Using BDI-extended NetLLogo Agents in
Undergraduate CS Research and Teaching

Jonathan Wiens
Computer Science Dept.
Faculty of Cooperative Studies
Berlin School of Economics and Law, Germany
j-wiens @stud.hwr-berlin.de

Abstract—This paper introduces both the subject and the
research results of an undergraduate student project. The project
focuses on an agent architecture that implements the beliefs-
desires-intentions (BDI) model. It proposes a new way to extend
a BDI library in NetLogo based on a case study from Computa-
tional Economics. Furthermore, this work presents how such an
undergraduate research supports Artificial Intelligence teaching
activities at the Berlin School of Economics and Law.

Keywords—Multi-agent systems, BDI agents, NetLogo, under-
graduate research, teaching.

I. INTRODUCTION

In dynamic environments like economic models, telecom-
munication networks or biochemical organisms, simulation
processes often rely on multi-agent systems (MAS). MAS play
a major part both in Artificial Intelligence (AI) curriculum
and research. They are a basis for many commercial mod-
els simulating complex non-deterministic behavior. Just as
developing simulations of complex environments with MAS
is an inherent difficult task, teaching by undergraduates and
conducting programming MAS is not an easy one, due to a
necessary high time exposure for MAS learning, design and
implementation.

The rest of the paper continues as follows: Section II
presents both a theoretical background of the beliefs-desires-
intentions (BDI) model and NetLogo, a multi-agent pro-
grammable modeling environment. In Section III, a case
study from the area of Agent-based Computational Economics
(ACE) is introduced. Fractional reserve banking supports the
need to extend an existing BDI library for NetLogo, which is
the topic of an undergraduate research project at the Berlin
School of Economics and Law (BSEL). It is presented in
Section IV. Finally, Section VI gives insights concerning our
experiences in undergraduate Computer Science (CS) educa-
tion, when teaching these subjects in an Al course at the BSEL.

II. THEORETICAL BACKGROUND

This section introduces a practical reasoning model for
agents with future-oriented intentions, the BDI model in
NetLogo. NetLogo [1] is a multi-agent programmable mod-
eling environment that aims at providing standards for high
power users at low learning curves. Thus, it serves as an

* Contact author.

Dagmar Monett*
Computer Science Dept.
Faculty of Cooperative Studies
Berlin School of Economics and Law, Germany
Dagmar.Monett-Diaz@hwr-berlin.de

excellent teaching tool to discover basic concepts of agent
programming with a hands-on approach.

To date, a third-party library providing functions for the
implementation of BDI agents written in native NetLogo code
has been published [2]. This library, however, only includes
belief revision procedures and intention handling and exe-
cution, thus missing other elemental features that the BDI
approach encompasses. Subsequently, the main topic of the
undergraduate student project was to enhance the existing
library in order to acquaint students with a more sophisticated
form of the BDI model in NetLogo. Furthermore, the improved
library can be used not only by students but also by anyone
interested in building BDI agents in NetLogo.

The major goals of the undergraduate student research
project are:

e to propose a simplified model for fractional reserve
banking,

e to integrate BDI concepts,
e to design a MAS in NetLogo for the new model,

e to analyze which BDI components cannot be modeled
using the available BDI library,

e to propose extensions to that BDI library for covering
the discovered needs,

e to design, implement, test and evaluate those changes
using NetLogo, and

e to support the Al teaching of these contents both
theoretical and practically.

All these goals were successfully achieved and are topic
of the sections that follow.

A. BDI

In 1987, the philosopher Michael Bratman introduced a
model for human practical reasoning as a way to explain
future-directed intentions [3] which led to the BDI model in
Al First, a logic was formally instituted in 1991 [4] and
later, a practical model was implemented as an approach to
build highly dynamic applications, like the OASIS air-traffic
management system, the Optimal Aircraft Sequencing using
Intelligent Scheduling [5].

