
Android Control Application for Nao Humanoid Robot
Roslyn L. Brown, Heather L. Helton, Allison C. Williams, Michael T. Shrove, Mladen Milošević, Emil Jovanov 

David Coe, and Jeff Kulick 
University of Alabama in Huntsville,  

301 Sparkman Drive, Huntsville, AL 35899 
 

Abstract— In this paper we present the Nao Controller, a 
first of its kind application to control the Aldebaran Robotics 
Nao Humanoid Robot.  Nao Controller is the only Android 
application that has been successful in controlling the 
commands sent to a Nao Robot without using any sort of 
middleware for communication.  Using packet capturing and 
executing replay attacks on the Linux machine inside the Nao 
robot allowed us to build unique movements into our Android 
application that allows a user to easily control the Nao robot 
by simply using Wi-Fi and an Android phone.  The Nao 
Controller features many controlling aspects of the robot 
including Battery Status, Battery Safe Mode, Video Feedback 
from Nao’s camera, Tilt Screen Mode, Manual Movement 
Mode, Saved Sequences, and a demonstration mode. 

Keywords: Nao Robot Controller, Android Smartphone, 
humanoid robot, Replay Attack, Nao Battery Monitor 

1. Introduction  
Smartphone applications are becoming increasingly 

popular means of use for general application purposes.  The 
University of Alabama in Huntsville (UAH) purchased a 
popular humanoid robot known as Nao. To conduct research 
and demonstrations, Nao had great potential in making an 
impact on anyone who came to demonstrations.  Throughout 
the research of Nao, one thing had been noted.  The Nao robot 
could only be controlled with a computer.  Any movement had 
to be programmed using Choregraphe or the NAOqi file [1].  
This stemmed the idea of creating an Android application that 
would eliminate the use of a computer and make the robot 
more mobile and agile with creating and controlling 
movements performed by Nao.  Once Nao became mobile, the 
possibilities of using him for demonstration and recruitment 
purposes seemed endless. 

For this particular paper, we are going to outline the entire 
process that we used in the creation of our Android application, 
Nao Controller.  First of all, we will explain features of the Nao 
robot and all of its capabilities.  From there, we present other 
Android projects that are already in existence and being used to 
interface with the Nao robot.    

Then, we describe the Nao development software,  
including Naosim and Choregraphe. We describe our approach 
to accomplish our Nao controller task. We had to discover how 
to use the NAOqi to coordinate with the robot and create our 
own movement packets sent to Nao.  Next, we describe our 
application and capabilities that have been integrated into our 
final product. Finally, we discuss how the application has been 

used in accordance with our university, the University of 
Alabama in Huntsville. 

2. Nao Robot 
Aldebaran Robotics, a French-based company, came on the 

scene in 2004 with a new project known as Nao [1]. This 
humanoid robot developed into a product that rivaled upon the 
most sophisticated robots including Aibo, the robot dog 
developed by Sony [2].  In August of 2007, Nao won the Robot 
Soccer World Cup Standard Platform League beating Aibo [3]. 
Nao includes a Linux powered system that makes him very 
powerful.  Along with his internal system, Nao comes with a 
suite of software used to control it on a user’s PC including 
Choregraphe, which is a graphical programming tool [1].  
Also, NAO came with a NAOqi file, which is used as the 
framework or API for the robot and can be used to program 
movements of the robot. Mainly used for research and 
educational purposes, universities have begun developing 
different capabilities of the Nao robot, such as to promote 
social engagement interaction with children who have Autism 
[4].  

The twenty-three inch Nao robot is the first generation 
robot, Nao V3.2, featuring 25 degrees of freedom (DoF), and 
includes the following sensors: Ultra Sonic, Tactile\Touch, 
Microphones, Camera, FSR - Force Sensing Resistors, Gyro, 
and Accelerometer.  For this version, the user can connect to 
Nao via Ethernet or Wi-Fi [5]. However, in the newest version, 
Nao V4 (NextGen), the user can even connect to NAO via 
Bluetooth, USB, or Infrared, in addition to the previously 
mentioned methods.  All versions of the robot claim a 45 
minutes battery life span when active, which we found was 
actually the case.  [5] 

3. Other Smartphone Control 
Applications 

With Nao being so expensive and used mostly for research 
and academia, there are not very many Smartphone 
applications on the market that will control the robot.  The two 
applications below were the only applications found that are 
used to control the Nao robot.  These applications can be found 
on Robot App Store[5].  Even in these applications, it seems 
that each project only focuses on one or two highlighted 
features of Nao.    

