unified manner is deemed the 
best strategy. In this paper, we outline our proposal for a 
user-centric multi-cloud autonomic overlay infrastructure that 
can be deployed across existing cloud systems without the 
need for specialized hardware or action on the part of cloud 
providers. We also present the results of a simple genome 
sequencing experiment and bandwidth measurements 
conducted on a crude prototype implementation of the system. 

Keywords: virtual distributed ethernet (VDE), application 
defined networking (ADN), virtual overlay infrastructure, 
simple heterogeneous inter-cloud manager (SHINCLOM), 
cloud federation, CloudStack. 

 

1 Introduction 
  Cloud computing has rapidly advanced into the public 
consciousness, with software as a service (SaaS) becoming a 
virtually indispensable part of everyday life due to easy 
access and utility. In cloud computing, everything is delivered 
as a service [1]. However, for users who require more than 
the relatively simple applications offered at this uppermost 
layer of the cloud computing model, things are not as simple 
because the lower levels utilize a self-service approach, in 
which users are expected to provision, manage, and maintain 
what they need by themselves. Deploying applications at the 
infrastructure as a service (IaaS) level is non-trivial as the 
distributed applications being deployed often comprise 
interdependent services that form a complex hierarchy across 
virtual machines (VMs), and which must be configured in a 
particular order [2]. Thus, simply accessing and utilizing IaaS 
resources on any one cloud platform requires a variety of 
technical know-how—such as knowledge of the relevant 
APIs to use and how to install, launch, configure, and 
maintain the desired applications and services.  
 
 Adding to the difficulties outlined above is the fact that 
mission critical business applications require that downtime 
be minimized and optimum performance maintained; yet, it 

has become patently clear that trusting essential applications 
to one cloud platform or provider is not a wise strategy due to 
the possibility of outages and scalability, flexibility, and 
economic issues. Further, at present, the frightening 
possibility of cloud lock-in [3] awaits unwary users as 
dynamically migrating applications and services from one 
cloud to another or launching and maintaining applications 
across cloud systems in order to avail oneself of better prices, 
levels of service, etc. is still very difficult.  
 
 Cloud federation is an emerging paradigm in which 
resources from multiple independent cloud providers are 
leveraged to create a virtual cloud system that overcomes 
some of the limitations of single-cloud systems (such as 
provisioning and scalability constraints), is resilient to 
failures, and provides high availability. As outlined by Petcu 
[4], the actual clouds can be federated in a number of ways: 
Horizontal federation, Inter-Clouds federation, Cross-Clouds 
federation, and Sky Computing [5]. 
 
 In this paper, we outline our user-centric approach to 
cloud-federation, with which we ultimately aim to spare users 
the tedious, time-consuming, and error-prone process of 
manually installing, configuring, and monitoring multi-cloud 
applications and services at the IaaS level. Consequently, we 
are currently developing a user deployable autonomic multi-
cloud overlay infrastructure comprising various applications, 
utilities, and services that users can easily deploy and utilize. 
In this sense, our objective is a form of Sky Computing as our 
aim is to compose the existing user-level services offered by 
cloud providers into a single virtual framework (in the form 
of a “single-cloud like image”) that is independent of any one 
type of cloud platform and offering new services other than 
those provided by each individual cloud provider (i.e., greater 
than the sum of its individual parts). The actual infrastructure 
is being developed in a holistic way with the aid of a 
proposed layered autonomic multi-cloud model on which 
existing and future technologies can be integrated in such a 
way that how the various elements in our framework function 
and interoperate can be easily understood.  
 
 The remainder of this paper is organized as follows: In 
Section 2, we introduce and outline our proposed layered 
autonomic multi-cloud model. In Section 3, we discuss our 
preliminary implementation of a user deployable virtual 
overlay infrastructure and MPI clusters. We also discuss the 



results of a simple genome sequencing experiment conducted 
on the clusters and bandwidth measurements done on the 
infrastructure. In Section 4, we outline future work to be 
done. Finally, we conclude this paper in Section 5.  
 
2 Autonomic Multi-cloud Model 
 We propose that autonomic multi-cloud applications and 
services be developed based on the conceptual model 
depicted in Fig. 1. This conceptual model allows for the 
design and development of applications and services in a 
cloud-agnostic way. Our aim is to leverage the many 
technologies and techniques currently available and map them 
onto the relevant layers of our model in a transparent manner 
by adapting, integrating, and (where necessary) modifying 
and extending them in such a way that the links among the 
technologies are easily analyzable and optimizable. The 
layers and the functions they perform in the model are 
discussed below.  
 

