
Requiring a Systems Analysis and Design

Course for a Computer Science Major

David V Beard
1
, Kevin R Parker

1,2
, Thomas A Ottaway

1,2
, William F Davey

3
, and Corey D Schou

1,2

1
Computer Science, Idaho State University, Pocatello Idaho, USA

2
Computer Information Systems, Idaho State University, Pocatello Idaho, USA

3
School of Business information Technology and Logistics, RMIT University, Melbourne, Australia

Abstract - A systems analysis and design course can be

used successfully to replace the traditional introduction

to software engineering course in a computer science

curriculum. The systems analysis and design course can

provide an improved design experience as students and

faculty stay focused on learning analysis and design,

rather than programming. Such a course also can

enhance computer science students’ knowledge of

project management, cost analysis, and business

process flow analysis. Missing essential computer

science knowledge outcomes must, however, be

included in other required CS courses. Such a

substitution all but requires that the instructor has

significant software development and computer science

backgrounds.

Keywords: computer science curriculum, software

engineering, systems analysis and design.

1 Introduction

 For the last several years, Idaho State University’s

computer science (CS) department has required their

students to take a systems analysis and design course

from the computer information systems department

(CIS) in place of the traditional introduction to software

engineering course [e.g., 1]. While some of the course

objectives typically covered in a software engineering

course have had to be covered in other required

computer science courses, use of the systems analysis

and design course has allowed our computer science

department to provide a general purpose major that

meets ACM and other curricula standards while

providing CS students with a broader analysis and

design experience.

 There are a number of circumstances that have

allowed Idaho State University’s (ISU) computer

science department to successfully replace a software

engineering (SE) course with systems analysis and

design (SA&D) that might not be present at other

universities. First, ISU’s CS curriculum is a general

purpose major focused on the development of large

complex computer systems; many of their majors take

jobs building complex business applications, so much

of the material covered in SA&D courses, that is not

part of the ACM 2013 Tier 1 or tier2 [2] required

objectives, is still highly useful to CS students. In fact,

a number of ISU’s CS students choose to complete an

MBA after finishing an undergraduate major in

computer science and working for several years in

industry. Second, ISU’s CIS major is fairly technically

oriented with a strong emphasis on IT technical skills,

security considerations, systems analysis and design,

data base design including entity-relationship diagrams

[3] and some development of business applications.

Third, ISU’s CIS faculty has extensive software

applications development and/or computer science

backgrounds.

 Perhaps most importantly, ISU’s CS and CIS

departments work well together, have considerable

mutual respect, and thus have been able to cooperate in

the details of curricula and course outcomes. Further,

each has developed clear written definitions of what CS

and CIS are for Idaho State University, and they have

made these distinctions clear to faculty, students,

administration, and prospective employers. Defining

and maintaining these distinctions is academically and

politically essential.

 The purpose of this paper is to discuss how a

systems analysis and design course can be used

successfully to replace the traditional introduction to

software engineering course in a computer science

curriculum. We first detail what CS and CIS majors are

at Idaho State University, and discuss some of the

similarities and differences between an introduction to

software engineering course, and a systems analysis and

design course. We also describe what knowledge

outcomes need to be incorporated elsewhere in the CS

curriculum to ensure complete coverage of software

engineering. Finally, we summarize our initial

experiences and feedback in including SA&D in the CS

curriculum.

2 Background

2.1 Computer Information Systems

 Computer information systems (and its variants

management information systems and information

systems) evolved over the years from the referent

disciplines of behavioral science, management theory,

and computer science. Although the roots of

information systems (IS) are firmly anchored in

computer science, the instruction of IS courses must

transcend the technological aspect, and encompass the

organizational and behavioral issues that are integral in

the business world. Every course must not only instruct

the student in the application of the pertinent software

package, but must also emphasize the importance of

such tools in a corporate environment. Information

systems can be traced back to the systems analysts who

worked in the typical data processing departments of

the late 1950s. Systems analysts elucidated the needs of

a business situation, and developed algorithmic

solutions – typically represented by flow charts – as

well as managed the software development process.

Systems analysts were aided by “programmers” who

translated those flow charts into languages such as

COBOL, keypunched the code, and resolved any

syntax issues. CIS curricula included typically two

courses in COBOL focused on file management and

reports, as well as on the skills needed to analyze

business situations and manage the process of

developing solutions.