NAO Control [6] is an iPhone application that controls the 
NAO robot’s movements using an on screen joystick.  If the 
joystick is pushed up, Nao will move forward.  The same act 
follows for backward.  If the joy stick is pushed left or right, 



the Nao robot will shuffle left or shuffle right accordingly.  In 
addition to movements, the application controls Nao robot’s 
speech.  The user can select from a list of predefined speech 
phrases or type text to send to Nao to speak.  This application’s 
user interface is very user friendly and the connection of the 
robot is automated meaning the user does not have to input 
anything, and the robot tells the user once he is connected to 
the phone. 

NAO Server- Remote Control From Android is an Android 
Application that controls the Nao robot’s movements using the 
tilt of the phone (accelerometer and magnetic field sensors) [5]. 
The biggest disadvantage of this application is that it has to use 
a “middle man” server to communicate between the Nao robot 
and the Android phone.  The server is used because this 
particular application needs access to the NAOqi file to 
operate.  The NAOqi is not able to be loaded to the phone, 
which means that it has to be accessed through the server.  The 
NAOqi file is an APK that allows a developer to easily 
interface with Nao’s movements [1]. To connect to Nao with 
this application, Nao states his IP address by pressing his 
center chest button.  The user enters the IP address into the 
server application.  Then, the user connects the phone to the 
server.  From there, the user can choose to stand or sit the 
robot.  If the robot is standing and the dead switch is pressed, 
the operator can move the robot forward, backward, turn left, 
or turn right according to the tilt of the screen. 

4. Development Environment with Nao 
Nao robot supports many applications including voice 

recognition, balance, video feed, face recognition, bumper 
sensors, and text to Speech [1]. Because of the vast features 
that are included in Nao, we needed to tailor our project to 
address just a few specific needs for our purpose as oppose to 
addressing all of the features Nao has to offer.   As mentioned 
above in Section 3, most if not all other Smartphone 
applications only focused on one to two features of the robot.  
We have expanded this in our project to focus on many more 
aspects including the following: battery status, battery safe 
mode, manual mode, demonstration mode, tilt control with 
video feed, and saved sequences. After discovering the two 
projects described above in section 3, we determined that we 
wanted an application that actually receives information from 
the robot and combines needed functionality for quickly 
assembled demonstrations of Nao’s capabilities.  Before we 
could begin implementation of the Android application, we had 
to first get familiar with Nao and the software packages that 
came with it that were meant to control it.   

4.1. Choregraphe 
Choregraphe is the programming software that will allow 

Nao users to edit and create movements in a simple user 
interface (UI) [1].  The user can create a series of behaviors by 
dragging and dropping the predefined behaviors from the 
library, NAOqi.  These behavior boxes are easily configurable 
allowing a user to develop a new movement not currently held 
in the library.  In the application, the user can view the robot’s 
position as they are giving him each movement.  They can 
choose to connect to a Nao robot or to connect to a Nao 
simulation robot (more to be explained in section 4.2 below).  

If the user is using a Nao robot, the video feed of the robot can 
also be seen in the application.  This application was used in 
our development to understand the behavior and interfaces of 
the Nao robot as well as learning to see how the movements 
were sent to the robot.  Figure 1 is an example screenshot from 
the Choregraphe application. 

 
Figure 1: Choregraphe Nao Robot Software 

4.2. NaoSim 
NaoSim [1] is a simulation tool that was also part of the 

software package Aldebaran developed to support the Nao 
robot. NaoSim allows the user to launch a virtual world for the 
simulated Nao robot to navigate around as well as a virtual 
version of the Nao robot.  

The robot in this environment mirrors the actual Nao robot, 
which means that if a new move is developed, the simulation 
Nao can perform that movement, and the user will see the 
reaction to that movement from the simulation.  This protects 
the actual very expensive Nao robot from damage if the 
movement programmed does not go as planned. By watching 
the movement of the simulation, the user can determine if this 
was the intended movement and if the Nao robot will be able to 
execute that movement.  Choregraphe and Naosim also 
connect with each other.  This is how Choregraphe can use a 
simulation robot. Figure 2 shows an example of such a 
connection between Choregraphe and NAOsim. 