The BDI approach focuses on the reasoning of resource-
bounded agents, while resource boundaries include limited
computational power of both the agent and the dynamic envi-
ronment. This implies that (i) while the environment changes,
the agent cannot take infinite time to plan its actions but needs
to be flexible in re-planning and (ii) the agent may not reason
open-ended because of world changes that lead to new dangers
or opportunities.

At the center of such BDI agents lies the notion of mental
attitudes, namely beliefs, desires and intentions. Beliefs are
the agents representation of assumptions about the world, the
environment. Beliefs are not facts about the world, since beliefs
are subject to error of reception. Thus, beliefs can change and
can be combined to infer new beliefs. Desires represent the
goals of the agent and thereby ultimately define an agent’s
purpose. An agent can have different goals, competing for each
other. One difficulty in BDI is how to distinguish which goals
are most beneficial to the agent. The substance of desires are
intentions, which describe how to reach the deliberated goals,
like directions in a recipe. While it can be assumed that for
most desires there are several intentions, a selector is needed
to determine which intention is appropriate at a given time.
Intentions are, in other words, the actions necessary to fulfill
the agent’s goals. A sequence of intentions is called a plan.

B. NetLogo

If BDI is an architecture describing how to build a specific
type of agents, then NetLogo is the software developer tool
kit providing a framework to design the agents and their
environment. NetLogo is a multi-agent programming language
with an integrated development environment (IDE) for simu-
lating complex phenomena for both research and educational
purposes. It is used across a wide range of disciplines and
university levels and is particularly well suited for multi-agent
systems that evolve over time.

Compliant with it’s motto “low threshold, no ceiling”,
NetLogo allows the modeling of hundreds and thousands of
autonomous agents, all operating concurrently. The graphical
user interface allows the developing of quick simulations of
two and three dimensional spatial behavior of agents, making
the process of designing MAS visual and therefore easier
to understand and troubleshoot, but also entertaining and
appealing [1].

To date, there are several languages for programming BDI
agents that are highly sophisticated and offer different compo-
nents and approaches to implement multi-BDI agent systems
[6]. These environments, though powerful and advanced, have
steep learning curves and are unsuitable for educational pur-
poses that involve a hands-on, short-term curriculum. Because
NetLogo is an excellent tool for teaching, for researching and
for designing MAS, the notion to create BDI agents with
NetLogo comes natural.

C. BDI Library for NetLogo

The library for realizing BDI agents in NetLogo was
written by Sakellariou [2] and its current version is NetLogo

4 compatible. It consists of 23 commands and reporters' and
is split into three logical tiers: belief management, intention
management and utilities. Utilities support the belief and
intention management with, for example, timeout interruptions.

1) Belief Management: A belief consists of two elements,
stored in a list: the fype and the content. The type of the belief
describes what kind of belief it is or what class it belongs
to. For example, a type of a belief could be any string like
"location" or "capital".

The content declares the actual value of the belief type
and can be of any NetLogo structure.> Notice that there can
be competing beliefs with the same type but different content.
This makes sense when a belief can hold multiple attributes.
An agent could believe, for example, that the coffee is hot (type
"coffee", content "hot") and strong (type "coffee",
content "strong") at the same time.

The following example shows three sets of beliefs, as part
of one list:

[["location"
["coffee"

[3 4]] ["coffee"
"strong"]]

"hot n]

2) Intention Management: Like a belief, an intention con-
sists of two elements: the name, which maps to a NetLogo
command, and a done-condition, which maps to a NetLogo
reporter. Intentions are stored in a stack and are popped out
when to be executed. If the done-condition is satisfied, the
intention is removed and the next intention is popped out
consecutively.

An example intention stack in NetLogo is the following:

[["task [do-nothing]" "true"]
["task [move-to [0 3]1"
"task [at-location [0 3]]1"]

["task collect—-wood" "task wood-loaded"]]

The name and done-condition of an intention are stored in
tasks — a task is a special NetLogo structure that is a place-
holder for runnable code, in other programming languages also
known as lambda, closures or first-class functions.

