
AUTOMATED SEMANTICS TREATMENT OF SEQUENCE DIAGRAM
DEFINING GRAMMAR RULES

Fahad Alhumaidan and Nazir Ahmad Zafar

College of Computer Sciences and IT
King Faisal University, Hofuf, Saudi Arabia

Emails: {nazafar, falhumaidan}@kfu.edu.sa

ABSTRACT
UML diagrams being graphical in nature have informal
semantics and it is difficult to develop automated tools for
conversion and transformation of the diagrams. Formal
methods are proved to be effective for semantics analysis
of software systems. However, usage of formal methods
is not very welcomed at early stages of software
development. Hence, linking UML and formal techniques
is needed to address the deficiencies existing in both
approaches. In this paper, an approach is developed for
transformation of simple sequence diagram by defining
grammar rules. Formal specification of the procedure is
described using Z notation by capturing hidden semantics
under the diagrams. The model is analyzed and validated
using Z/Eves tool. We believe that resultant approach will
be useful for developing automated tools for modeling
and verification of software systems.

KEY WORDS
Automation, UML Sequence diagram, semantics analysis,
grammar rules, Z notation

1. Introduction

Although UML is accepted as a de-facto standard for
development of object oriented systems but its diagrams
are graphical in nature and are prone to causing errors [1].
The hidden semantics of the diagrams allows ambiguities
at design level. For example, model in UML may have
multiple interpretations and someone may not be able to
understand what is put under the diagrams. Formal
methods having well-defined semantics are at the early
stage of development. A linkage of UML diagrams and
formal methods will enhance the modeling power by
defining semantic rules over the diagrams [2].
 There exits few work in this area because the hidden
semantics under UML diagrams cannot be transformed
easily into formal notations. In the most relevant work, a
mechanism for verifying sequence diagram is proposed by
describing event-based deterministic finite automata from
UML interaction diagram [3]. This is an interesting piece
of work which is taken as starting point. In [4], a solution
is proposed by translating UML sequence diagram

combining description logic and computation tree logic.
Statics analysis of UML interaction diagram is provided
in [5] to check the well-formed-ness of the diagram.
Jackson et al. [6], have developed Alloy Constraint
Analyzer tool for description of systems whose state
space involves relational structures. A study is presented
based on web-service composition technique for
cooperative composition modeling language [7]. An
approach is demonstrated in [8] using XML to visualize
TCOZ models into UML diagrams. An algorithmic
approach is developed to check a consistency between
sequence and state diagrams [9]. A procedure of creating
tables and SQL code for Z specifications to UML
diagrams is described in [10]. Intelligent approach of
fusion recognition is described using petri-nets and fuzzy
logic in [11]. An integrated approach is developed by
combining B and UML in [12]. Kim et al., present a
framework by integrating Object-Z and UML for
requirements elicitation by a case study [13]. A tool is
developed which takes class diagram and produces a list
of comments on the diagrams in [14]. Few other relevant
works can be found in [15-20]
 In this paper, systematic procedure for formalizing
and verifying sequence diagram is presented by defining
grammar rules. The preliminary result of this research
were presented in [21]. Advanced concepts, for example,
loops, options, alternatives and reference are not
considered. Cash withdraw from an ATM system is taken
as a case study. First of all, a model of the system is
presented using sequence diagram. Then state diagram is
created by identifying states and transitions based on the
objects and messages considering the time sequence same
as in [21]. It is noted that many states of an object may
exit in the life of an object. In the next, a mapping is
defined to develop grammar for the diagram. Formal
analysis of the transformation procedure is generalized
based on the case study using Z notation. Z is used
because it is a model oriented specification language used
at an abstract level. The Z/Eves tool is used for model
analysis because it is powerful one for analyzing the
specification. Rest of the paper is organized as:
 In section 2, transformation procedure from sequence
to state diagram is presented. Formal specification of the
procedure is described in section 3. Model analysis is
given in section 4. The work is concluded in section 5.

mailto:@ucp.edu.pk

2. Transformation of Sequence Diagram

In this section, critical analysis of sequence diagram is
provided. Then formal procedure from sequence diagram
to state diagram is presented by taking a case study of
ATM cash withdraw system. Finally, grammar is
developed to be used for further transformation.