 

 
Figure 2: NAOsim and Choregraphe Connection [1] 

4.3. NAOqi 
NAOqi is the library file that is the API to the whole Nao 

robot.  It runs on the robot’s Linux machine and controls the 
commands of Nao.  Every command the robot can execute 
will be in this library unless the developer creates an entirely 
new command sequence.  For our project, we are currently 



using the library version 1.10.10.  Although an older version, 
our robot is the first generation robot, and we felt the risk of 
upgrading him to possibly receive more functionality from a 
newer version of the NAOqi was too high.  The developer 
needs to know the “language” of the robot, and this is the file 
that will allow the developer to communicate.  The NAOqi 
Framework is the programming framework for the developer.  
The framework is cross-platform and cross-language [1]. In 
order for the user to run a simulation robot, this file must be 
installed on the user’s computer.  This file, as described in 
Section 3, was a large part in determining our design of NAO 
controller.  

4.4.  Nao Web Client 
In addition to all of the software packages that have been 

described, Nao also has a web client as shown in Figure 3.  
This web client shows the user virtually anything they might 
need to know about the Nao robot.  This is where the robot’s 
version number, Ethernet and Wi-Fi address, joint positions, 
networks, and many other features can be discovered [1]. This 
web client became a necessity when we began our 
implementation of the application as will be described later on 
in Section 6. 

 

 
Figure 3: NAO Web Client 

5. Our Approach 
After dealing with the user interfaces provided by 

Aldebaran and discovering that the possibility of having the 
NAOqi file on the phone to access was infeasible, we were 
faced with having to figure out how to send commands to the 
robot with just the Android phone, which had never been done 
before.  Finally, it was determined that the best way to tackle 
this issue was to see what was actually being sent across from 
the computer to the Nao robot.  We set up our environment 
with Choregraphe and a packet analyzer known as Wireshark 
[7].  This environment is described below.  

5.1. Using NAOqi 
NAOqi had a library with it known as the jNAOqi.jar file 

that was used for the API.  NAOqi is available in eight 
languages including java, and this was the Java library file [1]. 
Unfortunately, the NAOqi library for java was not compiled to 
run on a specialized virtual machine designed specifically for 
android devices, Dalvik [8], so we could not use the API to 

communicate to the robot through the phone. Since they do 
not provide the API specifically for the android platform, we 
created our own Java project and used the NAOqi library file 
to send command packets over TCP/IP to the robot with a PC. 
Then we sent the coded commands to the robot while 
monitoring the TCP/IP connection using Wireshark. Basically, 
we had to create a separate Java project that was specifically 
used for generating movements with the NAOqi file.  The 
packets that are being sent are transferred over a TCP/IP 
connection using the Simple Object Access Protocol [9]. The 
Wireshark program was used to watch, capture, and strip the 
raw bytes we needed to resend in our Android application over 
in order to make the robot perform certain tasks.  The 
following list contains the basic steps we used to create each 
unique movement sequence:  

• Code what movement that needs to be created using 
NAOqi 

• Run code while running Wireshark and observe the 
bytes sent 

• Capture the bytes. 
• If the packet size is too large to put directly into the 

android java files, serialize the bytes. 
• Put the generated serialized file into the assets folder 

of the android program 
• Reference the serialized file to pull in the bytes and 

send them over to the robot. 
This process was repeated for each movement programmed 
into the Android phone. 

