
Towards a User Deployable Service-oriented Autonomic
Multi-cloud Overlay Infrastructure for Sky Computing

Courtney Powell1, Masaharu Munetomo1, and Takashi Aizawa2
1Information Initiative Center, Hokkaido University, Sapporo, Japan

2Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

Abstract—Cloud computing services at the SaaS level of the
cloud computing model are easy to access and utilize. In
contrast, the self-service approach taken at the IaaS level
results in difficulties for non-savvy users. Compounding these
difficulties is the fact that for resiliency, economic, and
scalability reasons, utilization of IaaS resources across
multiple cloud providers in a unified manner is deemed the
best strategy. In this paper, we outline our proposal for a
user-centric multi-cloud autonomic overlay infrastructure that
can be deployed across existing cloud systems without the
need for specialized hardware or action on the part of cloud
providers. We also present the results of a simple genome
sequencing experiment and bandwidth measurements
conducted on a crude prototype implementation of the system.

Keywords: virtual distributed ethernet (VDE), application
defined networking (ADN), virtual overlay infrastructure,
simple heterogeneous inter-cloud manager (SHINCLOM),
cloud federation, CloudStack.

1 Introduction
 Cloud computing has rapidly advanced into the public
consciousness, with software as a service (SaaS) becoming a
virtually indispensable part of everyday life due to easy
access and utility. In cloud computing, everything is delivered
as a service [1]. However, for users who require more than
the relatively simple applications offered at this uppermost
layer of the cloud computing model, things are not as simple
because the lower levels utilize a self-service approach, in
which users are expected to provision, manage, and maintain
what they need by themselves. Deploying applications at the
infrastructure as a service (IaaS) level is non-trivial as the
distributed applications being deployed often comprise
interdependent services that form a complex hierarchy across
virtual machines (VMs), and which must be configured in a
particular order [2]. Thus, simply accessing and utilizing IaaS
resources on any one cloud platform requires a variety of
technical know-how—such as knowledge of the relevant
APIs to use and how to install, launch, configure, and
maintain the desired applications and services.

 Adding to the difficulties outlined above is the fact that
mission critical business applications require that downtime
be minimized and optimum performance maintained; yet, it

has become patently clear that trusting essential applications
to one cloud platform or provider is not a wise strategy due to
the possibility of outages and scalability, flexibility, and
economic issues. Further, at present, the frightening
possibility of cloud lock-in [3] awaits unwary users as
dynamically migrating applications and services from one
cloud to another or launching and maintaining applications
across cloud systems in order to avail oneself of better prices,
levels of service, etc. is still very difficult.

 Cloud federation is an emerging paradigm in which
resources from multiple independent cloud providers are
leveraged to create a virtual cloud system that overcomes
some of the limitations of single-cloud systems (such as
provisioning and scalability constraints), is resilient to
failures, and provides high availability. As outlined by Petcu
[4], the actual clouds can be federated in a number of ways:
Horizontal federation, Inter-Clouds federation, Cross-Clouds
federation, and Sky Computing [5].

 In this paper, we outline our user-centric approach to
cloud-federation, with which we ultimately aim to spare users
the tedious, time-consuming, and error-prone process of
manually installing, configuring, and monitoring multi-cloud
applications and services at the IaaS level. Consequently, we
are currently developing a user deployable autonomic multi-
cloud overlay infrastructure comprising various applications,
utilities, and services that users can easily deploy and utilize.
In this sense, our objective is a form of Sky Computing as our
aim is to compose the existing user-level services offered by
cloud providers into a single virtual framework (in the form
of a “single-cloud like image”) that is independent of any one
type of cloud platform and offering new services other than
those provided by each individual cloud provider (i.e., greater
than the sum of its individual parts). The actual infrastructure
is being developed in a holistic way with the aid of a
proposed layered autonomic multi-cloud model on which
existing and future technologies can be integrated in such a
way that how the various elements in our framework function
and interoperate can be easily understood.