 
 

Fig. 1: Proposed layered autonomic multi-cloud model 
  
 
2.1 Layer 1: Cloud Platforms Specific Layer 

(CPSL) 
 There are currently a large number of public and private 
cloud platforms, some better known than others. At present, 
these cloud platforms do not use a common set of APIs. The 
cloud platforms specific layer (CPSL) forms the foundation 
of our model as it translates the various calls from the upper 
layers into calls that can be initiated on the various platforms. 
Utilities such as LibCloud [6] and DeltaCloud [7] can be 
deployed at this layer to carry out these functions. Further, 
tools such as CloudInit.d [8] and Wrangler [9] can be 
extended and integrated to provide low-level autonomic 
functions such as monitoring and repair of VMs at this layer. 

2.2 Layer 2: Virtual Overlay Infrastructure 
Layer (VOIL) 

 The virtual overlay infrastructure layer (VOIL) is a 
critical part of our proposed model. At this layer, the 
following activities and services are provided:  
1. A seamless virtual overlay infrastructure that abstracts 

away the differences inherent in the various cloud 
platforms.  

2. A homogeneous context for VMs from disparate clouds. 
3. Infrastructure automation tools and services such as 

automated cluster and VPC deployment services; akin to 
the tool execution environment envisioned by Afgan et al. 
[10].  
 

2.3 Layer 3: Application Defined Networking 
Layer (ADNL) 

 At the application defined networking layer (ADNL), 
the focus is on optimization and orchestration of the 
movement of data throughout the VOIL for each application. 
Application defined networking (ADN) [11] takes center 
stage at this layer. In contrast to software defined networking 
(SDN), which deals with the forwarding of individual packets 
throughout the network infrastructure, ADN works with data 
and gives applications the ability to dynamically adapt to their 
networking environment in order to optimize their 
performance. ADN is based on a feedback loop principle, 
which it leverages to monitor, analyze, and orchestrate 
infrastructure capacity and configuration in order to 
continuously adapt applications to facilitate optimum 
performance [11]. Thus, in our proposed model, ADN 
services monitor ADN-enabled applications in the cloud 
applications specific layer (CASL) and dynamically 
orchestrate (activate, deactivate, and tune) the services 
provided at the VOIL as it endeavors to achieve and maintain 
the performance targets of the associated application. For 
example, if the capacity links in the infrastructure are over-
stretched and on the verge of causing imminent impairment to 
services and applications, ADN tools in the ADNL will be 
able to obviate this. At this layer, processes and agents such 
as those proposed in the GerNU project [12] could be 
modified and deployed to ensure optimum application 
performance and compliance with predefined service level 
agreements (SLAs). 

2.4 Layer 4:  Cloud Applications Specific 
Layer (CASL) 

 At the cloud applications specific layer (CASL), it is 
envisioned that applications will be able to operate without 
consideration for the disparate cloud platforms on which they 
are running. Thus, in the CASL (pun intended), applications 
should be able to operate with impunity in pursuit of their 
various performance targets.  

 



3 Prototype Implementation and Results 
 As a first step towards the realization of our user 
deployable autonomic multi-cloud overlay infrastructure 
based on the proposed autonomic multi-cloud model, we 
developed both a user-deployable virtual multi-cloud overlay 
infrastructure using virtual distributed Ethernet (VDE) [13] 
and an automated cluster deployment tool. We discuss these 
developments and our preliminary results below.  
 
3.1 Overlay infrastructure implementation 
 We implemented the virtual infrastructure depicted in 
Fig. 2 using VDE as the virtual networking utility and Python 
Fabric [14], which provides a basic suite of operations for 
executing local and remote shell commands and 
uploading/downloading files, for system configuration. VDE 
has been used to implement virtual network laboratories such 
as Marionnet [15] and to build private networks for clusters 
of nodes in the Eucalyptus private cloud platform [16]. It is 
an open-source OSI Layer 2 virtual network software tool that 
can run on both virtual and physical machines and is able to 
forward, dispatch, and route plain Ethernet packets. VDE has 
the same structure as modern Ethernet networks and its main 
components are managed switches, wires (any tool capable of 
transferring a stream connection, e.g., SSH), and plugs 
(programs connected to a switch to convert all the traffic to a 
standard stream connection). A VDE cable comprises a wire 
with a plug at either end and is used to interconnect two VDE 
switches. 
 