 However, this initial CIS model quickly blurred.

By the mid-1970s, computing departments were hiring

“programmer analysts” who did both systems analysis

and programming. Relational databases [4] became

widespread by the mid-1980s [5] and by the late-1990s,

web-based database applications had replaced most

COBOL business systems requiring a far higher level

of technical expertise including web applications,

database management systems [6], networks, computer

operations, and computer security. Two programming

courses were no longer sufficient to do much

development. Some CIS departments increased their

technical course requirements while others dropped

programming all together.

 ISU’s computer information systems major has

somewhat more of a development emphasis than many

IS programs, with two required

programming/development classes as well as some

programming required in a database class. The CIS

major is part of a business school, so CIS students also

take accounting, marketing, statistics, project

management, and business law.

2.2 Computer Science

 Computer science is primarily concerned with the

development of complex software and to some extent

hardware. Computer science evolved out of the systems

programmers’ role in the data processing departments

of the late 1950s and in operating systems development

by computer manufacturers. Computer science systems

programmers wrote and optimized asynchronous

operating systems, tuned disk drivers, developed data

structures, wrote custom algorithms, etc., often in

assembler and FORTRAN. Computer scientists also

had the math skills to handle more scientific-oriented

situations such as operations research algorithms and

early simulation modeling with a focus on efficiency,

effectiveness, and fault freeness.

 Computer science curricula educate students in

abstract reasoning about software programs and, above

all, develop their ability to implement large software

systems. ACM 1978 recommended curriculum [7] was

based on this understanding and included CS-I, CS-II,

computer organization, data structures, operating

systems, and compilers. CS majors typically completed

math courses at least as far as differential and integral

calculus, discrete math, and linear algebra. The ACM

2008 update [8] and ACM 2013 [2] curricula

guidelines now urge the inclusion of information

assurance and cyber security knowledge outcomes.

 Idaho State University’s computer science (CS)

department has embraced this traditional systems

programmer notion of CS by developing a general

purpose curriculum focused on implementing large,

complex, high-performance, secure, asynchronous

systems that require complex algorithms and intricate

data structures including network, operating system,

compiler, graphics and simulation packages. The

curriculum incorporates 30 credit hours of math and

science including differential and integral calculus,

linear algebra, discrete math, and statistics. However,

while mathematical formalism is essential, it is a means

to an end, not an end in itself. The major is well above

the ACM/IEEE 2013 curriculum minimum (Tier 1 +

90% Tier 2) [1] while being less than 1/2 of the total

credit hours for the undergraduate bachelor of science

degree. This allows students to add a second major in

math or a business minor and eventually, an MBA in a

5
th

 year.

 The computer science department’s focus on large

systems development is due – to some extent – to its

faculty members who have extensive industrial

experience that includes writing hundreds of thousands

of lines of code while developing tools for automotive

engineers, radiologists, pilots, etc.

2.3 Fundamental distinction between

CIS and CS

 While computer science is concerned with the

optimal design and implementation of software,

computer information systems concentrates on the most

efficient use of the finished package. For example, a

database course in a computer science curriculum

includes the internal organization of the database

management system examining such theoretical issues

as the most efficient algorithms for locking mechanisms

and deadlock detection. A course by the same name in

CIS generally examines the importance of organizing

the data so that, from a user perspective, database

access will be most efficient.

 This fundamental distinction is reflected in the

expected skills of the computer science and computer

information systems students: The CS student has to

exhibit a considerable gift for abstract reasoning, but is

not expected to interact successfully with as large a

variety of application domains. CIS students have a

strong understanding of the management, marketing,

and accounting facets of an organization, allowing them

to work more effectively in an organizational setting. In

addition, interpersonal skills and communication skills

are more strongly emphasized in the CIS major. CIS

students are also better versed in assessing the needs of

the end-users, and are therefore more capable of

designing software systems that satisfy those needs.