 The remainder of this paper is organized as follows: In
Section 2, we introduce and outline our proposed layered
autonomic multi-cloud model. In Section 3, we discuss our
preliminary implementation of a user deployable virtual
overlay infrastructure and MPI clusters. We also discuss the

results of a simple genome sequencing experiment conducted
on the clusters and bandwidth measurements done on the
infrastructure. In Section 4, we outline future work to be
done. Finally, we conclude this paper in Section 5.

2 Autonomic Multi-cloud Model
 We propose that autonomic multi-cloud applications and
services be developed based on the conceptual model
depicted in Fig. 1. This conceptual model allows for the
design and development of applications and services in a
cloud-agnostic way. Our aim is to leverage the many
technologies and techniques currently available and map them
onto the relevant layers of our model in a transparent manner
by adapting, integrating, and (where necessary) modifying
and extending them in such a way that the links among the
technologies are easily analyzable and optimizable. The
layers and the functions they perform in the model are
discussed below.

Fig. 1: Proposed layered autonomic multi-cloud model

2.1 Layer 1: Cloud Platforms Specific Layer

(CPSL)
 There are currently a large number of public and private
cloud platforms, some better known than others. At present,
these cloud platforms do not use a common set of APIs. The
cloud platforms specific layer (CPSL) forms the foundation
of our model as it translates the various calls from the upper
layers into calls that can be initiated on the various platforms.
Utilities such as LibCloud [6] and DeltaCloud [7] can be
deployed at this layer to carry out these functions. Further,
tools such as CloudInit.d [8] and Wrangler [9] can be
extended and integrated to provide low-level autonomic
functions such as monitoring and repair of VMs at this layer.

2.2 Layer 2: Virtual Overlay Infrastructure
Layer (VOIL)

 The virtual overlay infrastructure layer (VOIL) is a
critical part of our proposed model. At this layer, the
following activities and services are provided:
1. A seamless virtual overlay infrastructure that abstracts

away the differences inherent in the various cloud
platforms.

2. A homogeneous context for VMs from disparate clouds.
3. Infrastructure automation tools and services such as

automated cluster and VPC deployment services; akin to
the tool execution environment envisioned by Afgan et al.
[10].

2.3 Layer 3: Application Defined Networking
Layer (ADNL)

 At the application defined networking layer (ADNL),
the focus is on optimization and orchestration of the
movement of data throughout the VOIL for each application.
Application defined networking (ADN) [11] takes center
stage at this layer. In contrast to software defined networking
(SDN), which deals with the forwarding of individual packets
throughout the network infrastructure, ADN works with data
and gives applications the ability to dynamically adapt to their
networking environment in order to optimize their
performance. ADN is based on a feedback loop principle,
which it leverages to monitor, analyze, and orchestrate
infrastructure capacity and configuration in order to
continuously adapt applications to facilitate optimum
performance [11]. Thus, in our proposed model, ADN
services monitor ADN-enabled applications in the cloud
applications specific layer (CASL) and dynamically
orchestrate (activate, deactivate, and tune) the services
provided at the VOIL as it endeavors to achieve and maintain
the performance targets of the associated application. For
example, if the capacity links in the infrastructure are over-
stretched and on the verge of causing imminent impairment to
services and applications, ADN tools in the ADNL will be
able to obviate this. At this layer, processes and agents such
as those proposed in the GerNU project [12] could be
modified and deployed to ensure optimum application
performance and compliance with predefined service level
agreements (SLAs).

2.4 Layer 4: Cloud Applications Specific
Layer (CASL)

 At the cloud applications specific layer (CASL), it is
envisioned that applications will be able to operate without
consideration for the disparate cloud platforms on which they
are running. Thus, in the CASL (pun intended), applications
should be able to operate with impunity in pursuit of their
various performance targets.