 To implement the virtual overlay infrastructure depicted 
in Fig. 2, we deployed a VDE switch on the tap0 network 
interface of each VM (and physical computer) and connected 
the switches using SSH. As most cloud platforms use Class A 
private addressing (i.e., 10.x.x.x) on their eth0 network 
interfaces and small private networks use Class C private 
addressing (i.e., 192.168.x.x), to avoid confusion, we opted to 
use Class B private addressing (i.e., 172.16.x.x to 172.31.x.x) 
in our overlay infrastructure.  
 

 
Fig. 2: Implemented virtual overlay infrastructure 

3.2 Automated MPI cluster deployment 
 To enable automated cluster deployments on the 
infrastructure, we created a tool in Python that deploys and 
configures master and slave nodes using prebuilt CloudStack 
[31] templates made from Ubuntu 12.10 64-bit servers, with 
MPICH2 [32] installed. 

3.2.1 Experimental cluster configurations 
     To get an idea of the performance of our multi-cloud 

cluster, we compared the performance of a small six-machine 
cluster for the three configurations illustrated in Figs. 3 to 5. 
For Configuration 1 (Fig. 3), the cluster was deployed on a 
conventional single-site CloudStack network (i.e., without the 
virtual overlay infrastructure). For Configuration 2 (Fig. 4), 
the cluster was deployed on the virtual overlay infrastructure 
across two CloudStack networks. For Configuration 3 (Fig. 
5), the cluster was deployed on the virtual overlay 
infrastructure, this time comprising two CloudStack networks, 
two AWS [33] regions, and a physical machine.  

 

 
Fig. 3: Conventional single-site CloudStack cluster—No VDE 

(Configuration 1) 

3.2.2 Simple genome sequencing experimental results 
 Executing the ClustalW-MPI alignment sequence tool 
[17] on three files across the cluster in each of the three 
configurations gave us the results shown in Table 1. For the 
largest file, the transfer time for Configuration 2 was almost 
twice that of Configuration 1, while that of Configuration 3 
was almost 30 times that of Configuration 1. For the smallest 
file, however, Configurations 2 and 3 had very close transfer 
times. Large time differences between Configuration 1 and 
Configuration 3 were also evident in the sequence alignment 
times. We believe that the large time differentials are due to 
the fact that Configuration 3 comprised three nodes that were 
connected to the master via slow interconnection (Internet) 
links. To test the speed of the links, we conducted bandwidth 
measurements, which we discuss in Section 3.3. 

 

 

 



 
Fig. 4: Cluster across two CloudStack networks—Using VDE 

(Configuration 2) 

Fig. 5: Cluster across two CloudStack networks, two AWS regions, 
and one physical machine—Using VDE (Configuration 3)

 
Table 1: Simple genome sequencing experimental results 

 

Cluster configuration File 
number File size Number 

of groups 
Time to transfer to 

slave nodes  (s) 

Time for 
pairwise 
sequence 

alignments  (s) 

Time for multiple 
sequence 

alignments     
(s) 

Configuration 1 (Single 
site—No VDE) 

1 4 KB 4 1.19 x 10-4 0.011 0.077 
2 37 KB 21 3.29 x 10-4 2.491 2.306 
3 124.3 MB 1170 23.76 n/a n/a 

 

Configuration 2   (Two 
CS networks—VDE) 

1 4 KB 4 24.59 x 10-4 0.023 0.335 
2 37 KB 21 47.65 x 10-4 2.554 3.941 
3 124.3 MB 1170 43.23 n/a n/a 

 

Configuration 3   (Two 
CS networks, 2 AWS 

regions, 1 physical 
machine—VDE) 

1 4 KB 4 21.98 x 10-4 0.709 16.502 

2 37 KB 21 81.29 x 10-4 4.046 71.507 

3 124.3 MB 1170 642.20 n/a n/a 

 
 
3.3 Bandwidth measurements 
 Using Iperf [18] with its default TCP window size of 8 
KB, we conducted bandwidth tests between sgemaster and 
each of the slave nodes. The network configuration used is 
depicted in Fig. 6. The resultant bandwidth determined for the 
link between sgemaster and each slave node is shown in Fig. 
7. Using the bandwidth obtained on eth0 as the standard (i.e., 
207 Mbps), we computed the loss in bandwidth across the 
virtual infrastructure. The results obtained indicate the 
following:  
1. The use of the virtual infrastructure results in a 6% 

decrease in bandwidth.  

2. The second virtual router (Kitami Network) introduces an 
additional 6% decrease in bandwidth, resulting in a total 
bandwidth decrease of 12% from sgemaster to vde-switch. 

