
 Our Experience Teaching After-School Programming to
Parents and Their Children

Rudolf Pecinovský1, Jiří Kofránek2,
1University of Economics, Department of Information Technologies, Prague, Czech Republic

2Charles University in Prague, Laboratory of Biocybernetics, Prague, Czech Republic

Abstract - Many years ago, Prague’s sport clubs introduced
courses of swimming, gymnastics, trekking as well as
other physical training for parents and their children, in
which parents and children are active participants who
carry on the selected activities together. Compared to this
thoroughly-explored problem, courses of programming for
adults and children face a very different set of problems.
We were inspired by the experience of after-school athletes
and decided to examine how an interest group of after-
school programming for parents and their children might
operate. This paper summarizes a two-year experience
with running such courses.

Keywords: Education, Program Architecture, Object-
Oriented Programming, Design Patterns, UML

111 Itroduction
The authors of this paper teach a wide range of students,

from children attending interest groups, to regular lessons
in middle schools and universities, and all the way up to
running continuing education courses for professional
programmers. They teach according to the time-tested
methodology of Architecture First [14, 15] in all courses.
But each kind of course has its unique needs and requires
solving particular types of problems:

•	 Although	 children	 are	 immensely	 perceptive	 and	
acquire the presented items very quickly, they easily
are drawn by their schoolmates from programming to
playing computer games.

•	 University	 students	 usually	 divide	 quickly	 into	 two	
groups:

•	 Those	 who	 have	 never	 programmed	 before,	
and need a slower start in which the basic
programming	 constructions	 are	 presented	 first.	
However, as soon as they become acquainted
with them, they may successfully proceed in the
course, assuming their diligence and willingness
to develop required programs.

•	 Those	who	have	already	been	taught	programming	
consider the initial presentation of basic terms
unnecessary, but don´t realize the subject matter
differs	 significantly	 from	 what	 they	 learned	 in	
their school courses. Most often they bring a false

idea from school that programming in an object
language means object-oriented programming.
They don´t realize that they learned to write only
classically structured programs in prior courses,
and that using classes does not mean object-
oriented programming. These students usually
have problems in the more advanced phases of
the course, and only later realize that the subject
matter presented at the beginning was not as self-
evident as they thought. Thanks to their passivity
they did not learn all that they should have
learned, and do not know what they need at the
moment.

•	 Professional	programmers	fight	with	the	aforementioned	
problems of advanced students even more intensely.
These programmers are sent to our courses by their
employers, who discover that graduates know a
number of frameworks and programming tools, but
are not able to propose a good architecture for more
extensive projects. Programmers with such training
know to implement entered interfaces (designed
by others), but they do not recognize where in their
proposal	they	should	define	their	own	interface.

The reason these two groups of advanced programmers
share common properties is well-characterized by a
constructivist theory of teaching [7], which shows
that	 new	 findings	 are	 grafted	 on	 to	 previously-adopted	
knowledge. If these new items are not in accord with
the old ones, the students are not able to remember them
properly. They subconsciously modify new information
according to their existing experience, and therefore they
place into their memory something slightly different than
was presented to them. This was our chief reason for using
the Architecture First methodology.

2 Lessons of programming for
parents and their children

Analyzing the aforementioned problems, we had
an idea to borrow the model of sport clubs. These are
Czech after-school clubs that began offering courses of
swimming, gymnastics, trekking and other training many
years ago, and which are attended by both parents and
children. Both are active participants, who carry out the
given	 activity	 together.	 Therefore	 we	 opened	 the	 first	

experimental group of programming for parents and their
children in the Technical Center of Children and Youth
House, Prague. Our aim was:

•	 To	clarify	if	this	methodology	can	teach	both	children	
and parents. They have different needs: the children
are pure beginners, while their parents are in most
cases able to program a little bit, despite not being
professional programmers.

•	 To	analyze	the	difference	in	acceptance,	when	the	same	
subject	matter	 is	presented	 to	 these	 two	significantly	
different groups of students.

•	 To	 verify	 our	 presumption	 that	 in	 certain	 cases	 the	
children	 could	 help	 their	 parents	 interpret	 the	 first	
pieces of information gained in the initial phases of
the course.