2.1 ATM Cash Withdraw Case Study

The UML sequence diagram is used to realize details
under the use cases and shows the interaction between
objects by the roles. Sequence diagrams model messages
for analysis and design for behavior interaction. The
diagram represents messages and interactions in two
dimensions. The interaction is in horizontal dimension
whereas time is defined in the vertical line by resulting a
two dimensional model as shown in Figure 1.

u: User r: Reader d: Displayer i: Input Device p: Processor

m1: inputcard

m3: acceptcard

m5: requestPIN
m6: requetdisplay

m7: inputPIN
m8: PIN

m9: withdrawlamount

m10: requestdisplay

m11: inputamount
m12: amount

m15: money

m13: retreatcardm14: getcard

m2: !validcard

m4: stolen
c2

c1

m2: !validPIN
c4

m2: inactiveaccount
c3

m2: amountaceeds
c5

Figure 1. Sequence diagram for cash withdraw

UML sequence diagram is good modeling tool

because it provides a dynamic view showing behavior
which is not possible to extract from static system.
Another important feature is its capability to represent
parallelism between the complex components. The
sequence diagram helps to discover architectural view and
logical statements needed to define the system. Because
of good modeling approach, sequence diagrams can be
integrated easily because of the time dimension. In
sequence diagram, object interaction, sequence order,
responsibilities, functionalities and timings issues can be
easily addressed. The diagram also facilitates the
documentation at various levels of abstraction which is
not easy when it is required to create from the static part
of the system. Sequence diagram of ATM system as in the
figure for cash withdraw is presented. At first the card is
verified then PIN is entered for authentication. Finally,
the cash is withdrawn if requested amount is less than the
current balance of the customer.

2.2 Transformation Procedure

Sequence diagram in Figure 1 is transformed to state
diagram as shown in Figure 2.

m1

m2/c1
S0

S1 m3

S3 S3
m4/c2

m2/c3
m5

m6

m7
m8

S2

S4
S5

S6
S7

S8

S9
m2/c4

S9S10
m9

S11m10

S12

S13

S14

m11
m12m2/c5

S15

S16S17
S18

m13
m14

m15

Figure 2. State diagram based on sequence diagram

 In the transformation, each object may have many
states. For example, the object user has ten states and the
object reader has three states. It is noted that same
message can be executed from two different pairs of
states. For example, the message m2 is same for all the
pairs of states (s1, s2), (s1, s4), (s3, s5), (s9, s10) and
(s14, s15) which is repeated in case of failure of the
transaction. A message may have execution condition. For
example, c1, c2, c3, c4 and c5 are the message conditions.

Table 1
Mapping defining grammar for sequence diagram

Message Production

1 (S0, m1, S1, null) S0m1S1, null

2 (S1, m2, S2, c1) S1m2S2, c1
3 (S1, m3, S3, null) S1m3S3, null
4 (S1, m4, S4, c2) S1m4S4, c2
5 (S3, m2, S5, c3) S3m2S5, c3
6 (S3, m5, S6, null) S3m5S6, null
7 (S6, m6, S7, null) S6m6S7, null
8 (S7, m7, S8, null) S7m7S8, null
9 (S8, m8, S9, null) S8m8S9, null
10 (S9, m2, S10, c4) S9m2S10, c4

11 (S9, m9, S11, null) S9m9S11, null

12 (S11, m10, S12, null) S11m10S12, null
13 (S12, m11, S13, null) S12m11S13, null
14 (S13, m12, S14, null) S13m12S14, null
15 (S14, m2, S15, c5) S14m2S15, c5
16 (S14, m13, S16, null) S14m13S16, null
17 (S16, m14, S17, null) S16m14S17, null
18 (S14, m15, S18, null) S14m15S18, null

The transformation procedure from state diagram to

grammar development is listed in Table 1. In the table, the
tuple (Si, mk, Sj, cp) represents that the message mk is
executed from state Si to state Sj under the condition cp.
For every message between two different states, a
production rule is created. If there is no condition before
the execution of a message then null condition is
supposed. It is noted that S2, S4, S5, S10, S15and S18 are
final states, however, S18 is the final state after successful
execution of the procedure. Rest of all states, are failure
of the operation.

Grammar Rules
After deriving rules from the messages, as in the table,
whole set of productions is listed below. The null
productions are added for termination of the process. The
same sequence of derivations can be represented by the
derivation tree for parsing of a scenario.