5.2. Creating Unique Movements 
It very quickly became apparent that we would need to 

create our own unique movements as well as the predefined 
movements already in NAOqi.  Therefore, we used the NAO 
web client quite frequently to generate these movements.  The 
web client has a Hardware section under the Advanced drop 
down menu. Here, the web client displays all 25 degrees of 
freedom and the position they are in at any given time.  
Consequently, we could hold Nao in the position we wanted to 
capture, take the values from the web client, and use them in 
our NAOqi Java application.  Figure 4 is a code snippet of two 
joints, the HeadPitch and HeadYaw of Nao (as illustrated in 
Figure 5).  As shown in the code of Figure 4, the keys 
represent the floating-point position of movement for that 
particular joint.  Also, the times represent the time at which 
the Nao robot would be in that position.  For this example, 
HeadYaw and HeadPitch were in key one at 1.5 seconds, key 
two at 3 seconds, and key 3 at 4 seconds.  As shown, this 
could be quite labor intensive, especially when there are 25 
degrees of freedom on the Nao robot.  That means that we 
have to repeat these steps for each of the 25 degrees of 
freedom of the Nao robot.  This contained a lot of trial and 
error for each unique movement, but our goal for the project 
was accomplished: create unique movements and send them 
from the Android phone.   



 
Figure 4: Code Snippet of Joint Movements, Headpitch and 

HeadYaw 
 

 
Figure 5: Example of Joint Movement [1] 

5.3. Capturing and Sending Movement Packets 
The most influential aspect of our application was the 

capturing and sending of movement packets. We could 
generate the movements with the NAOqi file all day, but if we 
did not know what was being sent or how to capture it, then 
our project would have failed.  To capture the packets, we 
listened on Wireshark [7] for IP addresses communicating 
with each other (one from the computer and the other the Nao 
Robot).  Each time we sent Nao a movement, we saw the 
packet go across Wireshark from our computer to Nao’s IP 
address.  Therefore, for any movement we programmed, we 
ran the movement and captured the packet.  The captured 
packets would then be put into our Android application.  We 
created a TCP socket to communicate with the Nao robot and 
send the captured packet over to Nao via TCP/IP protocol.   

The captured packet was then saved. We used a replay 
attack [10] method where we resent the exact captured packets 
in the form of raw bytes through our PC using a TCP socket 
connection to the robot to make sure that he performed the 
same action. 

Once we verified that the replay attack method would 
work, we then proceeded to add the packet bytes (either in raw 
form or serialized form if too large) used in our method to our 
Android application. 

We created several different classes pertaining to the 
different parts of the body (NAOhead, NAOhand, etc). Then, 
we created several methods within each class that would be 
responsible for sending each movement. For example, the 
NAOhead class had a different function for moving the head 
up, down, left, right, and centering horizontally and vertically.  

Within each function we stored the packet bytes into byte 
arrays. The arrays were either embedded into a function that 
was used to send the packet if small enough, or if the arrays 
were too big due to java method size limits of 65535 bytes 
[11], the arrays were serialized and read in.  

Then, we proceeded to send the stored packets over the 
network. For each packet we send, we had to wait for an 
acknowledgement from the robot before we proceeded to 
make sure that the command was actually sent and received 
correctly. First, we write to the server. Then, we wait for an 
acknowledgement to come back and read the first sentence of 
that acknowledgement. For some movements we are reading 
the entire message, but in this case we are just reading the first 
line of the response to make sure the robot received our 
message.     

6. Nao Controller Application  
As described previously, our Nao controller application 

contains many features that have never been developed for the 
Nao robot before. One of the biggest perks to the Nao 
Controller application is the ability to communicate with Nao 
through an Android phone without a server/computer setup to 
be the “middle man”.  No middleman is needed for our 
application.  Before this application, the only android 
application to control Nao had to use the server setup on 
user’s computer to communicate the movements to the robot.  
This setup almost made the android application completely 
obsolete since one of the main advantages to having an 
application on your phone is the ease of use and the portability 
of the application.  The reason why the other Android 
application was in need of the server is due to the NAOqi file.  
The NAOqi as described above contains all the possible 
commands that can be send to the robot.  It is the API that is 
responsible for every command pertaining to the robot.  Early 
on, it was discovered that it was not possible to load the 
NAOqi file onto the Android phone and have our program 
access it which lead us to the approach we took in Section 5. 
Using this approach revolutionized our application and made 
our app the very first of its kind: the first Android application 
to solely control and interface with the Nao robot thus keeping 
the application portable to help with demonstration ventures 
for which the application was originally intended.  In addition 
to only using an Android phone to control the robot, the 
application went a step further and decided to tackle many 
different features of the Nao robot, something that the 
preceding applications did not do.  The following features of 
the application were developed keeping in mind the 
limitations of applications previously developed for Nao.   