3 Software engineering

 The ACM 2013 curriculum [2] describes software

engineering as follows:

Software engineering is the discipline concerned

with the application of theory, knowledge, and

practice to effectively and efficiently build

reliable software systems that satisfy the

requirements of customers and users. This

discipline is applicable to small, medium, and

large-scale systems. It encompasses all phases

of the lifecycle of a software system, including

requirements elicitation, analysis and

specification; design; construction; verification

and validation; deployment; and operation and

maintenance. Whether small or large, following

a traditional disciplined development process,

an agile approach, or some other method,

software engineering is concerned with the best

way to build good software systems. Software

engineering uses engineering methods,

processes, techniques, and measurements. It

benefits from the use of tools for managing

software development, for analyzing and

modeling software artifacts, for assessing and

controlling quality, and for ensuring a

disciplined, controlled approach to software

evolution and reuse.

 Tomayko [9] identifies three periods in the history

of software engineering education: the era of single

free-standing courses (prior to 1978), the early graduate

programs (1978-88), and the rapid spread of graduate

programs influenced by the Software Engineering

Institute’s efforts (since 1988). By the 1970s a number

of computer scientists had realized that software

complexity was not just a matter of algorithms and data

structures, but that software could become

overwhelmingly complex due to its sheer size; even

straightforward code becomes overwhelmingly

complex when it grows to perhaps 300,000 lines of

code and 6000 subroutines [e.g. 10]. No software

engineering course was mentioned in the ACM 1968

[11] or 1978 curricula, though ACM 1978

recommended CS curriculum consider an optional

“Software design and development” course. In 1978,

Spencer and Grout [12] saw the need for including a

SA&D course in a CS curriculum under the name

“software engineering: large systems design”.

Constantine’s [13] classic “Structured design” stressed

the need for systems analysis and design to include a

software implementation component so students could

see the results of their design, and correct problems.

Table 1 –ACM 2013 tier-1 and tier-2

course contact hours per outcome [2]

Software Engineering

Outcome Category:

Tier1

Tier

2

Software Process 2 1

Project Management 2

Tools & Environments 2

Requirements Engineering 1 3

Software Design 3 5

Construction 2

Verification & Validation 3

Software Evolution 1

Reliability 1

Even by the late 1980s the importance of SA&D and

SE had not been completely embraced. In 1988, Poole

and Callihan [14] argued for the inclusion of a SA&D

course in the CS curriculum suggesting that many

graduates have “a merely superficial acquaintance with

…SA&D” and that “many CS majors graduate under

the misapprehension that SA&D is a career path that

has little or nothing to do with computer science”.

The ACM/IEEE 2001 CS curriculum detailed a series

of software engineering courses such as software

engineering, software process improvement, and

advanced software development [1]. The ACM/IEEE

2013 curriculum guideline no longer stipulates

particular courses but now provides a list of tier-1 and

tier-2 software engineering “knowledge outcomes,”

most of which should be covered somewhere in a

computer science curriculum (Table 1).

3.1 Is the initial software engineering

course better without programming?

 Both Constantine [13] and the ACM/IEEE 2013

curriculum [2] urged that software engineering for

computer scientists be taught in conjunction with

systems development. However, over the years, the

authors have discovered a number of problems with this

traditional software engineering pedagogical approach.

First, in our experience, CS design courses that involve

writing code, quickly devolve into only a small amount

of internal design and analysis, with the bulk of the

course becoming a conventional coding class. We

suspect that computer scientists like writing code but

perhaps are not as enamored with what might be

perceived as the tedium of analysis and design.

 Second, feedback from employers indicate that

many of ISU’s CS students did not really understand

testing procedures, maintenance, version control, task

analysis, data flow diagrams, project management tools

such as PERT (program evaluation and review

technique) and other techniques for developing large

software systems. CS students were well equipped for

entry level programming jobs but had difficulty moving

into team leader and higher level management

positions.

4 Systems analysis and design

 Systems Analysis has been defined as follows:

…the specification of what the system needs to do

to meet the requirements of end users. In …

systems-design … such specifications are

converted to a hierarchy of charts that define the

data required and the processes to be carried out

on the data so that they can be expressed as

instructions of a computer program. Many

information systems are implemented with generic

software, rather than with such custom-built

programs” [15].

 Pool and Callihan [14] argue that software

engineering is a subset of systems analysis and design.

They state that: “SA&D concerns itself with

methodologies to manage the development and

maintenance of computer-based systems in general,

including hardware, software, people, plant, and the

interfaces that link all the components together into a

functionally harmonious whole. Software engineering

focuses on software development within the already

given context of the larger system [14]. One definition

of software engineering includes the terms “analysis”

and “design” [15].