S0m1S1, null; S1m2S2, c1| m3S3, null| m4S4, c2; S2;
S3m2S5, c3| m5S6, null; S4; S5; S6m6S7, null;
S7m7S8, null; S8m8S9, null; S9m2S10, c4| m9S11, null;
S10; S11m10S12, null; S12m11S13, null; S13m12S14,
null; S14m2S15, c5|m13S16, null| m15S18, null; S15;
S16m14S17, null; S17; S18

Derivation
Any possible scenario of the diagram can be derived for
validation by the above grammar. For example, the
scenario m1m3m5m6m7m8m9m10m11m12m15 can be
validated by the sequence of derivations as below:
S0  m1S1

 m1m3S3
 m1m3m5S6
 m1m3m5m6S7
 m1m3m5m6m7S8
 m1m3m5m6m7m8S9
 m1m3m5m6m7m8m9m10S12
 m1m3m5m6m7m8m9m10m11S13
 m1m3m5m6m7m8m9m10m11m12S14
 m1m3m5m6m7m8m9m10m11m12m15S18
 m1m3m5m6m7m8m9m10m11m12m15.

3. Formal Analysis

In this section, formal analysis of transformation
procedure is described using Z notation. At first, the
sequence diagram consisting of objects and messages is
specified. The time sequence is given primary importance
in specification of the diagram. Then state diagram is
created based on the sequence diagram. Finally, grammar
is developed to be useful for derivation of all possible
scenarios based on the diagram.

There can be many states of an object of sequence
diagram. Hence state is defined before specification of an
object. The state is defined by the schema, State, which
consists of three variables that is state name, start time
and end time. To declare types of name, start and end
times SName and Time are used at an abstract level of
specification in Z. A schema consists of two parts namely
definition and predicate parts. In definition part of the
schema, variables are defined whereas invariants are
defined in the predicate part.

[SName]; Time 

State
sname: Sname; stime, etime: Time

stime  etime


An object is represented by the schema Object which
consists of six components namely object name, start
time, end time, sequence of states, attributes and methods
in the diagram. It is stated that the life line of an object is
described by the start and end times variables. The object
name and attributes are declared as a set type as specified
above. The methods is defined as a partial function
between object attributes.

[OName]

[Attribute]

Object 
oname: OName
ostart, oend: Time
states: seq State
attributes:  Attribute
methods: Attribute  Attribute

states  
# states  1
 s1, s2: State s1  ran states  s2  ran states
 states 1 = s1  states # states = s2
  ostart  s1 . stime  s2 . etime  oend
i:  # states  1  i  1 .. # states - 1
 s1, s2: State
 states i = s1  states i + 1 = s2  s1 . etime  s2 . stime
input, output: Attribute input output  methods
 input  attributes  output  attributes


The message in sequence diagram is defined by the
schema Message, which consists of activation time,
condition of execution, source and target objects. The
activation time of a message is specified by the schema
ActivationTime. It is stated that the start time is less than
the finishing time of any message in the diagram. The
next variable is condition that must be true before
execution of a message. The condition has three values,
i.e., true, false or null. The value null is used to represent
that there is no triggering condition for the message. In

predicate part of the schema, time ordering of the message
is defined as an invariant.

Condition ::NULL TRUE FALSE

ActivationTime 
starttime, endtime: 

starttime  endtime


Message
ActivationTime
condition: Condition
from, to: State

from . stime  starttime  endtime  to . etime


Formal specification of the sequence diagram is
provided by the schema SequenceModel as given below.
The schema contains two components, communicating
objects and messages used in the sequence diagram. In
predicate part, it is stated that for every message there
exist two objects in the sequence diagram and vice versa.
In sequence diagram, it is less focused on messages itself
and more on the order in which these are executed. The
first message starts from the left-top and subsequent
messages are then followed following order of execution.
The message sent to the receiving object is implemented
by the receiving object.

SequenceModel
objects:  Object
messages:  Message

o1, o2: Object o1  objects  o2  objects
 s1, s2: State s1  ran o1 . states  s2  ran o2 . states
 m: Message m  messages m . from = s1  m . to = s2
m: Message m  messages
 o1, o2: Object o1  objects  o2  objects
 s1, s2: State s1  ran o1 . states  s2  ran o2 . states
 s1 = m . from  s2 = m . to


The state diagram was created from the sequence
diagram as in Figure 2. Formal specification of the state
diagram is described below by using the schema
StateDiagram which consists of five components, that is,
start state, all possible states of the diagram, messages,
transformation function and set of final states. The
definitions are given in first part and constraints are
defined in the second part of the schema.