III. A CASE STUDY

Having covered so far the theoretical background of BDI,
NetLogo and the available NetLogo BDI library, the next step
is to use the library by designing a sufficient complex model in
order to exhaust the library’s functionalities and, consequently,
to demonstrate in what ways it can be extended. The Agent-
based Computational Economics (ACE) interdisciplinary re-
search field promises scenarios that can be as complex as
human action itself and therefore suits the purpose of building
a complex model in NetLogo.

'In NetLogo, commands describe the actions an agent should carry out
resulting in some effect, while reporters include instructions to compute a
value, which is then reported by the agent.

2Like booleans, strings, integers, doubles, lists, etc.

by economic activity (e.g. investing,
spending, paying off loans, etc.)
money travels to depositors

borrows money deposits money
> Bank <
Debtor Depositor
consist of holds consist of
Money > Bank
| Equity & | | notes
Assets Liabilities
”1 deposits

Fig. 1. Fractional reserve banking simplified.

A. Agent-based Computational Economics

Agent-based computational economics is “the computa-
tional study of dynamic economic systems modeled as virtual
worlds of interacting agents” [7], while agents can represent
individuals (e.g. people) or abstract entities (e.g. a market
interest rate). Like with other MAS, the modeler provides the
agents with an initial configuration and lets the computational
world evolve over time, as its constituent agents interact with
each other. Initial configuration, depending on the subject and
desired complexity of the model, includes any variable that is
specified to reach the desired goal. Hence, the scientific goal
is to “[...] test theoretical findings against real-world data in
ways that permit empirically supported theories to cumulate
over time” [8].

ACE has been applied to several research areas, like asset
pricing [9], transaction costs [10], and macroeconomics [11],
to name a few. The economic subject of the NetL.ogo model
we present is this paper is fractional reserve banking (FRB),
which offers an arbitrary amount of complexity depending on
the modeler’s choice.

B. Fractional Reserve Banking

In economics, the chief activity of a bank is, as a financial
intermediary, to receive deposits from savers at a given deposit
interest rate and to channel these deposits by lending them at
a higher interest rate to credit-worthy or productive borrowers,
thus making a profit. FRB is the process when banks keep only
a fraction of the received deposits, called the reserves, and
lend the remaining to borrowers. Subsequently, by spending,
investing or doing other economic activity, part of the money
lent is deposited within the same or another bank, allowing
further lending (see Figure 1).

As a result, the bank holds more liabilities than assets at
a growing rate. This process increases the money supply over
time, leading to inflation and currency debasement. The degree
of the effects is mainly influenced by the reserve ratio, which
is called the reserves-to-warehouse-receipts quotient [12]:

. Reserves
Reserve ratio =

Warehouse receipts

Warehouse receipts are the outstanding bank notes the bank
is required to redeem on demand to the depositor, usually
stored in a checking account. The depositor is able to withdraw

TABLE 1. EXAMPLE BALANCE SHEET OF FRACTIONAL RESERVE

BANKING.
Bank
Assets Equity & Liabilities
Gold $50,000 Warehouse
Loans $80,000 receipts for gold $130,000
Total Assets SSIT,OOO Total Liabilities W

on his account anytime and anywhere checks are accepted as
payment. However, if the liabilities exceed the assets, then the
depositor will not be able to withdraw his entire deposit, since
the bank only holds a fraction of it, hence the name fractional
reserve banking.

a) An example for FRB: In the absence of a central
bank, and for the sake of simplicity, a bank has $50,000 of
gold® deposited and issues $80,000 in warehouse receipts, it
lends them out and expects to be repaid the $80,000 plus
interest (see Table I).