3 Prototype Implementation and Results
 As a first step towards the realization of our user
deployable autonomic multi-cloud overlay infrastructure
based on the proposed autonomic multi-cloud model, we
developed both a user-deployable virtual multi-cloud overlay
infrastructure using virtual distributed Ethernet (VDE) [13]
and an automated cluster deployment tool. We discuss these
developments and our preliminary results below.

3.1 Overlay infrastructure implementation
 We implemented the virtual infrastructure depicted in
Fig. 2 using VDE as the virtual networking utility and Python
Fabric [14], which provides a basic suite of operations for
executing local and remote shell commands and
uploading/downloading files, for system configuration. VDE
has been used to implement virtual network laboratories such
as Marionnet [15] and to build private networks for clusters
of nodes in the Eucalyptus private cloud platform [16]. It is
an open-source OSI Layer 2 virtual network software tool that
can run on both virtual and physical machines and is able to
forward, dispatch, and route plain Ethernet packets. VDE has
the same structure as modern Ethernet networks and its main
components are managed switches, wires (any tool capable of
transferring a stream connection, e.g., SSH), and plugs
(programs connected to a switch to convert all the traffic to a
standard stream connection). A VDE cable comprises a wire
with a plug at either end and is used to interconnect two VDE
switches.

 To implement the virtual overlay infrastructure depicted
in Fig. 2, we deployed a VDE switch on the tap0 network
interface of each VM (and physical computer) and connected
the switches using SSH. As most cloud platforms use Class A
private addressing (i.e., 10.x.x.x) on their eth0 network
interfaces and small private networks use Class C private
addressing (i.e., 192.168.x.x), to avoid confusion, we opted to
use Class B private addressing (i.e., 172.16.x.x to 172.31.x.x)
in our overlay infrastructure.

Fig. 2: Implemented virtual overlay infrastructure

3.2 Automated MPI cluster deployment
 To enable automated cluster deployments on the
infrastructure, we created a tool in Python that deploys and
configures master and slave nodes using prebuilt CloudStack
[31] templates made from Ubuntu 12.10 64-bit servers, with
MPICH2 [32] installed.

3.2.1 Experimental cluster configurations
 To get an idea of the performance of our multi-cloud

cluster, we compared the performance of a small six-machine
cluster for the three configurations illustrated in Figs. 3 to 5.
For Configuration 1 (Fig. 3), the cluster was deployed on a
conventional single-site CloudStack network (i.e., without the
virtual overlay infrastructure). For Configuration 2 (Fig. 4),
the cluster was deployed on the virtual overlay infrastructure
across two CloudStack networks. For Configuration 3 (Fig.
5), the cluster was deployed on the virtual overlay
infrastructure, this time comprising two CloudStack networks,
two AWS [33] regions, and a physical machine.

Fig. 3: Conventional single-site CloudStack cluster—No VDE

(Configuration 1)

3.2.2 Simple genome sequencing experimental results
 Executing the ClustalW-MPI alignment sequence tool
[17] on three files across the cluster in each of the three
configurations gave us the results shown in Table 1. For the
largest file, the transfer time for Configuration 2 was almost
twice that of Configuration 1, while that of Configuration 3
was almost 30 times that of Configuration 1. For the smallest
file, however, Configurations 2 and 3 had very close transfer
times. Large time differences between Configuration 1 and
Configuration 3 were also evident in the sequence alignment
times. We believe that the large time differentials are due to
the fact that Configuration 3 comprised three nodes that were
connected to the master via slow interconnection (Internet)
links. To test the speed of the links, we conducted bandwidth
measurements, which we discuss in Section 3.3.