•	 To	utilize	the	interest	of	parents	to	avoid	the	possibility	
that children could slide from programming to
computer games, and to ensure that they would prepare
for the following lessons with the necessary care.

3 The Architecture First methodology
The Architecture First methodology, which we use in

our courses, comes out of the two following assumptions:

•	 From	 the	 fact	 that	 nowadays	 the	 major	 part	 of	 a	
programmer´s work is taken over by various code
generators, and that the only area which has and will
resist automation for a long time is the program´s
architecture proposal.

•	 From	the	well-known	pedagogical	model	of	the	Early	
Bird Pattern, which says [2, 3]: “Organize the course
so that the most important topics are taught first. Teach
the most important material, the ‘big ideas’, first (and
often). When this seems impossible, teach the most
important material as early as possible.”

In other words: if you consider the art of proper
architecture creation the basic knowledge with which
students should leave their schools or programming
courses, you have to teach it from the very beginning
[16, 17]. Applying this methodology to programming, we
present the material in our courses in four phases [15]:

1.	 In	 the	 first	 phase,	 the	 learner	 runs	 in	 an	 interactive	
mode in which all code is created by a generator
included in the development environment.

2. In the second phase, the user is turned over to a text
mode in which the students repeats subject matter
of	 the	first	phase	while	 learning	to	actually	write	 the	
programs	that	were	created	by	the	generator	in	the	first	
phase,.

3. Then, the students become acquainted with more
demanding constructions in the third stage, which
are behind the limits of the generator´s abilities. In
this stage we still concentrate to architecture view of
program and do not explain algorithmic construction
but sequence of statements.

4. In the fourth stage, the students become acquainted
with basic algorithmic constructions and learn to
use	 them	 in	 their	 programs.	 In	 the	 final	 phase	 the	
students learn further important data structures and
programming expressions.

The complete process is demonstrated in the graphic
programs the students create. The students have at their
disposal a very simple graphic library, and they program
behavior for the devices illustrated in that library (they
create elevators, cars going through complicated tracks,
etc.).	We	verified	that	the	students	thus	obtain	very	visual	
feedback when they see the constructions functioning.

3.1 Introduction to OOP in an interactive
mode

In	 the	 first	 phase,	 we	 take	 advantage	 of	 the	 BlueJ
development environment [1, 9]. We start from the very
beginning	with	a	non	trivial	project	(see	Figure	1)	and	we	
explain the basic object constructions as follows: objects,
classes, interfaces, and interface inheriting. We explain
their usage in a program proposal, and the students
interact with these and many others in the interactive
mode in which the students simulate one of the program´s
objects. The students can immediately try everything what
they propose.

Due to the fact that the student don´t deal with coding
in	the	first	stage,	they	are	not	distracted	by	syntactic	rules	
of the particular language and can instead concentrate on
architectonic principles. This enables us to demonstrate
how such basic constructions—which the implementation
of an interface is—operate immediately from the very
beginning. We present a number of design patterns in
the	 first	 phase	 of	 explanation,	 (such	 as	 Utility class,
Singletons, Null Objects, Enumerated Type, Servant,

Figure 1: BlueJ with the starting project.

Transfer Object - Crate, Mediators, Observers and so on)
as well as certain architectural principles (programming
against the interface, minimizing coupling, inversion of
controls and similar concepts).

We frinish the explanation of the basic architectonic
constructrions with a project roughly equivalent to the
project	at	Figure	2.

3.2 Introduction to the syntax of the selected
language

In the second phase of the couse, the students repeat
the previous subject matter while learning to code the
programs	the	development	environment	created	in	the	first	
phase.	Further,	they	learn	how	to	use	the	syntactic	rules	and	
basic programming constructions of the selected language
without being distracted with proposing a program. The
program	was	already	proposed	in	the	first	phase,	and	now	
they	need	only	implement	the	rules	of	the	first	proposal.	

The	 second	 phase	 finishes	 with	 an	 explanation	 of	
working with packages (name spaces), after which the
students move to a professional development environment.
For	 later	 phases,	 we	 used	 the	 Java language and the
NetBeans development environment.

3.3 More complex programming
constructions

In the third phase we leave the teaching environment

and pass over to a professional environment which
enables us to propose a more extensive project. Moreover,
some of the students now become acquainted with some
environments they will really use in their careers.