The bank lends $80,000 of warehouse receipts it doesn’t
own. The general money supply is thus increased by the

amount of the credit (i.e. $80,000), the fraction being 5

13
(from %). Thus, FRB generates an increase in the money

supply by issuing warehouse receipts for money that did not
exist previously. Money in circulation has increased by the
amount of warehouse receipts issued beyond the supply of gold
in the bank. The lower the fraction of the reserve, the greater
the amount of new money issued and, therefore, the greater
the decrease of the purchasing power of the dollar. This is
why FRB has a number of negative effects on the economy, in
terms of interest rates, inflation and the purchasing power of
the dollar in form of currency debasement. The fact that banks
are never able to redeem the entire deposits of all depositors
has three implications:

e the bank is at all times bankrupt, since it cannot
redeem all the deposits it owes to the depositors, hence

e the depositors statistically never demand to redeem all
their deposits at once, unless

e they lose confidence, or trust, in the bank and, there-
fore, want to redeem all their deposits, resulting in a
bank run.

A bank run is the phenomena when a large number of
depositors withdraw their deposits due to loss of confidence
in the bank or when they speculate that the bank might have
become insolvent. As the bank run progresses, it develops
momentum in a positive-feedback loop as more customers
withdraw their deposits, thus prompting further withdrawals
from other customers. This ultimately results in the bank’s
insolvency, as it fails to provide the money demanded.

IV. NETLOGO MODEL FOR FRB

The simplified model for FRB derived in a complex enough
model for BDI in NetLogo. The purpose of the FRB model is
to depict the implications fractional reserve banking has over
time. Its current stage is kept to a simple world design without
inter-bank activities, a central bank and government regulation.

3Whether gold or government paper does not matter here.

As a consequence, this model reflects by no means a real-
world example but is merely an extract of modern banking
to illustrate, on a low-level, what effects fractional reserve
banking has on both interest rates and currency debasement.

Since MAS evolve over time, the FRB model is put into a
time frame that is measured in fticks, discrete steps that are
used in most NetLogo models. Figure 2 shows the model
with the concurrent activities that are considered within a
tick cycle. At the heart of the model are three parties: the
debtors, the depositors and the bank. As described in Section
III-B, the bank plays the role of the intermediary between
the depositor and the debtor, handling the deposits, loans and
their corresponding interest rates. Each party deliberates once
per tick. The deliberation process determines, according to the
agent’s personal value scale (PVS) what it will do. At the end
of each cycle there is one possible action per agent.

A. Depositor

The depositor’s motivation is to accumulate as much capital
as possible without running the risk of the bank’s insolvency,
which would cause him immediate loss of capital. Therefore,
there are four different general actions a depositor can accom-
plish* (see Figure 3).

Since the actions of the depositor are determined by his
PVS, the PVS should be designed carefully. It is the result of
the agent’s algorithm and embodies what would be most rea-
sonable to undertake. It would be unreasonable, for example,
for a depositor to deposit 70% of his on-hand cash into a bank
he has 10% of trust in. The goal is to project the depositor’s
most reasonable behavior using an algorithm that takes account
all influencing variables, like his time preference p, his current
capital C, the deposit interest rate 5 and the trust in the bank ¢,
in a feasible way. In order to design an algorithm that captures
all of these parameters in a balanced relationship, an iterative
process of implementing, testing and adapting is necessary.
The following pseudo-code shows the result of this process:

if 0.5 <t <1 then

D=C-(p+58)

else if 0.3 <t < 0.5 then
W=S-(1-p)

else
w=S

where D is the amount to deposit, W is the amount to
withdraw, and S is the current deposits or savings in the bank.

The algorithm relies heavily on the agent’s trust into the
bank he’s engaged with. If it falls to a certain amount, he
will refuse to deposit but rather withdraw, even to the point of
withdrawing the entire deposit, if the confidence in the bank is
lost. Both the time preference and interest rate determine what
amount of capital should be deposited or deposits withdrawn.
The time preference is an attribute that cannot be deduced
by computational methods, since it has a non-deterministic
character. Therefore, the time preference is generated through
a randomized procedure for each agent individually.