3. Using node vde-switch as a proxy for the master to 
communicate with the slaves across the second network 
results in an overall loss in bandwidth of 43%. (This 
implies that a direct connection from the switch on each 
slave to the switch on the master is better.)  

4. The links created across the Internet are (as expected) 
much slower than those inside the data center.  This fact is 
reflected in the 99% and 92% bandwidth losses between 
sgemaster and euca-slave (in the Eucalyptus Community 

 

 



Cloud (ECC) [34]) and sgemaster and aws-slave (AWS 
Tokyo region), respectively. 
 

 
 

Fig. 6: Configuration used in bandwidth tests 
 

  
4 Discussions and Future Work 
  It is obvious that in order to implement the kind of 
infrastructure proposed above the bandwidth disparities 
reported in this paper will have to be taken into account and 
techniques implemented to lessen their impact on the 
performance of the applications implemented on the virtual 
overlay infrastructure. The implementation of point-to-point 
dedicated links such as SINET [19] could be a solution for 
some inter-cloud links. However, as the idea is to facilitate 

connectivity across any available cloud system to which a 
user has access, other means of optimizing the user-level 
connections among cloud systems across the Internet are also 
imperative. For some applications, establishment of a primary 
link and the provision of a secondary link/route may be 
necessary. This can easily be done with VDE, as any switch 
on any node can be connected to a multiplicity of other nodes; 
thereby, providing the ability for the creation of alternate 
links/route. In fact, we plan to explore the performance 
impact of various topologies, such as star-ring hybrid and 
star-hypercube hybrid.  

 Even though our preliminary investigation indicates 
only a 6% fall in bandwidth due to the use of VDE, further 
investigations need to be done to see how the actual overlay 
infrastructure itself affects the performance of applications. 
Further, we intend to evaluate various other networking 
technologies to determine how well they cope with the rigors 
of a system such as this, and whether they can be combined 
and/or extended. Among these are ViNe [20], which uses 
user-level virtual routers (VMs on which ViNe processing 
software is installed and configured) to dictate overlay 
network communication by acting as gateways for nodes that 
do not run the ViNe software; VNET/U [21], which, in 
addition to facilitating overlay networking, may be able to 
provide ADN-related services such as monitoring of 
application communication and computation behavior [22]; 
and N2N [35], which uses P2P principles and the concept of 
edge nodes and super nodes (which relay packets across NAT 
boundaries for edge nodes) to facilitate overlay networks. 
Integration of the high-performance message passing protocol 
Open-MX [23] and user mode Linux related technologies 
such as VNX [24], Netkit [25], and Cloonix [26] also present 
interesting possibilities.  

 
 
 

 
Fig. 7: Bandwidth from sgemaster to each client for the configuration in Fig. 6 

 
 

 



 Smith [27] enumerated a number of problems that may 
beset applications in single-site and federated clouds, such as 
the possibility of traffic impairment when multiple providers 
are utilized in order to reduce risks and difficulty avoiding 
network latency and bottlenecks.  Our ultimate aim is to 
obviate such problems by applying the appropriate 
technology (or optimized mix of technologies) at each layer 
of our model. In [28], Friedman touched on the increasing 
trend of applications integrating across clouds, and states that 
“This presents an impedance mismatch where a highly 
distributed and concurrent application must talk across a 
narrow 1-1 link with another highly distributed and 
concurrent application.”  Some actual application challenges 
in the scientific arena, including the fact that application 
failures are prevalent in federated clouds, are also outlined by 
Deelman et al. [2]. We believe that the creation of an overlay 
infrastructure such as ours, in which applications are treated 
as first-class entities (i.e., ADN) and thus have the ability to 
autonomously act to fulfill specified requirements, can 
obviate this impending impedance mismatch.  
 
 The infrastructure proposed in this paper is being 
developed as part of the Simple Heterogeneous INter-CLoud 
Manager (SHINCLOM) project at Hokkaido University, 
Japan. In this project, we have already implemented a web 
interface that provides simple functions such as registration of 
cloud credentials in the content management system Drupal 
[29], which facilitates the development of the various sections 
of a cloud management system as modules that can be easily 
integrated [30].  
 
5 Conclusion 
  In this paper, we outlined our proposal for the 
development of a user-centric multi-cloud overlay 
infrastructure based on a proposed layered autonomic multi-
cloud model. Experimental measurements conducted on a 
crude prototype implementation of the system indicate that 
the system is feasible but more work needs to be done to 
improve the bandwidth of the inter-cloud links across the 
Internet.  
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