Fig. 4: Cluster across two CloudStack networks—Using VDE

(Configuration 2)

Fig. 5: Cluster across two CloudStack networks, two AWS regions,
and one physical machine—Using VDE (Configuration 3)

Table 1: Simple genome sequencing experimental results

Cluster configuration File
number File size Number

of groups
Time to transfer to

slave nodes (s)

Time for
pairwise
sequence

alignments (s)

Time for multiple
sequence

alignments
(s)

Configuration 1 (Single
site—No VDE)

1 4 KB 4 1.19 x 10-4 0.011 0.077
2 37 KB 21 3.29 x 10-4 2.491 2.306
3 124.3 MB 1170 23.76 n/a n/a

Configuration 2 (Two
CS networks—VDE)

1 4 KB 4 24.59 x 10-4 0.023 0.335
2 37 KB 21 47.65 x 10-4 2.554 3.941
3 124.3 MB 1170 43.23 n/a n/a

Configuration 3 (Two
CS networks, 2 AWS

regions, 1 physical
machine—VDE)

1 4 KB 4 21.98 x 10-4 0.709 16.502

2 37 KB 21 81.29 x 10-4 4.046 71.507

3 124.3 MB 1170 642.20 n/a n/a

3.3 Bandwidth measurements
 Using Iperf [18] with its default TCP window size of 8
KB, we conducted bandwidth tests between sgemaster and
each of the slave nodes. The network configuration used is
depicted in Fig. 6. The resultant bandwidth determined for the
link between sgemaster and each slave node is shown in Fig.
7. Using the bandwidth obtained on eth0 as the standard (i.e.,
207 Mbps), we computed the loss in bandwidth across the
virtual infrastructure. The results obtained indicate the
following:
1. The use of the virtual infrastructure results in a 6%

decrease in bandwidth.

2. The second virtual router (Kitami Network) introduces an
additional 6% decrease in bandwidth, resulting in a total
bandwidth decrease of 12% from sgemaster to vde-switch.

3. Using node vde-switch as a proxy for the master to
communicate with the slaves across the second network
results in an overall loss in bandwidth of 43%. (This
implies that a direct connection from the switch on each
slave to the switch on the master is better.)

4. The links created across the Internet are (as expected)
much slower than those inside the data center. This fact is
reflected in the 99% and 92% bandwidth losses between
sgemaster and euca-slave (in the Eucalyptus Community

Cloud (ECC) [34]) and sgemaster and aws-slave (AWS
Tokyo region), respectively.

Fig. 6: Configuration used in bandwidth tests

4 Discussions and Future Work
 It is obvious that in order to implement the kind of
infrastructure proposed above the bandwidth disparities
reported in this paper will have to be taken into account and
techniques implemented to lessen their impact on the
performance of the applications implemented on the virtual
overlay infrastructure. The implementation of point-to-point
dedicated links such as SINET [19] could be a solution for
some inter-cloud links. However, as the idea is to facilitate

connectivity across any available cloud system to which a
user has access, other means of optimizing the user-level
connections among cloud systems across the Internet are also
imperative. For some applications, establishment of a primary
link and the provision of a secondary link/route may be
necessary. This can easily be done with VDE, as any switch
on any node can be connected to a multiplicity of other nodes;
thereby, providing the ability for the creation of alternate
links/route. In fact, we plan to explore the performance
impact of various topologies, such as star-ring hybrid and
star-hypercube hybrid.

 Even though our preliminary investigation indicates
only a 6% fall in bandwidth due to the use of VDE, further
investigations need to be done to see how the actual overlay
infrastructure itself affects the performance of applications.
Further, we intend to evaluate various other networking
technologies to determine how well they cope with the rigors
of a system such as this, and whether they can be combined
and/or extended. Among these are ViNe [20], which uses
user-level virtual routers (VMs on which ViNe processing
software is installed and configured) to dictate overlay
network communication by acting as gateways for nodes that
do not run the ViNe software; VNET/U [21], which, in
addition to facilitating overlay networking, may be able to
provide ADN-related services such as monitoring of
application communication and computation behavior [22];
and N2N [35], which uses P2P principles and the concept of
edge nodes and super nodes (which relay packets across NAT
boundaries for edge nodes) to facilitate overlay networks.
Integration of the high-performance message passing protocol
Open-MX [23] and user mode Linux related technologies
such as VNX [24], Netkit [25], and Cloonix [26] also present
interesting possibilities.

