

A Learning Model of Simple Computing Machine Architecture

Tai-Chi Lee and Hector Zimmermann-Ayala

Department of Computer Science and Information Systems

Saginaw Valley State University

University Center, MI 48710

Abstract

This work emerged from an independent study project, which

involved building a simple machine with few registers and

limited memory that could execute a program in the machine

language of binary code. The purpose of this project is to

learn the basic concepts and the fundamental logic design of a

processor, the basic machine architecture is outlined. In order

to fully understand how an instruction set gets executed, first

the instruction format must be well defined and with

implemented simplicity where we only limit our instruction

types to the minimum to reduce size of the instruction set,

which makes it easier to follow when analyzing and

synthesizing the functionality of various components in a

processor. For example, the arithmetic operations consist

only of Addition, Subtraction, Multiplication, and Division.

For data movement we have the Load and Store, and for

logical operations only Compare is used. For Arithmetic

operations only subtraction and addition are implemented.

Multiplication and division can be achieved by repeated

additions and subtractions respectively. Program flow control

uses only the Jump. Furthermore, for memory management,

we added a one-byte Cache. This project provides students

with an easy learning experience, which is needed for their

study at the introductory level of the computer architecture

course, while getting a better understanding of how a

processor works.

1. Introduction
Over the past five decades the computer industry has

experienced enormous changes in the architectural design.

Increases in device speed and reliability, as well as reduction

in hardware cost and physical size have greatly enhanced

computer performance. While major components such as

central processing units, memories, input and output units

which perform basic computations remain unchanged, issues

of using cache, pre-fetch techniques, number of cores in a

single chip, and choice of Reduced Instruction Set Computer

(RISC) or Complex Instruction Set Computer (CISC) CPUs

[1, 3] are debatable. Also, according to studies in the field,

CISC CPUs do not seem to have as big an advantage as some

thought they would have. So one variant of RISC, Small

Instruction Set Computer (SISC) [6], being implemented in

this project is introduced for the purpose of study as it seems

to have less overhead for a performance advantage over CISC

Processors.

2. Constructions and Designs of Basic

Components

To orient the student researchers to our SISC CPU [7] for

performance and simulation reasons for an Embedded System

the following CPU Simulator was developed:

1) Registers

This SISC CPU Emulator was designed with four

byte size registers R0, R1, R2, R3, and R0 is the

Accumulator with the ability to have some operations

in internal Level 1 Cache Memory with the R1

register.

2) Main Memory

This SISC CPU Emulator operates with an external

memory of 256 bytes as it is designed for embedded

systems.

3) Cache Memory

This SISC CPU Emulator pre-fetches a byte in Level

2 Cache Memory to increase performance in case the

processor requires it as data.

4) Buses

This SISC CPU Emulator uses the data and memory

buses in its design.

5) Other peripherals

Any peripherals that would be added to the system

can have interfaces through the Memory Addresses

available to the CPU.

3. Instruction Set
A Small Instruction Set is provided with support for the

Memory, Cache Memory, and Buses, as well as the ALU

(Arithmetic Logic Unit).

3.1. Instruction Set Description
This SISC CPU has the following Instruction Set:

Mnemonic Instruction Length Description.

ADD01 00000001 1 Byte

Add registers R0 and R1 and stores the result on R0 (The Accumulator). This

operation also affects the Zero Flag (Whether the result is Zero) and the Overflow

Flag (Whether the operation exceeded a Byte or not).

ADD 00000010 2 Bytes

Add the contents of the Accumulator (Register R0) and the data byte previously

Cached, storing the result on the Accumulator (Register R0). This operation also

affects the Zero Flag (whether the result is Zero) and the Overflow Flag (whether the

operation exceeded a Byte or not).

ADD1 00000011 2 Bytes Similar to ADD, but for Register 1 (R1).

ADD2 00000100 2 Bytes Similar to ADD, but for Register 2 (R2).

ADD3 00000101 2 Bytes Similar to ADD, but for Register 3 (R3).

SUB01 00000110 1 Byte

Subtract R1 from R0 and store the result into the Accumulator (R0). The Overflow

Flag is affected to reflect whether the result exceeded one Byte or not and the Zero

Flag is also affected to reflect whether the result is Zero or not.

SUB 00000111 2 Bytes

Subtracts the Cached Data from the Accumulator and places the result in the

Accumulator (R0.) The Overflow Flag is affected to reflect whether the result

exceeded one Byte or not and the Zero Flag is also affected to reflect whether the

result is Zero or not.

SUB1 00001000 2 Bytes Similar to Sub, but for R1.

SUB2 00001001 2 Bytes Similar to Sub, but for R2.

SUB3 00001010 2 Bytes Similar to Sub, but for R3.