 ISU’s systems analysis and design course – taken

by both CS and CIS students – is somewhat unique as

all of the CIS students have had at least one

development course and the course is taught by a CIS

professor with a PhD in information systems, a MS in

computer science, and extensive industrial experience

building applications and kernel level code. The course

outcomes listed in Table 2 have been developed in

conjunction with CS faculty.

Table 2: ISU Systems Analysis and Design Outcomes

On completion of the course, systems analysis and

design students will be able to do the following:

Explain the fundamental concepts of systems analysis

and design.

List and explain the important development

methodologies for complex systems.

Demonstrate an awareness of the complexities of

requirements determination

Demonstrate the analytical skills required to examine a

situation, to understand thoroughly the factors

involved, to recognize any problems, and to derive

potential solutions

Analyze system requirements and specify system

processes and data flows, express requirements in use

cases, design user interfaces, and develop a systems

proposal

Employ appropriate systems design tools such as

structure charts, process specifications, UML, use

cases, and dialog flow designers to design a system and

its user interface

List and explain the fundamental concepts behind the

implementation, testing, conversion, and maintenance

of a system.

4.1 Software engineering v. systems

analysis and design

 As can be seen from the above descriptions of

software engineering and systems analysis and design,

there is considerable overlap between these courses.

Both deal with analyzing requirements, budget, user

needs, external and internal design, project

management, testing, deployment, training, and

maintenance.

 However, there are three key aspects stipulated in

the ACM/IEEE 2013 software engineering knowledge

area that are not covered in ISU’s SA&D course; these

aspects have to be covered elsewhere in the CS

department’s curriculum in order for computer science

to be able to use the SA&D course instead of a CS SE

course.

 First, CS students focus on developing systems

software rather than simply application software, so

they need to understand how to design systems with

parallel and real-time aspects; the design approaches

that work with typical business applications may not

work well with other types of software. Second, CS

students need exposure to considerably more object-

oriented design than can be taught in a SA&D course

with CIS students. Third, computer scientists feel that

software project management is best learned as part of

a team building a fairly large software package. This is

because students need to be able to see the

correspondence between their internal designs,

resulting software, and project outcomes before than

can learn to improve their design skills. The

ACM/IEEE 2013 curriculum states: “students learn

best at the application level … by participating in a

project”. While the systems analysis and design course

involves a semester team project made up of a series of

deliverables, it emphasizes the analysis and design of a

system and stops short of implementation.

5 Systems analysis and design in CS

 Based on the preceding analysis, it was decided

that instead of a conventional computer science

introductory software engineering course, ISU’s CS

curriculum would require the CIS systems analysis and

design course. CS students are expected to have first

completed CS-I, CS-II, computer organization, and

advanced English class to insure they have sufficient

writing ability. The CS-I course, requires structure

charts [13] for many of the assignments. CS students

also take a third programming class that focuses on

advanced object oriented design and development and

includes a final project that requires extending an

existing system of about 25 classes with new features

and an additional 15 classes or so. Finally, there is a

capstone course titled “advanced software engineering

and senior project” where they are required to analyze,

design, develop, and test an extensive system as part of

a team project.

 The SA&D course involves a team analysis and

design project with a series of scheduled deliverables.

Students choose their own teams, with a peer

evaluation at midterm that functions as an early

warning system – and a second peer evaluation that is

factored into the final individual grade. Peer

evaluations involve each team member submitting a

peer evaluation form assessing the contributions of

each team member with regard to the percentage

contributed by each team member toward the successful

completion of all phases of the project.

 While ISU’s systems analysis and design course

does not cover all the software engineering knowledge

outcomes in the ACM/IEEE 2013 curriculum

document, we feel it falls within the broader, historic

tradition of much of what is covered in software

engineering courses, and combined with other required

CS courses, provides a solid software engineering

background as well as a more extensive SA&D

experience.

6 Experience and feedback

 We now have had CS students taking our SA&D

course for several years. Feedback from CS students is

positive. One group ended up with a mix of CIS and CS

students that reported working well together. The fact

that the course focused on analysis and design

techniques unknown to either CIS or CS students and

did not involve any coding put both groups of students

on a somewhat even footing. One student commented,

“We didn’t segregate jobs based on major either,

because we were all learning the same material for the

first time.”