Further	 in	 this	 stage	 the	 students	 hear	 a	 deeper	
explanation of the architectural principles, interspersed
with a presentation of a project using these programming
constructions. And the introduction of design patterns
continue: State, Adapter and Decorator.

In the third phase the students also encounter more
complicated programming constructions, such as generic
types, lambda-expressions, internal data types, collections
and streams.

In this phase the students are programming more
complex behavior: vehicles which are able to turn, or to
drive along a zigzag track. They equip them with turn
signals, and they also learn how to manage more cars at
the same time. Yet I remind the reader that at this moment
the students still don´t know algorithmic constructions
like the conditional command and the cycle, because until
now they have not needed them.

Until this moment, the students have made do with
only interface, inheritance and their implementation. At
the end of this phase, the students hear an explanation of
inheritance, learning in which situations it can be used
and, on the other hand, when they have to be careful with

Figure 2: UML diagram of the project at the end of the first phase

 pkg

manager

<<interface>>
IPaintable

<<interface>>
IFlexible<<interface>>

ICopyable

<<interface>>
IControllable

<<interface>>
IAdaptable

CanvasManager

<<abstract>>
AChangeable

<<abstract>>
AMoveable

<<abstract>>
APaintable

<<abstract>>
AShape

Changeable2Modular

Ellipse<<interface>>
IColorable

<<interface>>
IShape

Line

Modular2Changeable

Mover

Multimover Multishape

Painter

Picture

RectangleResizer

Text

Triangle

<<interface>>
IChangeable

<<interface>>
IModular

<<interface>>
IMoveable

<<interface>>
IMultimoveable

<<interface>>
IResizeable

Controller

it.

3.4 Algorithmic constructions
The fourth phase introduces algorithmic constructions

which the students might encounter in older programs:
conditional commands and cycles. At this time they can
have a look at how the problems they solved without
algorithmic constructions can be programmed differently.

Until now, we have used class diagrams as a primary
means for program proposals. We taught the students to
think primarily at the problem level and descend into the
code level only at the moment when it is really necessary.

When explaining the algorithmic constructions we
leave the Unified Modeling Language (UML) diagrams
behind, and demonstrate all constructions through
kopenograms	 [8,	 24]	 (see	 Figure	 3).	 Kopenograms are
a handy tool for clear graphical representation of the
structure of algorithms, and they have been particularly
useful in teaching programming classes. They are a
convenient supplement to the UML diagrams used to
represent algorithmic structures.

3.5 Further data structures and program
expressions

A number of useful data structures and programming
expressions were not needed until this moment, but are
necessary for future careers. These are presented in the
final	 phase.	 These	 include:	 working	 with	 files,	 regular	
expressions, the basics of GUI applications, and some
further useful items.

4 Results
So far, we have run two one-year terms. The courses

were attended by children aged from 10 to 14 together
with their parents. We didn´t offer a second year of
teaching	 to	 the	first	 class,	because	we	wanted	 to	 reopen	
the	first	class	and	further	examine	our	methodology.	The	
couples continued studying according to the textbooks we
provided, and from time to time they contacted us with a
request for consultation.

During the one year course, we worked through the
end of the third phase with the children and their parents.
Eight	 pairs	 from	 the	 original	 twelve	finished	 the	 course	
at	the	end	of	the	first	year,	and	ten	couples	out	of	twelve	
completed the course in the second year.

The	 course	 of	 teaching	 confirmed	 a	 lot	 of	 our	
assumptions, but also brought certain surprises.

4.1 Graphic interactive developing
environment

The	courses	confirmed	the	utlity	of	 the	simple BlueJ
interactive environment. This accorded with our previous
experience, as well as experience of other authors [20], that
it is useful to visualize relations among objects and classes
through UML at the beginning, and only later pass over to a
more complicated professional development environment.
It is advantageous when the students get accustomed to
using UML as a natural part of the problem analyses from
the very beginning. We proved that using graphical tools
for analysis and describing of the developed program is
quite natural for children.