LOAD 00001011 2 Bytes Loads the Memory Contents with Memory Address in Cache into the Accumulator.

LOAD1 00001100 2 Bytes Similar to LOAD, but for R1.

LOAD2 00001101 2 Bytes Similar to LOAD, but for R2.

LOAD3 00001110 2 Bytes Similar to LOAD, but for R3.

SEC 00001111 1 Byte Sets the Carry Flag.

CLC 00010000 1 Byte Clears the Carry Flag.

SEI 00010001 1 Byte Sets the Interrupt Flag.

CLI 00010010 1 Byte Clears the Interrupt Flag.

JMP 00010011 2 Bytes Unconditional Jump to the address pre-fetched on the Cache.

JNZ 00010100 2 Bytes
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Zero Flag is

NOT set (Jump if Not Zero).

JIZ 00010101 2 Bytes
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Zero Flag IS

set (Jump If Zero).

JCS 00010110 2 Bytes
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Carry Flag IS

set (Jump if Carry Set).

JCC 00010111 2 Bytes
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Carry Flag is

Clear (Jump if Carry Clear).

STORE 00011000 2 Bytes
Stores the Accumulator (R0) contents into the Memory Address pre-fetched in

Cache.

STORE1 00011001 2 Bytes Similar to STORE, but for R1.

STORE2 00011010 2 Bytes Similar to STORE, but for R2.

STORE3 00011011 2 Bytes Similar to STORE, but for R3.

RET 11111111 1 Byte Return / End.

3.2 Configuration of Components

The learning model presented in this paper consists of four

major components including Processing Unit , Input Unit,

Output Unit, and Secondary Storage (external memory), where

Processing Unit is composed of Central Processing Unit

(CPU) and Main Memory (internal memory). And, CPU is

further divided into Arithmetic/Logic Unit (ALU) and Control

Unit or Master Control Unit (CU/MCU). Figure 1 shows the

configuration of the components.

Figure 1

Figure 2

The following describes the role of each component.

1) ALU contains a number of registers, which performs all the

arithmetic and logical operations.

2) CU or MCU is central controller, which commands the

sequence of operations for all the components.

3) Main Memory is the primary storage for storing programs

or data that are currently being used by the computer. It comes

in two forms of memory, Random Access Memory (RAM)

and Read Only Memory (ROM) [7].

4) Input Unit is a device that allows users to enter data into the

main memory. Examples are keyboard, mouse, etc…

5) Output Unit is a device that allows users to display the

results from processing. Examples are printer, monitors, etc…

6) Secondary Storage is for storing and retrieving data and

program. Examples are hard disk drive, CD, USB, tape, etc.…

7) Bus is a path by which the electronic signal (control path)

or data (data path) travels from one place to another.

In our designed model CPU will have a list of the custom

instruction set it supports. When the CPU is started, it will

read this list under the PC Master Control. The PC Master

Control then loads the program through the Control

Instruction LOADPRG, and executes a Memory Dump on

screen. Afterwards, it transfers control to the PARSE

instruction, which then executes a Register Dump on Screen

and reads the first two bytes into Cache [7]. The Master

Control scans for instructions to match the required operation

and, if found, will determine whether it needs the Cached data

byte or not. If it does, it will execute the instruction and send

the Cached data byte as a parameter. It will then update the

Program Counter accordingly and execute the instruction.

After executing the instruction, it will then output a

disassembly of the instruction on Screen. At the end of the

run, it will perform a last Memory Dump on Screen. The

following Figures 2 and 3 illustrate the flows of executions

followed by a test run with results shown in Section 3.3.

Start

Fetch instruction from

memory at Program

Counter

Fetches potential data

from memory at

Program Counter +1

and stores it in Cache

Memory

Decodes instruction

Instruction requires

parameter?

Send instruction to

A.L.U.*

A.L.U.* Processes

instructions and

updates Program

Counter

End

Send instruction and

parameter to A.L.U.*

Yes

CPU Cycle

Fetch Instructions

*Arithmetic Logic Unit

No

Figure 3

Start

Receives current

instruction

Compare instruction

with next instruction

in ROM

Instruction

matches?

Send instruction and

parameter to

A.L.U.*

End

Instruction

requires

parameter?

Send instruction to

A.L.U.*

α
No

Yes

α

CPU Cycle
Decode and Execute

Instructions

*Arithmetic Logic Unit

Figure 4

3.3 Test Runs and Results

The following sample program was written to test out the

SISC CPU. It is expressed in decimal number system and

interpreted in binary, as well as disassembled by the program

for a better appreciation. Also, it provides memory dumps

after loading and at the end of execution.

