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Abstract  

This work emerged from an independent study project, which 

involved building a simple machine with few registers and 

limited memory that could execute a program in the machine 

language of binary code. The purpose of this project is to 

learn the basic concepts and the fundamental logic design of a 

processor, the basic machine architecture is outlined. In order 

to fully understand how an instruction set gets executed, first 

the instruction format must be well defined and with 

implemented simplicity where we only limit our instruction 

types to the minimum to reduce size of the instruction set, 

which makes it easier to follow when analyzing and 

synthesizing the functionality of various components in a 

processor.  For example, the arithmetic operations consist 

only of Addition, Subtraction, Multiplication, and Division. 

For data movement we have the Load and Store, and for 

logical operations only Compare is used. For Arithmetic 

operations only subtraction and addition are implemented. 

Multiplication and division can be achieved by repeated 

additions and subtractions respectively. Program flow control 

uses only the Jump. Furthermore, for memory management, 

we added a one-byte Cache. This project provides students 

with an easy learning experience, which is needed for their 

study at the introductory level of the computer architecture 

course, while getting a better understanding of how a 

processor works. 

  

1. Introduction  
Over the past five decades the computer industry has 

experienced enormous changes in the architectural design.  

Increases in device speed and reliability, as well as reduction 

in hardware cost and physical size have greatly enhanced 

computer performance. While major components such as 

central processing units, memories, input and output units 

which perform basic computations remain unchanged, issues 

of using cache, pre-fetch techniques, number of cores in a 

single chip, and choice of Reduced Instruction Set Computer 

(RISC) or Complex Instruction Set Computer (CISC) CPUs 

[1, 3] are debatable. Also, according to studies in the field, 

CISC CPUs do not seem to have as big an advantage as some 

thought they would have. So one variant of RISC, Small 

Instruction Set Computer (SISC) [6], being implemented in 

this project is introduced for the purpose of study as it seems 

to have less overhead for a performance advantage over CISC 

Processors. 

  

 

 

2. Constructions and Designs of Basic 

Components  

To orient the student researchers to our SISC CPU [7] for 

performance and simulation reasons for an Embedded System 

the following CPU Simulator was developed:  

1) Registers 

This SISC CPU Emulator was designed with four 

byte size registers R0, R1, R2, R3, and R0 is the 

Accumulator with the ability to have some operations 

in internal Level 1 Cache Memory with the R1 

register.  

2) Main Memory 

This SISC CPU Emulator operates with an external 

memory of 256 bytes as it is designed for embedded 

systems. 

3) Cache Memory 

This SISC CPU Emulator pre-fetches a byte in Level 

2 Cache Memory to increase performance in case the 

processor requires it as data. 

4) Buses 

This SISC CPU Emulator uses the data and memory 

buses in its design. 

5) Other peripherals 

Any peripherals that would be added to the system 

can have interfaces through the Memory Addresses 

available to the CPU.  

 

3. Instruction Set  
A Small Instruction Set is provided with support for the 

Memory, Cache Memory, and Buses, as well as the ALU 

(Arithmetic Logic Unit). 

 
3.1. Instruction Set Description  
This SISC CPU has the following Instruction Set:  

 
 
 
 
 
 
 



Mnemonic  Instruction  Length  Description.  

ADD01  00000001  1 Byte  

Add registers R0 and R1 and stores the result on R0 (The Accumulator). This 

operation also affects the Zero Flag (Whether the result is Zero) and the Overflow 

Flag (Whether the operation exceeded a Byte or not).  

ADD  00000010  2 Bytes  

Add the contents of the Accumulator (Register R0) and the data byte previously 

Cached, storing the result on the Accumulator (Register R0). This operation also 

affects the Zero Flag (whether the result is Zero) and the Overflow Flag (whether the 

operation exceeded a Byte or not).  

ADD1  00000011  2 Bytes  Similar to ADD, but for Register 1 (R1).  

ADD2  00000100  2 Bytes  Similar to ADD, but for Register 2 (R2).  

ADD3  00000101  2 Bytes  Similar to ADD, but for Register 3 (R3).  

SUB01  00000110  1 Byte  

Subtract R1 from R0 and store the result into the Accumulator (R0). The Overflow 

Flag is affected to reflect whether the result exceeded one Byte or not and the Zero 

Flag is also affected to reflect whether the result is Zero or not.  