Fig. 7: Bandwidth from sgemaster to each client for the configuration in Fig. 6

 Smith [27] enumerated a number of problems that may
beset applications in single-site and federated clouds, such as
the possibility of traffic impairment when multiple providers
are utilized in order to reduce risks and difficulty avoiding
network latency and bottlenecks. Our ultimate aim is to
obviate such problems by applying the appropriate
technology (or optimized mix of technologies) at each layer
of our model. In [28], Friedman touched on the increasing
trend of applications integrating across clouds, and states that
“This presents an impedance mismatch where a highly
distributed and concurrent application must talk across a
narrow 1-1 link with another highly distributed and
concurrent application.” Some actual application challenges
in the scientific arena, including the fact that application
failures are prevalent in federated clouds, are also outlined by
Deelman et al. [2]. We believe that the creation of an overlay
infrastructure such as ours, in which applications are treated
as first-class entities (i.e., ADN) and thus have the ability to
autonomously act to fulfill specified requirements, can
obviate this impending impedance mismatch.

 The infrastructure proposed in this paper is being
developed as part of the Simple Heterogeneous INter-CLoud
Manager (SHINCLOM) project at Hokkaido University,
Japan. In this project, we have already implemented a web
interface that provides simple functions such as registration of
cloud credentials in the content management system Drupal
[29], which facilitates the development of the various sections
of a cloud management system as modules that can be easily
integrated [30].

5 Conclusion
 In this paper, we outlined our proposal for the
development of a user-centric multi-cloud overlay
infrastructure based on a proposed layered autonomic multi-
cloud model. Experimental measurements conducted on a
crude prototype implementation of the system indicate that
the system is feasible but more work needs to be done to
improve the bandwidth of the inter-cloud links across the
Internet.

6 Acknowledgements
 This work utilizes the Hokkaido University Academic
Cloud, Information Initiative Center, Hokkaido University,
Sapporo, Japan and is supported in part by the CSI fund,
National Institute of Informatics, JAPAN.

7 References
[1] P. Vicat-Blanc. “Harmony in the cloud.”
http://www.sdnzone.com/topics/software-defined-
network/articles/332443-harmony-the-cloud.htm, April 1,
2013. Last accessed: April 25, 2013.

[2] E. Deelman, G. Juve, and G.B. Berriman. “Using clouds
for science, is it just kicking the can down the road?”
CLOSER 2012, pp. 127-134.

[3] J. McKendrick. “Cloud computing’s vendor lock-in
problem: Why the industry is taking a step backward.”
http://www.forbes.com/sites/joemckendrick/2011/11/20/cloud
-computings-vendor-lock-in-problem-why-the-industry-is-
taking-a-step-backwards/, November 20, 2011. Last accessed:
April 25, 2013.

[4] D. Petcu. “Portability and interoperability between
clouds: Challenges and case study.” Towards a Service-Based
Internet, LNCS, Springer, vol. 6994, pp. 62–74, 2011.

[5] K. Keahey, M. Tsugawa, A. Matsunaga, and J. A.
Fortes. “Sky computing.” IEEE Internet Computing, vol. 13,
no. 5, pp. 43–51, 2009.

[6] Apache LibCloud: A unified interface to the cloud.
http://libcloud.apache.org/. Last accessed: April 25, 2013.

[7] DeltaCloud. http://deltacloud.apache.org/. Last
accessed: April 25, 2013.

[8] J. Bresnahan, T. Freeman, D. LaBissoniere, and K.
Keahey. “Managing appliance launches in infrastructure
clouds.” Teragrid Conference, 2011.

[9] G. Juve and E. Deelman. “Automating application
deployment in infrastructure clouds.” CloudCom 2011.