In the predicate part of the schema, it is stated that
start state is an element of the total states of the sequence
diagram. For any message there exist two states reachable
after execution of the message. The transition function
takes a state, checks guard condition and triggers the
message by moving to the next state of the object. The set

of final states is represented by final which is subset of the
set of total states.

StateDiagram 
SequenceModel
start: State
states:  State
messages:  Message
delta: State  Condition  Message  State
final:  State

start  states
s1, s2: State s1  states  s2  states
 message: Message message  messages
 message . from = s1  message . to = s2
message: Message message  messages
 s1, s2: State s1  states  s2  states
 s1 = message . from  s2 = message . to
s1: State s1  states
 message: Message; cd: Condition; s2: State
 message  messages  s2  states  s1 cd message
 dom delta
 delta s1 cd message = s2
s: State s  final s  states

proof of StateDiagram$domainCheck
 prove by reduce

4. Model Analysis

Even formal specification of a complex system is written
in any of the formal language, it may cause potential
errors. This is because, for a moment, we don't have any
computer tool which may guarantee about complete
correctness of model of a complex system. The Z/Eves is
a powerful tool used for analyzing formal specification of
the model. The tool is integrated with various model
analysis facilities providing rigorous checking of the
system to be developed and has an automated deduction
capability.

The syntax checking, type checking and theorem
proving facilities of the Z/Eves tool are used for analysis
of the model. It is noted that syntax and type checking do
not require any interaction with the theorem proving
facility of the tool. The domain checking facility allowed
us to write meaningful properties of the system. It is
observed that domain checking of model is much harder
than the syntax and type checking of the model. Further,
the syntax and type checking are performed automatically
whereas one has to interact with the theorem proving
facility to perform the domain checking. Furthermore, we
observed that proof ‘by reduce’ was sufficient for formal
specification of this transformation procedure for domain
checking.

The schema expansion facility was used to unravel
the specification of the diagrams and procedures which

simplified the model results that were not easy otherwise
to understand the specification. Prove by reduce is used
for analyzing the formal specification. Some of the results
of the model analysis are shown in the Table 2. In the
Table, the first column shows name of the schema to be
analyzed and evaluated, the second column is for syntax
and type check, third for domain checking, fourth for
reduction facility and the last one for the proof by
reduction. The symbol Y in the table shows that all
schemas are well written by syntax and domain checking.
However the * symbol, after Y, shows that proof is done
by the reduction technique.

Table 2. Results of model analysis

Schema Name
Syntax
Type

Check

Domain
Check Reduction Proof

State Y Y Y Y
Object Y Y Y Y
ActivationTime Y Y Y Y
Message Y Y Y* Y
SequenceModel Y Y Y* Y
StateDiagram Y Y Y* Y

5. Conclusion

An exhaustive survey of existing work was performed
before starting this work. Some interesting work was
found as discussed in section I but our work is different
from others because of capturing hidden semantics under
the graphical notations. A comparison to most relevant
work is presented. For example, in [3] a transformation
mechanism from sequence diagram to event deterministic
finite automata is provided. There were two major
drawbacks in that work. Firstly, the resultant automaton is
not deterministic because there is no state for some
transitions in the automata. Secondly, the verification
mechanism does not provide full support for correctness.

This work is part of our project on formalization of
UML diagrams to be useful for software development of
complex systems [21-24]. In this paper, an approach is
developed for transformation of UML sequence to state
diagrams by removing flaws existing in the diagram. Then
grammar is developed based on the state diagram for
verifying messages and scenarios. The resultant approach
will be useful in development of automated tools for
construction and verification of software systems.
Although we have taken a simple case study but the
advantage of our approach is that a formal procedure of
transformation from UML notations to mathematical
model is described. Then algorithm is specified using Z
notation and verification is provided using Z/Eves tool.
The Z notation is used because of its abstract and
expressive power [25]. The rich mathematical notations in
Z made it possible to reason about behavior of graphical

notations. The Z/Eves is a powerful tool used to analyze
the specification [26].

In future work, the advanced concepts of sequence
diagram will be considered and complete transformation
algorithm from the diagram to formal models will be
designed. It is noted that conversion of UML diagrams to
mathematical models by synthesis of suitable notations is
our major objective. Transition diagrams, graphs,
grammar, etc. are the tools for developing the integrated
approach.