4The four actions being to retrieve the entire deposit, retrieving a specific
amount that is lower than the total of the deposit, depositing a certain amount,
or doing nothing.

retrieve
entire deposit

collect
messages

5

retrieve certain
amount of deposit

update
beliefs

<>

trustffi_n_bank trust in bank
sufficient insufficient

check time
preference

deposit
money

check
capital

PVS determines
deposit

<>

PVS determines
retrieval

check
interest-rate

PVS determines
not to deposit
nor to retrieve

do nothing

PVS = Personal value scale

Fig. 3. Deliberation process for the depositor, including evaluation of beliefs
(grey boxes) resulting in four general intentions (boxes in dashed lines).

B. Debtor

The debtor’s deliberation process is similar to the deposi-
tor’s. The debtor’s four possible actions are to deleverage by a
certain amount, to lend a specific or the maximum amount of
money, or to do nothing. They were designed and implemented
analogously to the depositor (for more information, refer to the
student research project documentation [13]).

C. Bank

The bank’s main procedures are to accept deposits, to issue
withdrawals, to lend, to deleverage and, corresponding to these,
to compute profitable deposit and loan interest rates, as well as
to compute the reserves, liabilities and assets. The goal of the
bank is to make profit through interest rates by maintaining
the loan interest rates greater than the deposit interest rate.
The figure of each rate is determined by the economic law of
supply and demand. For example, if there is more demand than
supply in the deposit business, then the bank will decrease its
interest rate for deposits. If the demand diminishes, then the
interest rate goes up for giving potential customers incentives
to deposit.

V. EXTENTION OF THE BDI LIBRARY

The case study in ACE resulted in the proposition for plans
and redefining intentions. The original implementation of the
BDI library relies solely on intentions for an agent’s actions.
Because the complexity of agents and the implementation
and maintenance of simple intentions correlates, the modeler
needs to create a new intention for each action and has no
possibility to cluster intentions. Therefore, the primal reason
to incorporate plans into the library is to group a sequence of
actions, or intentions, and other plans. Like a knowledge base,
a plan defines what needs to be done in order for the goal to
be fulfilled.

The second major upgrade was the redefinition of inten-
tions. The original implementation of intentions did not allow
calls by reference. This has a strong influence on the agent’s

A

update world
information

model starts 4—@

A

v

debtor
deliberation

PVS determines

PVS determines lending to do nothing

PVS determines
to do nothing

Start of tick
bank

deliberation

v

collect returns

depositor
deliberation

PVS determines
retrieval

PVS determines
deleveration

Y

PVS determines
deposit

& pay interest,
channel deposits
& loans

v v

lend money ‘ deleverage ’ do nothing ‘ ’ deposit money retrieve deposit update interest
rates & determine
net balance
Y A Y Y Y ¢
PVS = Personal value scale
bank is .
not insolvent bank is

insolvent

Fig. 2. Fractional reserve banking model overview.

capabilities, since it cannot act on its beliefs in an efficient
manner.

An example of a plan as described for the extension can
be written as follows:

create-plan (list boil-water
add-coffee-powder
stir-beverage drink-coffee)
task [coffee-finished?]
"make coffee"

The items boil-water, add-coffee-powder,
stir-beverage, and drink—-coffee refer to intentions
that are executed consecutively in order to achieve the
plan. The task coffee-finished? is the reporter to
verify whether a plan has been completed. The field "make
coffee" is an optional info field.

With this approach, the programmer can combine multiple
intentions that achieve one purpose (in this example drinking
coffee). Without the extension for plans, the programmer
would have put the intentions on a stack manually, making
the management of intentions with one purpose difficult to
manage. The structure for plans allows dynamic adding, as
well as deleting single or multiple intentions at a time.

This is a significant feature for developing more complex
projects, for example MAS student projects. In the following
sections, we present our experiences in undergraduate CS
education when applying the concepts and the BDI extension
introduced so far.

