
Lag-based Load Balancing for Linux-based 
Multiprocessor Systems 

 
Dongwon Ok1, Byeonghun Song1, Hyunmin Yoon1, Peng Wu1,  

Jaesoo Lee2, Jungkeun Park3, and Minsoo Ryu4 
1Department of Electronics and Computer Engineering, Hanyang University, Seoul, Korea 

2The-AiO, Seongnam, Gyoenggi, Korea 
3Department of Aerospace Information Engineering, Konkuk University, Seoul, Korea 
4Department of Computer Science and Engineering, Hanyang University, Seoul, Korea 

 
 
 

Abstract - In this paper, we present a lag-based load 
balancing approach to achieve global fairness with the Linux 
CFS (Completely Fair Scheduler). Lag of each task is defined 
as the ideal CPU time it should have received minus the actual 
CPU time it has received. The proposed approach monitors 
the lag of each task at runtime and moves tasks to under-
loaded processors so that each task can bound its lag. We 
implemented the proposed approach in the Linux kernel and 
experimentally evaluated it. The results demonstrate that our 
algorithm shows significant fairness improvements. 

Keywords: Linux, Multi-core scheduling, Completely Fair 
Scheduler, Fairness, Load balancing 

1 Introduction 
  The goal of fair scheduling is to share CPU resources 
among tasks so that each task receives CPU time proportional 
to its weight. Perfect fairness is generally impossible since it 
requires infinitesimal CPU quanta for scheduling. Most fair 
schedulers can provide approximate fairness attempting to 
minimize the gap between the ideal GPS (generalized 
processor sharing) [2] scheme and their actual one. 
 Since the Linux 2.6.23 kernel release, Linux introduced 
a fair scheduler, CFS (completely fair scheduler), replacing 
the O(1) scheduler. CFS is the first fair scheduler 
implemented in general purpose operating systems. 
Previously, most operating systems such as Windows and 
earlier Linux versions provide round-robin style sharing of 
CPU resources rather than weight-based proportional sharing. 
In contrast, CFS associates each task with a specific weight 
value determined by the task’s nice value and attempts to 
assign CPU time proportionally. CFS uses the notion of 
virtual runtime to track the ratio of the actual CPU time each 
task has received and the ideal CPU time each task should 
have received. Scheduling decisions are made by finding one 
that has the minimum virtual runtime and thus CFS can 
guarantee proportional sharing of CPU time among tasks.  
 Unfortunately, CFS does not ensure global fairness for 
multiprocessor systems as Linux uses partitioned scheduling. 
Linux maintains a separate run queue for each processor and 
each run queue is scheduled by a separate CFS. Therefore, 

local fairness can be achieved by the CFS scheme on each 
processor while global fairness across multiple processors 
cannot be guaranteed by the CFS scheme. The Linux kernel 
attempts to mitigate this problem by balancing workload 
among processors, but this approach often results in 
unacceptable global fairness. 
 In this paper, we present a lag-based load balancing 
approach to achieve global fairness with CFS. We define lag 
as the ideal CPU time each task should have received minus 
the actual CPU time each task has received. Our proposed 
approach monitors the lag of each task at runtime and moves 
tasks across processors whenever their lag values seem to 
exceed a specified upper bound. By moving such tasks to 
under-loaded processors that are able to bound their lag 
values, our approach can provide global fairness on 
multiprocessor Linux systems. 
 The remainder of this paper is organized as follows. 
Section 2 describes the Linux CFS (completely fair scheduler), 
its load balancing mechanism and its limitation. Section 3 
describes the lag-based load balancing algorithm. Section 4 
concludes this paper.  

2 Completely Fair Scheduler 
  Completely Fair Scheduler (CFS) has been employed as 
the Linux scheduler since Linux 2.6.23 to provide weighted 
fairness for task scheduling. The weight of each task is the 
function of its nice value, integer value from -20 to 19, where 
a small nice value corresponds to a large weight value. Linux 
creates a separate run queue for each CPU and keeps track of 
virtual runtime for each task to represent the ratio of the 
actual CPU time the task has received and the ideal CPU time 
the task should have received. A smaller virtual runtime value 
indicates that the task has received less CPU time. 
 A red-black tree is used to find a task that has the smallest 
virtual runtime. The red-black tree places the task of the 
smallest virtual runtime at its leftmost leaf. Whenever CFS 
makes a scheduling decision, it selects the leftmost task from 
the red-black tree. 
 Let 𝑤0 be the weight of nice value 0, 𝑤𝑖  be the weight of 
task 𝜏𝑖 and 𝑃𝑃(τ𝑖 , 𝑡) be the CPU time consumed by task 𝜏𝑖 by 



time 𝑡 . The virtual time of task 𝜏𝑖  by time 𝑡  is defined as 
below. 
 