[10] E. Afgan, K. Skala, D. Davidovic, T. Lipic, and I. Sovic.
“CloudMan as a tool execution framework for the cloud.”
MIPRO 2012, pp. 437–441, May 21–25, 2012.

[11] Lyatiss whitepaper. “Application defined networking:
The missing link for optimal cloud application performance
and agility.” www.becreative.ca/lyatiss/docs/Whitepaper-
ADN.pdf, 2013. Last accessed: April 25, 2013.

[12] H.P. Borges, B.R. Schulze, J.N. Souza, and A.R. Mury.
“Automatic services instantiation based on a process
specification.” Journal of network and computer applications,
2012

[13] R. Davoli. “VDE: Virtual distributed ethernet.”
TRIDENTCOM'05, pp. 213–220, 2005.

[14] Python Fabric. http://docs.fabfile.org/. Last accessed:
April 25, 2013.

[15] J.-V. Loddo and L. Saiu. “How to implement a virtual
network laboratory in six months and be happy.” In ACM
SIGPLAN Workshop on ML. ACM Press, 2007.

[16] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov. “The Eucalyptus

open-source cloud-computing system.” CCGRID’09,
Shanghai, China, pp.124-131, May 2009.

[17] K.-B. Li. “ClustalW-MPI: ClustalW analysis using
distributed and parallel computing.” Bioinformatics, pp. 585-
586, 2003.

[18] Iperf. http://openmaniak.com/iperf.php. Last accessed:
April 25, 2013.

[19] SINET.
http://www.sinet.ad.jp/index_en.html?lang=english. Last
accessed: April 25, 2013.

[20] M. Tsugawa, A. Matsunaga, and J. Fortes. “User-level
virtual network support for sky computing.” e-Science’09, pp.
72–79, 2009.

[21] A. Sundararaj and P. Dinda. “Towards virtual networks
for virtual machine grid computing.” Proc. 3rd USENIX
Virtual Machine Research And Technology Symposium (VM
2004), May 2004.

[22] A. Gupta and P.A. Dinda. “Inferring the topology and
traffic load of parallel programs running in a virtual machine
environment.” Proc. 10th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), June 2004.

[23] Open-MX: Myrinet express over generic ethernet
hardware. http://open-mx.gforge.inria.fr/. Last accessed: April
25, 2013.

[24] VNX: Virtual Networks over linuX.
http://web.dit.upm.es/vnxwiki/index.php/Main_Page. Last
accessed: April 25, 2013.

[25] Netkit: The poor man’s system to experiment computer
networking. http://wiki.netkit.org/index.php/Main_Page. Last
accessed: April 25, 2013.

[26] Cloonix: Dynamical topology virtual networks.
http://clownix.net/. Last accessed: April 25, 2013.

[27] M. Smith. “Network and application performance in
cloud.” http://erpcloudnews.com/2013/04/network-and-
application-performance-in-cloud/. Last accessed: April 25,
2013.

[28] J. Friedman. “Patterns for programming in the clouds.”
http://www.cs.york.ac.uk/library/proj_files/2010/EngDInd/jul
z/litreview-final-31may.pdf. Last accessed: April 25, 2013.

[29] Drupal. http://drupal.org/. Last accessed: April 25, 2013.

[30] Y. Naoi. “Clanavi: How to manage your cloud by
Drupal.” Bay Area Drupal Camp 2010, November 13, 2010.

[31] CloudStack open source computing.
http://cloudstack.apache.org/. Last accessed: May 31, 2013.

[32] MPICH: High-performance portable MPI.
http://www.mpich.org/. Last accessed: May 31, 2013.

[33] Amazon web services. http://aws.amazon.com/. Last
accessed: May 31, 2013.

[34] Eucalyptus community cloud (ECC).
http://www.eucalyptus.com/eucalyptus-cloud/community-
cloud. Last accessed: May 31, 2013.

[35] N2N: A layer two peer-to-peer VPN.
http://www.ntop.org/products/n2n/. Last accessed: May 31,
2013.