6.1. Connection Screen 
The connection screen is used to enter the IP address of the 

Nao robot.  The IP address is obtained by pressing the center 
chest button of the Nao robot. Nao will then say the IP address 
to which it is connected.  If for some reason Nao is not 
connected to the Wi-Fi, the user can go to Nao’s web client 
while it is plugged into the router with an Ethernet cord.  From 
there, the user can select the available network for Nao and 
assign Nao a wireless IP address.  See Figure 6 as an example. 



 
Figure 6: Nao Web Client Available Networks Tab 

 
The EditText itself that is found on the Connection 

Screen has an IP Address Regex [12], which is a Pattern 
Detection algorithm, behind the scenes. This is to ensure that 
whatever the user types into the EditText is actually an IP 
address before the program tries to make a connection to the 
robot.  Also, if it is in fact an IP address, it will then need to be 
determined if it is Nao’s IP address.   

To accomplish this task, we send a ping out to the robot 
using the IP address entered by the user.  If we receive a 
battery status back, we know that the IP address is in fact that 
of Nao, and the user of the application will proceed to the 
Main Menu screen shown in Figure 7 which contains all the 
functionality of the application.  If we do not receive anything 
back, we have a time out, and the user receives a Connection 
Unsuccessful pop-up box.   

 

 
Figure 7: Nao Controller Main Menu 

6.2. Tilt Screen 
The Tilt Screen functionality was very similar to the 

Android project described above in section 3.  The user can 
control the robot using the Gyroscope and Accelerometer 
sensors on the Android phone.  The user must have one of the 
two dead switch button held down for the Nao robot to 

register the movement.  As the user uses tilt to execute 
movements, the movements are displayed to the user via a 
Marquee bar.  The battery status of the robot can also be seen 
in this screen, so the user of the application will always have a 
battery status of the robot while in Tilt operation.  The battery 
status is updated every ten seconds.  Therefore, the control 
aspect of the Tilt is much like that of the previous Android 
project with the addition of the Battery Status.   However, our 
application went a step further by pulling the video feed from 
the NAO robot and displaying it to the user on the Tilt screen.  
Now, while the user is controlling the robot, they can also get 
up to date video feed from the Nao robot’s camera. 

 

 
Figure 8: Nao Controller Tilt Screen 

6.3. Manual Movement Screen 
The manual movement screen was originally created just 

to test the functionality of each movement of the robot.  
However, it quickly became apparent that this Manual 
Movement screen would be useful if left in the application as 
well.  In this screen, each of the Android’s possible 
movements is displayed to the user in an expandable 
dropdown list.  The top-level functions include Head, Arms, 
Legs, and Misc.  The head function includes the following 
lower level functions: head tilt up, head tilt down, head turn 
left, head turn right, turn center vertical, and turn center 
horizontal.  Arms has the following functions: close left hand, 
open left hand, close right hand, open right hand, right arm up, 
right arm down, right arm right (arm extended away from 
body), right arm left (into the body), right arm front, left arm 
up, left arm down, left arm right (into the body), left arm left 
(arm extended away from body), and left arm front.  Legs 
have the following functions: walk one step forward, walk one 
step backward, walk backward eight steps, walk forward eight 
steps, crouch, turn left, turn right, sit, stand from sit, and stand 
from crouch.  Finally, miscellaneous has the function to relax 
or stiffen the robot (cut on and off the servos of the NAO 
robot) and dance, which is the Gangnam style dance with the 
Nao robot playing the song through his speakers.  Once the 
user selects a movement, the robot will perform the movement 
in near real time. 

 



 
Figure 9: Nao Controller Manual Movement Screen 

6.4. Saved Sequence Screen 
In the Saved Sequence screen, the user has the option of 

creating their very own unique sequence using all of the 
possible manual movement controls described above.  The 
user can choose to add a sequence, select all the movements 
they would like, and then save the sequence.  From there, the 
sequence will show up in the list of Saved Sequences on the 
application. The user can choose to run the sequence, in which 
case the Nao Robot would perform each movement in series 
that the user has selected in that particular sequence.  The user 
also has the option to delete or edit a sequence.  This feature 
was added because of the feasibility of being able to quickly 
piece together sequences when needed. This would become 
great importance as a demonstration aspect.  The user can 
queue up a list of sequences pertaining to that particular 
setting and execute those movements without ever having to 
use a laptop. There are some safety precautions put into place 
so that whatever sequence is entered, it will not allow a 
dangerous sequence to be created that could harm the robot.  
For example, the application will not allow the user to make 
the robot walk forward if the robot is sitting down. 