 

SUB  00000111  2 Bytes  

Subtracts the Cached Data from the Accumulator and places the result in the 

Accumulator (R0.) The Overflow Flag is affected to reflect whether the result 

exceeded one Byte or not and the Zero Flag is also affected to reflect whether the 

result is Zero or not. 

 

SUB1  00001000  2 Bytes  Similar to Sub, but for R1.  

SUB2  00001001  2 Bytes  Similar to Sub, but for R2.  

SUB3  00001010  2 Bytes  Similar to Sub, but for R3.  

LOAD  00001011  2 Bytes  Loads the Memory Contents with Memory Address in Cache into the Accumulator. 

LOAD1  00001100  2 Bytes  Similar to LOAD, but for R1.  

LOAD2  00001101  2 Bytes  Similar to LOAD, but for R2.  

LOAD3  00001110  2 Bytes  Similar to LOAD, but for R3.  

SEC  00001111  1 Byte  Sets the Carry Flag.  

CLC  00010000  1 Byte  Clears the Carry Flag. 

SEI  00010001  1 Byte  Sets the Interrupt Flag.  

CLI  00010010  1 Byte  Clears the Interrupt Flag.  

JMP  00010011  2 Bytes  Unconditional Jump to the address pre-fetched on the Cache.  

JNZ  00010100  2 Bytes  
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Zero Flag is 

NOT set (Jump if Not Zero).  

JIZ  00010101  2 Bytes  
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Zero Flag IS 

set (Jump If Zero).  

JCS  00010110  2 Bytes  
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Carry Flag IS 

set (Jump if Carry Set).  

JCC  00010111  2 Bytes  
Conditional Jump to the address pre-fetched on the Cache. Jumps if the Carry Flag is 

Clear (Jump if Carry Clear).  

STORE  00011000  2 Bytes  
Stores the Accumulator (R0) contents into the Memory Address pre-fetched in 

Cache.  

STORE1  00011001  2 Bytes  Similar to STORE, but for R1.  



STORE2  00011010  2 Bytes  Similar to STORE, but for R2.  

STORE3  00011011  2 Bytes  Similar to STORE, but for R3.  

RET  11111111  1 Byte  Return / End.  

 

 

3.2 Configuration of Components  

The learning model presented in this paper consists of four 

major components including Processing Unit , Input Unit, 

Output Unit, and Secondary Storage (external memory), where  

Processing Unit is composed of Central Processing Unit 

(CPU)  and Main Memory (internal memory). And, CPU is 

further divided into Arithmetic/Logic Unit (ALU) and Control 

Unit or Master Control Unit (CU/MCU).  Figure 1 shows the 

configuration of the components.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

 
 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

The following describes the role of each component. 

 

1) ALU contains a number of registers, which performs all the 

arithmetic and logical operations.  

 

2) CU or MCU is central controller, which commands the 

sequence of operations for all the components. 

 

3) Main Memory is the primary storage for storing programs 

or data that are currently being used by the computer. It comes 

in two forms of memory, Random Access Memory (RAM) 

and Read Only Memory (ROM) [7].   

 

4) Input Unit is a device that allows users to enter data into the 

main memory.  Examples are keyboard, mouse, etc…    

 

5) Output Unit is a device that allows users to display the 

results from processing. Examples are printer, monitors, etc… 

 

6) Secondary Storage is for storing and retrieving data and 

program. Examples are hard disk drive, CD, USB, tape, etc.… 

 

7)  Bus is a path by which the electronic signal (control path) 

or data (data path) travels from one place to another.  

 

In our designed model CPU will have a list of the custom 

instruction set it supports. When the CPU is started, it will 

read this list under the PC Master Control.  The PC Master 

Control then loads the program through the Control 

Instruction LOADPRG, and executes a Memory Dump on 

screen. Afterwards, it transfers control to the PARSE 

instruction, which then executes a Register Dump on Screen 

and reads the first two bytes into Cache [7].  The Master 

Control scans for instructions to match the required operation 

and, if found, will determine whether it needs the Cached data 

byte or not. If it does, it will execute the instruction and send 

the Cached data byte as a parameter.  It will then update the 

Program Counter accordingly and execute the instruction. 