4.2 Speed of understanding
We	verified	that	the	same	lessons	can	be	used	for	both	

children and their parents. It is however important to avoid
tedious lecturing, and instead stress the equivalencies
between developed programs and a simulated reality.
Students thus regard the objects in the program as natural
equivalents of their patterns in the real world, not as an
abstraction divorced from reality.

In several situations we experienced that the children
really corrected their parents when they understood the
subject matter incorrectly. The children explained the
concepts in their own words, and the parents accepted
their interpretation.

On the other hand, there were also children in the
course (and surprisingly these were the older children)
who always waited to see how their parents would
understand the problem. They did not program anything
independently and they only copied programs from their
parents’ computers

4.3 Unexpexted probles
There was also a surprise for us in these combined

courses. When we taught courses attended only by children,
we had no fundamental problems with homework. But
these problems did occur in combined courses. The
parents were not accustomed to doing homework, but
instead learned how to justify the fact that they had not

Figure 3: Kopenogram of a simple algorithm

completed their homework. And of course, the children
quickly adapted to this and the general speed of progress
in the course considerably decreased.

5. Discussion
Special languages are often used when teaching

the basics of programming for children—as are special
development environments connected with a graphic user
interface, in which you move or draw with a little turtle
(the language Logo [11], [12], [19]) or you manage a
robot’s movements (the language Karel [13], [4]). And so
on. These visual teaching tools are brilliant if you want to
teach children algorithmization and the basics of structured
and modular programming. These visualization tools
are sometimes also used in introductory programming
courses	 at	 universities	 [5].	 But	 they	 are	 insufficient	 for	
teaching more complicated programming constructs and
principles of object architecture. Usually the development
environment of the particular programming language is
used for further teaching.

At this point, the students must make a great effort
to learn the syntax of the given programming language
and to start working with the development environment,
and only on the basis of this knowledge can they learn
more complex concepts of object architecture using the
design patterns for creating their programs. However, the
biggest problem of novice programmers seems to be, not
understanding architectural concepts, but rather learning
to apply them [10].

One way to overcome the requirement of syntax
knowledge is using visualizing tools which enable users
to compose and test object programs visually, without
coding	them.	These	tools	must	be	sufficiently	simple	and	
cannot discourage the beginners by their complexity. One
such tool is the aforementioned BlueJ environment [23].
The development of BlueJ was started in 1999 by Michael
Kölling and John Rosenberg at the Monash University,
as a successor to the BlueJ system. The BlueJ system
was an integrated system with its own programming
language and environment. BlueJ implements the Blue
environment design for the Java programming language.
BlueJ is currently being maintained by a joint team at the
University of Kent (Canterbury, England) and La Trobe
University in Melbourne, Australia.

In March 2009, the BlueJ project became free and
open source software, licensed under the GNU GPL with
the class path exception.

Nearly one thousand schools and universities are now
using the BlueJ environment [23]. A textbook on this
environment	was	published	in	its	fifth	edition	last	year	[1]	
and has been translated into six national languages.

Inspired by the success of BlueJ, Microsoft
implemented a similar environment into the Visual Studio
2005 development environment under the name of Object
Test Bench [25] in 2005. At the same time, Microsoft
submitted a patent registration [6] concerning their
“facility for testing an object in an integrated development

environment without providing source code or knowing
semantics of a language”.

The patent registration caused a stormy reaction among
BlueJ authors as well as users, and in the end no patent
was awarded. Object Test Bench was also a part of Visual
Studio 2008; however, this tool has not appeared in later
versions of Visual Studio. Microsoft explained the removal
by saying that majority of professional programmers use
more complicated visual tools that are included in Visual
Studio, and Object Test Bench was determined more useful
for academic circles and teaching of programming.

Nevertheless, we believe that it´s a pity Object
Test Bench cannot be downloaded into the new Visual
Studio, even as an optional supplement for teaching C#.
According to our experience, it is advantageous when
we have a visualizing tool with a relatively simple
interface at the user’s disposal for teaching programming.
This is because we don´t have to bother students at the
beginning with the quite complicated task of managing a
development environment. Students in our courses start
with working in the simple BlueJ environment, and only
later pass over to the professional NetBeans development
environment. Learning and managing a more complex
development environment (as well as necessary
knowledge of programming language syntax) is far easier
when the student has proper habits from a simple object
development tool.