 

 
Figure 10: Nao Controller View Saved Sequence Screen 

6.5. Battery Status and Battery Safe Mode 
As described earlier, the battery status of the robot is 

available on every screen where the user can control the 
robot’s movements.  The battery status symbol changes from 
green to yellow to orange to red depending on the battery level 
of the robot.  Once the battery reads 10% to 20%, the user is 
alerted via a pop-up dialog box that the battery is getting low 
for the Nao robot.  Now, when the battery is at 10% or below, 
the robot will go into Battery Safe Mode.  In Battery Safe 
Mode, the robot will automatically sit down and will no longer 
receive any commands from the Android application.  This 
prevents damage to the Nao robot if a sudden decrease in 
battery life could cause the Nao robot to crash during a 
movement.  From there, the user must go and plug Nao back 
in to begin the charging process. 

6.6. Demo Mode 
 Demo Mode was created as a “wow” factor to show a range 
of motions that the robot could perform.   We wanted to create 
a fun sequence of steps that would be entertaining for potential 
new UAH recruits and visitors of UAH.  The most familiar 
dance at this point would be something known as Gangnam 
style, a YouTube video gone viral.  Therefore, we took the 
steps we described in section 5 and began mapping out the 
movements of the dance.  The end result is a forty-five second 
dance of Nao performing Gangnam style while the song plays 
from his speakers [13]. 

7.  Lessons Learned  
The Nao application was created to provide an easier way 

to set up and control the Nao robot for demonstrative 
purposes. Our purpose for the application has already been 
proven to be a success at the Board of Trustees meeting [13] 
with the President of UAH including members of the 
University of Alabama, the University of Alabama in 
Birmingham, and of course, UAH.  Nao performed his dance 
and then took a humble bow to conclude the demonstration.  
Most of the members of the universities present claimed they 
would love to have something like this demonstration at their 
school.  In addition to this meeting, Nao made another 
appearance with the President at the UAH Foundation 
Committee meeting.  With all of the praise and hype of using 
the Android application with Nao, we even have recruitment 
opportunities to take Nao to local high schools to promote 
Engineering and recruitment possibility at the University of 
Alabama in Huntsville. 

8. Future Work 
One aspect that could be improved upon is automatic 

connection to the Nao robot.  Instead of the user having to 
press the center chest button of the robot and manually 
entering into a connection screen, the phone could get this 
information from the Nao robot itself.   

Also, the Nao robot has text to speech functionality.  This 
would be an incredible new feature to add to our application 
that would help with demonstration impacts. 



The robot could always have more movements and 
demonstration modes added.  We limited the Nao robot’s 
actual range of movements due to time constraints and limited 
his demonstration functionality to just one dance.  For the 
future, adding more interesting demonstrations and 
movements would be an overall improvement to the project.   

In addition to these recommendations, since our project 
focused a good amount of maintaining the safety of the robot, 
a new feature could be a fall sequence that is designed to 
minimize the impact of a potential fall if Nao is in the middle 
of an action.  A fall initialization algorithm could be put into 
place to accommodate such an accident to prevent further 
injury to the Nao robot [14].   

Finally, using an updated version of the NAOqi on the 
robot could help with building newer functionality that is 
already included in the newer version of the file as well as 
testing our application with newer versions of Nao. 

9. Conclusion  
We developed a unique Android project that can be used to 

control the Nao robot directly, without any special equipment.  
The user only needs our application on the Android phone, 
Wi-Fi, and the Nao robot.  Our application has accomplished 
so much more than any of its predecessors.  With a lot more 
functionality, the users can do almost anything to Nao with 
our application including receiving video feed, battery status, 
battery safe mode, demonstration mode, and manual 
movements as well as creating custom movement sequences 
on the fly.   Also, our application is the first of its kind to be 
able to control Nao’s movements on an Android phone 
without the use of any type of computer or hardware “middle 
man” equipment. The elimination of such PC-based 
middleware equipment created a portable demonstration 
system with our Nao robot and Nao controller.  With the 
increased amount of portability for demonstrations, we have 
discovered that not only is our application and the Nao robot 
impressive in itself, but the application is being used as a 
recruitment mechanism and demonstration robot to bring 
attention to the University of Alabama in Huntsville and the 
Electrical and Computer Engineering department.  