Acknowledgement

We would like to thank Deanship of Scientific Research,
King Faisal University, Saudi Arabia for their funding
support to our project on formalization of UML diagrams
for automating design and development processes in
software systems.

References

[1] Yeung, W. L., Leung, K. R. P. H., Wang, J., Dong,
W.: Improvements Towards Formalizing UML State
Diagrams in CSP, Proceedings of 12th Asia Pacific
Software Engineering Conference, Taiwan, 2005.

[2] Shroff, M., France, R. B.: Towards Formalization of
UML Class Structures in Z, 21st International Conference
on Computer Software and Applications, pp. 646-51,
1997.

[3] Chen, Z., Zhenhua, D.: Specification and Verification
of UML2.0 Sequence Diagrams using Event
Deterministic Finite Automata, 2011 Fifth International
Conference on Secure Software Integration and
Reliability Improvement – Companion, pp. 41-46, 2011.

[4] Li, M., Ruan, Y.: Approach to Formalizing UML
Sequence Diagrams, 3rd International Workshop on
Intelligent Systems and Applications (ISA), pp. 1-4, 2011.

[5] Li, X., Liu, Z., Jifeng H.: A Formal Semantics of
UML Sequence Diagram, Proceedings of the 2004
Australian Software Engineering Conference, 2004.

[6] Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: The
Alloy Constraint Analyzer, Proceedings of International
Conference on Software Engineering, 2000.

[7] Xiuguo, Z., Liu, H.: Formal Verification for CCML
Based Web Service Composition, Information
Technology Journal, 2011.

[8] Sun, J., Dong, J. S., Liu, J., Wang, H.: A XML/XSL
Approach to Visualize and Animate TCOZ, Proc. of 8th
Asia-Pacific Software Engineering Conference, pp. 453-
60, 2001.

[9] Litvak, B.: Behavioral Consistency Validation of
UML Diagrams, First International Conference on
Software Engineering and Formal Methods, 2003.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10689
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5871829
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7784
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7784

[10] Moeini, A., Mesbah, R. O.: Specification and
Development of Database Applications based on Z and
SQL, Proceedings of 2009 International Conference on
Information Management and Engineering, pp. 399-405,
2009.

[11] Shi, Z.: Intelligent Target Fusion Recognition Based
on Fuzzy Petri Nets, Information Technology Journal, 11,
pp. 500-03, 2012.

[12] Leading, H., Souquieres, J.: Integration of UML and
B Specification Techniques: Systematic Transformation
from OCL Expressions into B, Proceedings of 9th Asia-
Pacific Software Engineering Conference, 2002.

[13] Kim, S. K., Carrington, D. A.: An Integrated
Framework with UML and Object-Z for Developing a
Precise and Understandable Specification: The Light
Control Case Study. Proceedings of Seventh Asia-Pacific
Software Engineering Conference, pp. 240-48, 2000.

[14] Ali, N. H., Shukur, Z., Idris, S.: A Design of an
Assessment System for UML Class Diagram, Int'l
Conference on Computational Science and Applications,
pp. 539–46, 2007.

[15] Miao, H., Liu, L., Li, L.: Formalizing UML Models
with Object-Z, Proceedings of 4th International
Conference on Formal Methods and Software
Engineering, Springer, 2002.

[16] Mostafa, A. M., Manal, A. I., Hatem, E. B., Saad, E.
M.: Toward a Formalization of UML2.0 Meta-model
using Z Specifications, Proc. of 8th ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/ Distributed
Computing, 3, pp. 694-701, 2007.

[17] Sengupta, S., Bhattacharya, S.: Formalization of
UML Diagrams and Consistency Verification: A Z
Notation Based Approach. Proceedings of India Software
Engineering Conference, pp. 151-52, 2008.

[18] Zafar, N. A.: Modeling and Formal Specification of
Automated Train Control System using Z Notation, IEEE
Multi-topic Conference (INMIC'06), pp. 438-43, 2006.

[19] Zafar, N. A., Khan, S. A., Araki, A.: Towards Safety
Properties of Moving Block Railway Interlocking System,
Int'l Journal of Innovative Computing, Information &
Control, 2012.

[20] Sohail, F., Zubairi, F., Sabir, N. Zafar, N. A.:
Designing Verifiable and Reusable Data Access Layer
Using Formal Methods and Design Patterns, International
Conference on Computer Modeling and Simulation, 2009.