Consistently exploiting the possibilities of the simple
BlueJ environment enabled us to teach basic principles of
architecture to students even before we started to explain
the more detailed presentation of syntactic structures of the
language. Especially with children (who are not burdened
with any previous knowledge of programming language)
we proved that object-oriented thinking when creating
architecture is very natural. Children understood the
basic	concepts,	and	clarified	their	understanding	through	
practical examples using the BlueJ interactive mode.

When composing the tasks, we often program a
particular part of the task in advance (these parts use
constructions not explained yet),. This enables us to solve
even more complicated tasks, and the computer solution
motivates our students. Thus we could differ from classic
textbook tasks, where the subject matter is demonstrated
in simple tasks whose main purpose is to illustrate certain
explained characteristics of the language. The typical task
of a programmer is usually not to propose the solution of
a simple problem, but on the contrary, to solve a current,
usually very complicated program, proposed by somebody
else, by certain new function(s). Therefore, our attitude
was much closer to real programmer´s practice. Besides
that, in many examples we could better demonstrate not
only the properties of separate language construct, but
combining and using various language constructs. The
importance of this aspect is stressed by Robins et al. [18],
who recommended in their study that instructions should
focus not only on learning the new language features,
but also on combining and using these features. His
study also suggested that programming strategies should

receive more and more explicit attention in introductory
programming courses.

Proceeding by short steps during the presentation
proved to be very important, as did making an effort to
see that the explanation and the programming tasks would
followed naturally from the previous ones. As Winslow
pointed out in “Programming pedagogy” [22], a good
pedagogy requires the instructor to keep initial facts,
models	 and	 rules	 simple,	 and	 only	 expand	 and	 refine	
them as the student gains more experience. Vihavainen
[21] proposed a teaching methodology in which “small
goals” are discussed as part of the teaching approach.
“Small	goals”	are	defined	as	 the	small	parts	 that	clearly	
set intermediate goals.

The result of gradually-expanding small goals was that
the children succeeded in mastering quite a complicated
course of object programming during one year, a course
that can be compared in its content and range with some
university courses.

6. Conclusions
The majority of programming courses begin with

a great effort to explain the syntax of the selected
programming language, as well to explain the meaning of
separate language constructs. Only then do they proceed
to an explanation of object architecture concepts and
using design patterns. However, we are convinced that
it is possible to turn this on its head, and start with an
explanation of basic architectural concepts immediately,
then teach the particularities of syntax throughout the
whole course.

Our courses of programming for children with their
parents	 confirmed	 our	 assumptions.	 They	 proved	 that	
when combined with suitable visualizing tools (such as
BlueJ), it is possible and, and indeed better to teach object
architecture from the very beginning of programming
education.

7 References
[1] Barnes, D. J., Kölling, M. “Objects first with Java: A

practical introduction using Bluej”, 5th edition. Pear-
son Prentice Hall. ISBN 978-013-249266-9, 2012

[2] Bergin,	 J.	 “Fourteen	 Pedagogical	 Patterns”;	 Pro-
ceedings of Fifth European Conference on Pattern
Languages of Programs (EuroPLoP 2000), Irsee,
Germany, 2000 [online] http://hillside.net/europlop/
HillsideEurope/Papers/EuroPLoP2000/2000_Ber-
gin_FourteenPedagogicalPatterns.pdf.

[3] Bergin, J. “Pedagogical Patterns: Advice For Educa-
tors”. CreateSpace Independent Publishing Platform,
ISBN 1 4791 7182 4, 2012

[4] Bergin, J., Stehlik, M., Roberts, J., Pattis, R. “Karel
J Robot: A gentle introduction to the art of object-
oriented programming in Java”. Dream Songs Press,
2005.

[5] Dai, K., Zhao, Y., Chen, R. “Research and Practice on

Constructing the Course of Programming Language”;
In Computer and Information Technology (CIT), 10th
IEEE International Conference on Computer and In-
formation Technology, pp. 2033-2038, 2010.