 Having the SA&D course taught by someone with

a MS in computer science as well as a PhD in CIS and

extensive real-world software development experience

was mentioned as significant. The software engineering

knowledge outcomes incorporated into a number of

required CS courses as well as requiring the SA&D

course seems to have provided a solid practical SE

background for the students.

 Our experience has shown that while many CS

graduates enter the workforce as systems software

developers, the bulk are hired by businesses to build

applications software. For the latter group,

experiencing a systems analysis and design course has

proven invaluable, providing knowledge of not only

software development techniques, but also familiarity

with the business context inherent in a systems analysis

and design class. This makes such students better

prepared to excel in the workforce. CS majors have

gained exposure to concepts like business rules, varied

stakeholders, and business requirements elicitation.

They have learned the importance of accounting and

financial data, and gained a better awareness of the

importance of written and oral communication. CS

students have also be exposed to students with a

business background, and, if a live project is used,

exposure to an actual business. CS students have

learned that there can be considerable differences

between business application software – which

provides the bulk of employment for CS graduates –

and the more traditional CS systems software.

 Perhaps most importantly, they also have become

aware of how critical application software can be to the

success of a business, as compared to system software

that may be used across a variety of businesses. Based

on this, a number of CS students have decided to start

taking business courses in addition to their CS majors

and some graduates are in the process of completing

their MBA.

 While this single case is based on a university with

a unique history and with a faculty with a specific skill

set, the outcomes reflect a broader question: Is the strict

division between CS and IS relevant to the modern

graduate? It has been shown that very little of the pure

CS program is lost through the substitution that has

been tried. Undergraduates value their exposure to a

broader curriculum and contact with both business

students and faculty. At least in our alumni community

the tasks of the recent graduate are not those of the

traditional CS graduate but require a better knowledge

of the context of the systems being developed. We are

sure that this change has been beneficial to our students

and we suspect that this alternative would be of benefit

elsewhere.

7 References

[1] ACM/IEEE Computing 190 curricula 2001 final

report. http://www.acm.org/sigcse/cc2001.

[2] ACM/IEEE-CS Joint task force on computing

curricula 2013 strawman draft.

[3] Chen PPS The entity-relationship model – towards

a unified view of data ACM TODS 1,1 9-36 Mar 1976.

[4] Codd, EF "A relational model of data for large

shared data banks". 13, 6 377–387 1970.

[5] Bagui S, Earp R Database design using entity-

relationship diagrams, Second Edition, Boca Raton,

FL: Taylor & Francis 2012.

[6] Ramesh B, Pries-Heje J, Baskerville R Internet

software engineering: a different class of

process. Annals of Software Engineering 14 169–195

2002.

[7] Austing R H et al., Curriculum ’78:

Recommendations for the undergraduate program in

computer science – a report of the ACM curriculum

committee on computer science, Comm. ACM 22,3

147-166 Mar 1979.

[8] ACM/IEEE-CS Joint Interim review task force.

2008. Computer Science Curriculum 195 2008: An

Interim Revision of CS 2001.

[9] Tomayko JE Forging a discipline: An outline

history of software engineering education, Annals of

Software Engineering 6, 3-18 1998.

[10] Brooks FP. The mythical man-month Reading,

MA: Addison-Wesley Publishing, 1975.

[11] Atchison WF, ACM curriculum committee on

computer science. Curriculum 68: recommendations for

academic programs in computer science. Comm. ACM

11,3, 151-197, Mar, 1968.

[12] Spencer JW, Grout JC Systems analysis and design

in a computer science curriculum, SIGCSE Bulletin,

24-27 1978.

[13] Yourdon E, Constantine LL Structured design:

fundamentals of a discipline of computer program and

System Design Yourdon Press, NE 2ed 1978

[14] Poole BJ, Callihan HD Systems analysis and

design: an orphan course about to find a home SIGCSE

bulletin 20,2 54-64 Jun 1988.

[15] Encyclopedia Britannica. Encyclopedia britannica

online academic ddition. Encyclopedia Britannica Inc.,

web, Mar 2013.

[16] Shoorman ML The teaching of software

engineering SIGCSE 83, 15,1 66-71 Feb 1983.