VI. EXPERIENCES IN CS EDUCATION

The Artificial Intelligence course at the Berlin School of
Economics and Law is part of the curricula in the fifth semester
of the Bachelor of Computer Science, carrier accredited and

Y

End of tick

recently re-accredited (for 7 more years) by the AQAS e.V.> It
has two modules: the first course module being Autonomous
agents and multi-agent systems (33 hours a 45 minutes) and
the second course module being Knowledge-based systems (44
hours a 45 minutes). The Al course is an optional course that
offers 7 ECTS-credits,® and that has a final exam as the primary
evaluation form, although students can opt for some credits
upon team working in a course project. In such a case, concrete
assignments that improve both their written and oral skills are
required.

The content is taught in lectures following both a teacher
and a student-centered approach. They are organized in six
weeklong sections of four hours each. The main subjects
that are taught in the first module cover much of those in
Wooldridge’s book [14] on agents and multi-agent systems.’
Special attention is given to the BDI model, as well as to
both the development and the simulation of practical reasoning
agents.

A. The Group

Since the Al course is an optional course, it enrolls only
a part of all fifth semester CS students at the BSEL. Most Al
classes do not exceed 20 students. Teaching small-sized groups
has had positive implications when lecturing, selecting and
administering exercises, course projects, as well as on didactic
methods to be used in the classroom.

B. NetLogo in the Classroom

NetLogo has already been used as an educational tool
in numerous university courses worldwide [15]. We have

5German agency for the accreditation of study programs.

SEuropean Credit Transfer and Accumulation System. In Germany, one
credit point is equivalent to 30 hours of study.

"Teaching resources including lecture slides and syllabus descriptions that
accompany Wooldridge’s book can be found at http://www.cs.ox.ac.uk/people/
michael.wooldridge/pubs/imas/resources.html

also used NetLogo in our AI course since 2006. BSEL’s
CS students learn how to simulate multi-agent scenarios by
programming in NetLogo for different undergraduate course
projects [16]. Typical multi-agent scenarios are those of rescue
agents simulations and predator-prey simulations, for instance.
Extensions to NetLogo have been topic of several student
research projects at the BSEL as well.

C. The Sandwich Model

For supporting a wide spectrum of class activities and
learning opportunities in the first module of the AI course,
topics were taught by three different persons in Summer 2012:
a faculty professor, a technical assistant, and an undergraduate
student in the role of a teaching assistant. In what follows, we
refer only to the part taught by the undergraduate student. He is
also the developer® of the BDI extension already introduced in
this article. A differentiated evaluation schema was considered,
since the student was also enrolled in the Al course. For doing
this, not answering some final exam questions was offered to
gain credits against teaching as part of the teaching staff.

Teaching involving the undergraduate student was devoted
to the BDI theory, to BDI agents, and to the use of NetLogo
to simulate them. All topics were scheduled and discussed
with the faculty professor prior to the lectures. They were
taught at two lectures following a sandwich model, i.e., by
combining passive and active learning units. In his first talk,
the student introduced NetLogo as the supporting tool for the
course projects to be developed by the rest of the students.
He explained NetLogo’s main features and where to find what
kind of resources. Such a general introduction took about 10
minutes. He then started a practical section of half an hour of
duration, where students modeled from scratch, step by a step,
and by following his instructions, a predator-prey scenario:
almost all of Netlogo’s elements and options were introduced
and demonstrated based on the Wolf Sheep Predation model
from Wilensky [17]. In his second talk, the student followed
the sandwich schedule presented in Figure 4 for introducing
BDI-related concepts. The duration time in minutes for each
activity is given at the left hand side in the figure.