After executing the instruction, it will then output a 

disassembly of the instruction on Screen. At the end of the 

run, it will perform a last Memory Dump on Screen. The 

following Figures 2 and 3 illustrate the flows of executions 

followed by a test run with results shown in Section 3.3. 
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Figure 3 
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Figure 4 

 

 

3.3 Test Runs and Results 
 

The following sample program was written to test out the 

SISC CPU. It is expressed in decimal number system and 

interpreted in binary, as well as disassembled by the program 

for a better appreciation.  Also, it provides memory dumps 

after loading and at the end of execution.  

 

 

 

 



Input program file: 11 21 12 22 13 23 14 24 1 25 22 4 15 26 22 16 15 23 25 255 10 10 5 5 24 23 255  

Program Loaded Ok  

*** Memory dump begin ***  

1   11  21    12  22 13 23  

7   14  24      1  25 22   4  

13 15  26    22  16 15 23  

19 25 255   10  10   5   5 

25 24   23 255  0     0   0  

*** End of memory dump ***  

Running Program...  

R0:0 R1:0 R2:0 R3:0  

1 LOAD 21 

R0:10 R1:0 R2:0 R3:0  

3 LOAD1 22   

R0:10 R1:10 R2:0 R3:0  

5 LOAD2 23 

R0:10 R1:10 R2:5 R3:0  

7 LOAD3 24 

R0:10 R1:10 R2:5 R3:5  

9 ADD01 

R0:20 R1:10 R2:5 R3:5  

10 STORE1 22  

R0:20 R1:10 R2:5 R3:5  

12 ADD2 15 

R0:20 R1:10 R2:20 R3:5  

14 STORE2 22 

R0:20 R1:10 R2:20 R3:5  

16 CLC  

R0:20 R1:10 R2:20 R3:5  

17 SEC 

R0:20 R1:10 R2:20 R3:5  

18 JCC 25 

20 RET 

 

*** Memory dump begin ***  

1   11   21   12  22  13  23  

7   14   24     1  25  22    4  

13 15   26   22  16  15  23  

19 25 255   10  20    5    5  

25 24   23 255    0    0    0  

*** End of memory dump ***  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

←Initial contents in R0, R1, R2, and R3 are all 0. 

← Memory Location 21 contains 10, which gets loaded  into R0 

 

← Memory Location 22 also has 10, which will be loaded into R1 

 

 

← Memory Location 23 has 5, which will be loaded into R2 

 

← Memory Location 24 has 5, which will be loaded into R3 

 

← This will add R0 and R1 and will store the result into R0 

 

←This will store the contents of R1 into Memory Location 22 

 

← This will add 15 to R2 and store it into R2 

 

← This will store the contents of R2 into Memory Location  22 

 

←This clears the Carry Flag 

 

← This sets the Carry Flag 
 

 

← If Carry Flag was clear it would jump to a STORE, which proves that the conditional  

     jump JCC is operating fine on opposite condition. 

 

Similarly, by changing the source program to have test runs on 

the remaining instruction types not contained in the above test 

program, we found that they all work correctly. This assures 

that our designed model works as they are designed for.  Note 

that due to page limitation, the remaining test run results are 

not shown, but they are available upon request.  

 

 

 

  



4. Conclusion 

In this simple model of machine architecture, we show the 

basic components of a computer and the constructions of each 

element. For learning purposes, we keep it simple enough for 

beginners to follow easily. Once they have the concepts and a 

good understanding of the basic operations, they can carry on 

to expand the functionalities necessary to handle the more 

complex computations. Furthermore, they can also customize 

the design to meet the needs of individual applications. If 

design couples with Field Programmable Gate Array (FPGA) 

co-design techniques [4, 5], it may become a viable means by 

which to perform complex calculations quicker than general 

purpose processors. Our approach and design make use of the 

fundamental concepts of digital logic. If custom-built 

instructions are used, we expect the customized system to out 

scale similar single- purpose computing platforms due to the 

use of a smaller instruction set and embedded processors. The 

model presented here is intended to be used for an 

introductory course of computer architecture. More complex 

features such as shared memory multiprocessors [6], parallel 

and pipelining processing [2, 3] can be added when the level 

of students advances.  
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