[21] Zafar, N. A., Alhumaidan, F.: Scenarios Verification
in Sequence Diagram, International Conference on
Computer and Engineering Technology, Canada, 2103.

[22] Zafar, N. A.: Event-Action Based Model for
Identification and Formalization of Relations in UML
State Diagrams, Archives Des Sciences Journal, 65(4),
2012.

[23] Zafar, N. A., Alhumaidan, F.: Transformation of
Class Diagrams into Formal Specification, International
Journal Computer Science and Network Security, 11, 289-
95, 2011.

[24] Alhumaidan, F.:A Critical Analysis and Treatment
of Important UML Diagrams Enhancing Modeling Power,
Intelligent Information Management, 4(5), pp. 231-37,
2012.

[25] Spivey, J. M.: The Z Notation: A Reference Manual.
Englewood Cliffs NJ, Prentice-Hall, 1989.

[26] Meisels, I., Saaltink, M.: The Z/Eves Reference
Manual, Version 1.5, TR-97-5493-03d, ORA Canada,
1997.

Dr. Fahad M. Alhumaidan graduated from
University of Newcastle Upon Tyne, UK.
Currently, he is working as Assistant
Professor in Information System Department
at CCSIT. He is Vice Dean at College of
Computer Sciences and Information
Technology (CCSIT), at King Faisal
University, Saudi Arabia. He is also
Chairman of Computer Science Department.

He is responsible for chairing various technical and
administrative committees at the college. His research areas
include Software Engineering, Object-oriented Paradigm,
Integration of UML and Formal Methods, Business Process
Management, Workflow Systems, Soft aspects of Information
System, E-Business, Network & Communication. He has
contributed for various funded research projects and completed
successfully by publishing the results produced in international
journals and conferences proceedings.

Nazir A. Zafar was born in 1969 in Pakistan.
He received his M.Sc. (Math. in 1991), M.
Phil (Math. in 1993), and M.Sc. (Nucl. Engg.
in 1994) from Quaid-i-Azam University,
Pakistan. He was awarded PhD degree in
computer science from Kyushu University,
Japan in 2004.

Currently, he is working as Associate Professor at the College
of Computer Sciences and Information Technology (CCSIT),
King Faisal University (KF), Saudi Arabia. He is the founder
of various research groups in the area of software engineering
and formal methods. His current research interests are
modelling of systems using formal approaches, integration of
approaches, safety and security critical systems, etc. He is an
active member of Pakistan Mathematical Society. Dr. Zafar has
lectured at national and international level promoting use and
applications of formal methods at academic as well as at
industrial level. He has also administrative experience and
qualities. For example, he has worked as Dean, Faculty of
Information Technology, University of Central Punjab,
Pakistan. He has leaded various scientific committees related
to research and academic activities.

http://portal.acm.org/author_page.cfm?id=81440601894&coll=DL&dl=ACM&trk=0&cfid=16978897&cftoken=72815154
http://portal.acm.org/author_page.cfm?id=81440623647&coll=DL&dl=ACM&trk=0&cfid=16978897&cftoken=72815154
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://doi.ieeecomputersociety.org/10.1109/APSEC.2000.896705
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7203
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4301108
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4301108
http://www.springerlink.com/content/?Author=Huaikou+Miao
http://www.springerlink.com/content/?Author=Ling+Liu
http://www.springerlink.com/content/?Author=Li+Li
http://www.springerlink.com/content/978-3-540-00029-7/
http://www.springerlink.com/content/978-3-540-00029-7/
http://www.bibsonomy.org/author/Ismail
http://www.bibsonomy.org/author/Bolok
http://www.bibsonomy.org/author/Bolok
http://dl.acm.org/author_page.cfm?id=81339527159&coll=DL&dl=ACM&trk=0&cfid=56600855&cftoken=97932989
http://dl.acm.org/author_page.cfm?id=81100376793&coll=DL&dl=ACM&trk=0&cfid=56600855&cftoken=97932989
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:mB3voiENLucC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&citation_for_view=i-SXw_0AAAAJ:mB3voiENLucC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&cstart=20&citation_for_view=i-SXw_0AAAAJ:_FxGoFyzp5QC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=i-SXw_0AAAAJ&cstart=20&citation_for_view=i-SXw_0AAAAJ:_FxGoFyzp5QC