[6] Goenka, G., Das, P. P., Unnikrishnan, U. “U.S. Patent
Application 11/255,066”, 2005

[7] Harasim, L. “Learning Theory and Online Technolo-
gies”.	Routledge,	Taylor	&	Francis	Group,	7625	Em-
pire	 Drive,	 Florence,	 KY	 41042,	 ISBN	 978	 0	 415	
99976 2, 2011

[8] Kofránek, J., Pecinovský, R., Novák, P. “Kopeno-
grams – Graphical Language for Structured Algo-
rithms”; Proceedings of the International Conference
on Foundation of Computer Science. WorldComp
2012, Las Vegas. CSREA Press. ISBN 1 601 32211-
9, pp. 90-96, 2012

[9] Kölling, M., Quig, B., Patterson, A., Rosenberg, J.
(2003).”The BlueJ system and its pedagogy”; Com-
puter Science Education, Vol. 13, No 4, pp. 249-268,
2003

[10] Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. “A
study	 of	 the	 difficulties	 of	 novice	 programmers”;	
ACM SIGCSE Bulletin, Vol. 37, No. 3, pp. 14-18,
2005

[11] Papert, S. “Teaching Children Thinking”; Pro-
grammed Learning and Educational Technology,
Vol. 9, No. 5, pp. 245-255, 1972

[12] Papert, S. “Final report of the Brookline LOGO Proj-
ect”.	Massachusetts	Institute	of	Technology,	Artificial	
Intelligence Laboratory, 1979.

[13] Pattis, R. E. “Karel the robot: a gentle introduction
to the art of programming”. John Wiley & Sons, Inc.,
1981

[14] Pecinovský, R. “Using the methodology Design Pat-
terns	First	by	prototype	testing	with	a	user”;	Proceed-
ings of IMEM, Spišská Kapitula, pp. 1-10, [online]
http://edu.pecinovsky.cz/papers/2009_IMEM_Us-
ing_DPF_by_testing_with_a_user.pdf,	2009.

[15] Pecinovský, R. “Principles of the Methodology Ar-
chitecture	First”;	Objekty 2012 – Proceedings of the
17th international conference on object oriented
technologies, Prague, pp 1-5, [online] http://edu.
pecinovsky.cz/papers/2012_OB_ArchitectureFirst.
pdf, 2012.

[16] Pecinovský R. “Java 7 – Textbook of object orient-
ed architecture for beginners”; (in Czech), Grada,
Prague, 2012.

[17] Pecinovský R. “Java 8 – Textbook of object oriented
architecture for intermediates”; (in Czech), Grada,
Prague, 2013.

[18] Robins, A., Rountree, J., & Rountree, N. “Learning
and teaching programming: A review and discus-
sion”; Computer Science Education, Vol. 13, No.2,
pp. 137-172, 2003.

[19] Singh, J. K. “Cognitive Effects of Programming in
Logo. A Review of Literature and Synthesis of Strate-

gies for Research.”; Journal of Research on Comput-
ing in Education, Vol. 25, No. 1, pp. 88-104, 1992.

[20] Van Haaster, K., Hagan, D. “Teaching and learning
with BlueJ: An evaluation of a pedagogical tool”; In
Information Science+ Information Technology Edu-
cation Joint Conference, Rockhampton, QLD, Aus-
tralia, pp. 455-470, 2004

[21] Vihavainen, A., Paksula, M., Luukkainen, M. “Ex-
treme apprenticeship method in teaching program-
ming for beginners”; In Proceedings of the 42nd ACM
technical symposium on Computer science education,
ACM, pp. 93-98, 2011.

[22] Winslow, L. E. “Programming pedagogy—a psycho-
logical overview”. ACM SIGCSE Bulletin, 1996, Vol.
28, No 3, pp. 17-22, 1996.

[23] http://www.bluej.org
[24] http://www.kopenogram.org
[25] Microsoft MSDN Library. Object Test Bench

[online] http://msdn.microsoft.com/en-us/library/
c3775d98(v=vs.80).aspx

Acknowledgement
This paper describes the outcome of research that has

been accomplished as part of research program funded by
the Ministry of Industry and Trade of the Czech Republic.
This research was funded by grant number FR—TI3/869.
These results were obtained within a larger research proj-
ect concerned with the methodology of teaching computer
programming. This research has been supported by ICZ
Group (commercial partner) and University of Economics,
Prague (academic partner).

email to corresponding author: kofranek@gmail.com