A sandwich structure includes breathing-in and breathing-
out phases, which successfully combine theoretical input and
practical assignments, as described in [18]. The video that was
shown in the beginning opened with a group discussion to
motivate both BDI termini and BDI agents. A passive learning
section followed, in which beliefs, desires, intentions, and
agent commitments towards goals were introduced, as well
as a representation of such terms by using Rao and Georgeff’s
logic [4]. After that, the students had the opportunity to
practice the new acquired knowledge by solving exercises
specially prepared by their teaching classmate. Solutions were
discussed and presented in plenum and were moderated by
the teaching student. Then, BDI architectures were introduced
briefly, followed by a concrete, practical example in NetLogo
using the BDI model. The Wolf Sheep Predation model shown
in the first talk a week before, was now being implemented
according to the BDI paradigm. The sandwich schedule ended
with some advise for implementing BDI in the course projects

8At the time of writing this paper, Jonathan Wiens is an undergraduate
student attending the fifth semester in the CS career at the BSEL.

Min.
ﬁ Motivation, Agenda

g Video, Discussion

1% Theory: BDI and BDI logic
12 Practical part: Exercises
15 part: Exerci

5 Theory: BDI architectures

5 Practical part: BDI in NetLogo

3 Literature, advice for projects

Schedule of a student’s talk as a sandwich structure.

Fig. 4.

(both with and without using the new extension to the existent
BDI library) before the conclusions of the talk were addressed.

VII. EVALUATION

The extensions to the BDI library that are presented in
Section V were analyzed, designed, implemented, tested and
evaluated successfully. Further details are described in the
student research project documentation as well and are not
addressed here since it would go beyond the scope of this
paper (for more information we refer to the original research
paper [13]).

Since the project has completed and the results presented,
the new library has been part of Al teaching in the classroom.
Students can now learn not only the theory concerning BDI
but also have the possibility to design and implement MAS
in NetLogo, especially when using BDI practically. After
following the instructions given by their classmate step by
step, they were able to incorporate the BDI approach into
their course projects, while gaining more diverse programming
skills in NetLogo. The support of the teaching student was
highly welcomed in this respect.

Moreover, the students were given at the beginning of the
course the possibility to choose either to complete a final exam
to evaluate the module Autonomous agents and multi-agent
systems, or to work on a course project using NetLogo and
BDI. After attending the teaching student’s tutorials, almost
all the groups chose to work in projects, which were all
qualitatively high and fully completed by the end of the term.

Last but not least, the extended library has been effectively
used in other simulations in NetLogo. Two new undergraduate
students currently work in its further evaluation as part of their
student research projects. They simulate real world scenarios
using FRB and BDI for modeling bank crises and their behav-
ior over time. Their goal is to analyze the BDI library including
the extension for efficiency in order to advance it. The project
thereby evolves in the classroom, making the students the
researches, developers and teacher at the same time. Constant
communication between the students who take over the project

and the supervising professor foster the undergraduate research
and teaching.

VIII. CONCLUSIONS

This paper introduced the subject of an undergraduate
student project that focused on extending a BDI library for
NetLogo, by conducting a case study in the field of Agent-
Based Computational Economics. The extension included a
third mental notion to the agents, i.e., the addition of plans in
order to allow the clustering of intentions and other plans for
the modeling of agent’s actions that consist of other actions, as
well as the redefinition of intentions to allow calls by reference.
Furthermore, this work presented how such undergraduate
research supports Al classroom teaching at the Berlin School
of Economics and Law. The idea to combine student research
and student teaching has received a positive echo from all
participating parties — the school, faculty and students.

Beyond the basics of mental notions, the BDI paradigm
does not have fixed specifications dictating what the library
should offer. Future work includes analyzing useful features
and extending the planning of agents by adding dynamic
prioritizing. Dynamic prioritizing would enable agents both
to have and two swap competing plans at run time.

REFERENCES

[11 U. Wilensky, “NetLogo,” Evanston, IL, U.S.A., 1999, available online
at http://ccl.northwestern.edu/netlogo/, retrieved January 3, 2013.