Input program file: 11 21 12 22 13 23 14 24 1 25 22 4 15 26 22 16 15 23 25 255 10 10 5 5 24 23 255

Program Loaded Ok

*** Memory dump begin ***

1 11 21 12 22 13 23

7 14 24 1 25 22 4

13 15 26 22 16 15 23

19 25 255 10 10 5 5

25 24 23 255 0 0 0

*** End of memory dump ***

Running Program...

R0:0 R1:0 R2:0 R3:0

1 LOAD 21

R0:10 R1:0 R2:0 R3:0

3 LOAD1 22

R0:10 R1:10 R2:0 R3:0

5 LOAD2 23

R0:10 R1:10 R2:5 R3:0

7 LOAD3 24

R0:10 R1:10 R2:5 R3:5

9 ADD01

R0:20 R1:10 R2:5 R3:5

10 STORE1 22

R0:20 R1:10 R2:5 R3:5

12 ADD2 15

R0:20 R1:10 R2:20 R3:5

14 STORE2 22

R0:20 R1:10 R2:20 R3:5

16 CLC

R0:20 R1:10 R2:20 R3:5

17 SEC

R0:20 R1:10 R2:20 R3:5

18 JCC 25

20 RET

*** Memory dump begin ***

1 11 21 12 22 13 23

7 14 24 1 25 22 4

13 15 26 22 16 15 23

19 25 255 10 20 5 5

25 24 23 255 0 0 0

*** End of memory dump ***

←Initial contents in R0, R1, R2, and R3 are all 0.

← Memory Location 21 contains 10, which gets loaded into R0

← Memory Location 22 also has 10, which will be loaded into R1

← Memory Location 23 has 5, which will be loaded into R2

← Memory Location 24 has 5, which will be loaded into R3

← This will add R0 and R1 and will store the result into R0

←This will store the contents of R1 into Memory Location 22

← This will add 15 to R2 and store it into R2

← This will store the contents of R2 into Memory Location 22

←This clears the Carry Flag

← This sets the Carry Flag

← If Carry Flag was clear it would jump to a STORE, which proves that the conditional

 jump JCC is operating fine on opposite condition.

Similarly, by changing the source program to have test runs on

the remaining instruction types not contained in the above test

program, we found that they all work correctly. This assures

that our designed model works as they are designed for. Note

that due to page limitation, the remaining test run results are

not shown, but they are available upon request.

4. Conclusion

In this simple model of machine architecture, we show the

basic components of a computer and the constructions of each

element. For learning purposes, we keep it simple enough for

beginners to follow easily. Once they have the concepts and a

good understanding of the basic operations, they can carry on

to expand the functionalities necessary to handle the more

complex computations. Furthermore, they can also customize

the design to meet the needs of individual applications. If

design couples with Field Programmable Gate Array (FPGA)

co-design techniques [4, 5], it may become a viable means by

which to perform complex calculations quicker than general

purpose processors. Our approach and design make use of the

fundamental concepts of digital logic. If custom-built

instructions are used, we expect the customized system to out

scale similar single- purpose computing platforms due to the

use of a smaller instruction set and embedded processors. The

model presented here is intended to be used for an

introductory course of computer architecture. More complex

features such as shared memory multiprocessors [6], parallel

and pipelining processing [2, 3] can be added when the level

of students advances.

5. Acknowledgement

We are grateful for the support of the SVSU professional

development grant for the work of this paper and the student

author would like to thank Dr. Lee for providing the resources

and encouragements. Also, our gratitude goes to Ann Garcia

for her efforts in preparing this manuscript.

References
[1] John P. Hayes, Computer Architecture and Organization,

1988, McGraw-Hill, Inc.

[2] Kai Hwang and Faye A. Briggs, Computer Architecture

and Parallel Processing, 1984, McGraw-Hill, Inc.

[3] Richard Y. Kain, Advanced Computer Architecture: A

Systems Design Approach, 1996, Prentice- Hall, Inc

[4] Tai-Chi Lee and Patrick Robinson, A FPGA-Based

Designed for an Image Compressor, International Journal of

Pure and Applied Math, Academic Publications, Volume 33

No.1 2006, pp 63-67.

[5] Tai-Chi Lee, Mark White, Michael Gubody, Allison

Nicol, Christpher Plachta, Jeremy Strawn, and Cori

Thompson, Building An FPGA-Based Computing Platform,

The Proceedings of The 2012 International Conference on

Frontiers in Education: Computer Science & Computer

Engineering, pp 522-527, July 16-19, 2012, Las Vegas, NV.

[6] Julia Lobur and Linda Null, The Essentials of Computer

Organization and Architecture, 3
rd

 Edition, 2012, Jones &

Bartlett Learning, LLC.

[7] William Stallings, Computer Organization and

Architecture: Designing for Performance, 9
th

 edition, 2013,

Person Education., Publishing as Prentice Hall.