Safety features were set into place with each aspect of our 
Nao Controller to prevent damage to the robot.  With the tilt 
based movement control, the user receives video streaming 
from Nao’s camera to view what the robot is seeing.  The dead 
switches on tilt control allow the user to control Nao’s 
movements only when these are pressed, creating a safety 
barrier for the robot. Another safety net is the battery 
monitoring that commands the Nao robot to sit before the 
battery drops to an unsafe level. 

Our breakthrough with Nao Controller is the new way we 
capture movements through Wireshark.  Using this capability, 
we are able to perform replay attacks on the Nao robot to 
repeat the movements sent which allows the ability to easily 

add more movements and demonstration capabilities to our 
application.   

10. Acknowledgments   
We would like to thank Andrew Cecil for his work with 

setting up the Nao environment and insight into his experience 
on working with the Nao robot. He created the initial 
development environment that served as a starting point for our 
project. 

We would also like to thank Mr. Ray Garner, Director of 
Government Relations and Public Affairs of UAH, and Dr. 
Robert Altenkirch, President of the University of Alabama in 
Huntsville.  These two individuals made our concept of using 
Nao robot as recruitment tool a reality.  By having Nao 
perform for the Board of Trustees and the UAH Foundation 
Meeting, we promoted Engineering at UAH and the 
capabilities students could develop while they are being taught 
here at the University of Alabama in Huntsville. 

11. References 
[1] “Nao”  Aldebaran Robotics. Last accessed 22 April 13. 

http://www.aldebaran-robotics.com/en/ 
[2] Aibo. Last Accessed 28 April 13. 

http://www.sonyaibo.net/aibostory.htm 
[3] RoboCup. Last Accessed 28 April 13. http://www.robocup.org 
[4] Daniel O. David, et al. "Children With Autism Social Engagement In 

Interaction With Nao, An Imitative Robot." Interaction Studies 13.3 
(2012): 315-347. Communication & Mass Media Complete. Web. 29 
Apr. 2013. 

[5] Robot App Store. Last accessed 22 April 13. 
http://www.robotappstore.com 

[6] “Nao Store”. NAO My Apps- Help- Contact.  Last Accessed 22 April 
13. https://store.aldebaran-robotics.com/category/applications/ 

[7] Wireshark. Last accessed 28 April 13. http://www.Wireshark.org 
[8] “dalviik.system.” Android Developers.  Last Accessed 28 April 13. 

http://developer.android.com/reference/dalvik/system/package-
summary.html 

[9] Web3C Recommendation. Last Accessed 28 April 13. 
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/ 

[10] Replay Attacks. Last accessed 28 April 13. 
http://msdn.microsoft.com/en-us/library/aa738652.aspx 

[11] Prashant Dava. “Method Size Limit in Java.” DZone JavaLobby. 13 
June 11. Last Accessed 28 April 13. 
http://java.dzone.com/articles/method-size-limit-java 

[12] Regular-Expressions.Info. Last accessed 28 April 13. 
http://www.regular-expressions.info/examples.html 

[13] Gattis, Paul. “'Gangnam Style': UAH students create app to teach robot 
the moves (video)”.  AL.com. 25 April 2013.  Last accessed 28 April 
2013. http://blog.al.com/breaking/2013/04/gangnam_style_uah_students 
_cre.html 

[14] J. Ruiz-del-Solar, R. Palma-Amestoy, R. Marchant, I. Parra-Tsunekawa, 
P. Zegers, “Learning to fall: Designing low damage fall sequences for 
humanoid soccer robots”, Robotics and Autonomous Systems, Volume 
57, Issue 8, 31 July 2009, Pages 796-807, ISSN 0921-8890, 
10.1016/j.robot.2009.03.011.  

 
 

 