[2] I Sakellariou, P. Kefalas, and I. Stamatopoulou, “Enhancing NetLogo
to Simulate BDI Communicating Agents,” in Proceedings of the 5t
Hellenic Conference on Artificial Intelligence, SETN’0S, ser. Lecture
Notes in Artificial Intelligence (LNAI), J. Darzentas, G. Vouros, S. Vosi-
nakis, and A. Arnellos, Eds., vol. 5138. Syros, Greece: Springer Berlin
Heidelberg, October 2008, pp. 263-275.

[31 M. E. Bratman, Intention, Plans, and Practical Reason.
MA, U.S.A.: Harvard University Press, 1987.

[4] A. Rao and M. Georgeff, “Modeling Rational Agents within a BDI-
Architecture,” in Proceedings of the Second International Conference
on Principles of Knowledge Representation and Reasoning, KR’91,
J. Allen, R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann, April
1991, pp. 473-484.

Cambridge,

(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

——, “BDI Agents: From Theory to Practice,” in Proceedings of the
First International Conference on Multi-Agent Systems, ICMAS’95.
San Francisco, CA, U.S.A.: AAAI Press / The MIT Press, June 12—
14 1995, pp. 312-319.

V. Mascardi, D. Demergasso, and D. Ancona, “Languages for Program-
ming BDI-style Agents: an Overview,” in WOA. Pitagora Editrice
Bologna, 2005, pp. 9-15.
L. Tesfatsion, “Agent-based Computational Economics: Modeling
Economies as Complex Adaptive Systems,” Information Sciences, vol.
149, pp. 263-269, 2003.

L. Tesfatsion and K. Judd, Eds., Handbook of Computational Eco-
nomics: Agent-Based Computational Economics, 1st ed. Elsevier, 2006,
vol. 2.

J. Arthur, W. Holl, B. Lebaron, R. Palmer, and P. Tayler, Asset pricing
under endogenous expectations in an artificial stock market. Addison-
Wesley, 1997, pp. 15-44.

T. Klos and B. Nooteboom, “Agent-based computational transaction
cost economics,” Journal of Economic Dynamics and Control, vol. 25,
no. 3-4, pp. 503-526, March 2001.

M. Oeftner, “Agent-Based Keynesian Macroeconomics — An Evolu-
tionary Model Embedded in an Agent-Based Computer Simulation,”
September 2008.

M. Rothbard, The Mistery of Banking, Second ed. Ludwig von Mises
Institute, 2008.

J. Wiens, “Extending a NetLogo library for BDI-architectures in multi-
agent systems,” August 2012, computer Science Dept., Faculty of
Cooperative Studies, Berlin School of Economics and Law, Student
research paper, unpublished.

M. Wooldridge, An Introduction to MultiAgent Systems, Second ed.
UK: John Wiley & Sons Ltd, May 2009.

“NetLogo Courses,” Evanston, IL, U.S.A., n.d., available online at
http://ccl.northwestern.edu/courses.shtml, retrieved January 3, 2013.

D. Monett, R. Janisch, and S. Starroske, “NL-Analyzer: Enhancing Sim-
ulation Tools to Assist Multiagent Systems’ Teaching,” in Proceedings
of the Workshop Multi-Agent Systems for Education and Interactive
Entertainment, MASEIE’2010, W. van der Hoek, G. A. Kaminka,
Y. Lesperance, M. Luck, and S. Sen, Eds., Toronto, Canada, May 10-14
2010, pp. 1-6.

U. Wilensky, “Netlogo Wolf Sheep Predation model,” Evanston, IL,
U.S.A., 1997, available online at http://ccl.northwestern.edu/ netlogo/-
models/WolfSheepPredation, retrieved January 3, 2013.

D. Monett and M. Singer, “Research and Teaching with Remo: Student
research projects and teaching for and by undergraduate students,”
in Proceedings of The 2012 International Conference on Frontiers in
Education: Computer Science and Computer Engineering, FECS’2012,
H. Arabnia, V. Clincy, and L. Deligiannidis, Eds., vol. 2. Las Vegas,
NV, U.S.A.: CSREA Press, July 2012, pp. 353-359.