VR�𝜏𝑖,𝑡� =
𝑃𝑃(τ𝑖 , 𝑡)

𝑤𝑖
× 𝑤0 

(1) 

Note that 𝑤0  and 𝑤𝑖  are determined from nice values, as 
shown in Figure 1 taken from ``sched.c’’ in the Linux 
kernel source code. 

 

Figure 1. Mapping between nice values and weight values. 

 The main idea behind CFS is to achieve fairness by using 
virtual runtime values. However, in the current Linux kernel, 
virtual runtime values are not examined across CPUs, thus 
leading to unfairness from a global point of view. CFS 
performs weight-based load balancing to mitigate this 
problem, but this approach often results in unacceptable 
global fairness. 
 For load balancing, Linux defines the load of run queue 
as the sum of all task weights in a run queue and keeps its 
value as load in struct rq. It also specifies when to 
perform load balancing, usually every k scheduling ticks for a 
certain positive integer k in each scheduling domain. 
Scheduling domain is a set of CPUs that are managed by a 
single scheduling policy. Each scheduling domain may 
contain one or more CPU groups and each group may contain 
one or more CPUs. Linux tries to balance the load across 
CPU groups within a domain. At every scheduling tick, CFS 
checks if it needs to perform load balancing. If so, it starts 
load balancing by calling load_balance(). For each 
scheduling domain with SD_LOAD_BALANCE flag, it finds 
the busiest group by calling find_busiest_group(). 
Before finding the busiest one among the CPU groups, it 
checks again whether to proceed load balancing or not. The 
kernel performs load balancing only when the load of current 
group is sufficiently low. To do so, 
find_busiest_group() examines two cases. The first 
case is when the load of the current group is no less than the 
average load of scheduling domain. The second case is when 
the difference of the load of the current group and the 
maximum load in the scheduling domain does not exceed a 
certain imbalance value defined by imbalance_pct in 
struct sched_domain. When the load of current group 

is sufficiently low, find_busiest_group() function 
calculates the amount of load to move using the following 
imbalance metric. 
 

𝐿𝑖𝑚𝑖𝑚𝑖 = min (𝐿𝑚𝑚𝑚 −   𝐿𝑚𝑎𝑎, 𝐿𝑚𝑎𝑎 −  𝐿𝑘) (2) 

where 𝐿𝑚𝑚𝑚 is the maximum load of the busiest group in the 
scheduling domain, 𝐿𝑚𝑎𝑎 is an average load in the system and 
𝐿𝑘 is the load of the current group. Linux checks again if the 
imbalance 𝐿𝑖𝑚𝑖𝑚𝑖  is greater than twice of the smallest weight 
in the busiest run queue. If so, Linux moves tasks from the 
busiest group to the current under-loaded group. 

3 Lag-based Load Balancing 
 In this section, we propose a lag-based load balancing 
approach to achieve global fairness for CFS on 
multiprocessor hardware. The proposed approach relies on the 
notion of lag. The lag is defined as the ideal CPU time each 
task should have received minus the actual CPU time each 
task has received [1]. Suppose that task 𝜏  is runnable and 
have a fixed weight in the interval [𝑡1, 𝑡2]. Let 𝑆𝜏,𝐴(𝑡1, 𝑡2) 
denotes the CPU time that task 𝜏 receives in [𝑡1, 𝑡2] under a 
certain scheduling scheme A, and 𝑆𝜏,𝐺𝐺𝐺(𝑡1, 𝑡2) denotes the 
CPU time under the Generalized Processor Sharing (GPS) [2] 
scheme; an idealized scheduling model which achieves 
perfect fairness. For any interval [t1, t2], the lag of task τ at 
time t ∈ [t1, t2] is formally defined as 

𝑙𝑎𝑔𝜏(𝑡) = 𝑆𝜏,𝐺𝐺𝐺(𝑡1, 𝑡2) − 𝑆𝜏,𝐴(𝑡1, 𝑡2). (2) 
 
 A positive lag at time 𝑡 implies that the task has received 
less CPU time than under GPS, and a negative lag indicates 
that the task has received more CPU time than required. If all 
tasks in a run queue have positive lags, then this implies that 
the load of the run queue is relatively higher. Similarly, 
negative lags imply lower load. Let 𝑇𝑖  be the time slice that 
task 𝜏𝑖 can consume without preemption. When task 𝜏𝑖 is not 
scheduled for 𝑇𝑖 , the lag of task 𝜏𝑖 will increase by the amount 
of ∆𝑙𝑎𝑔𝑖. 
 

∆𝑙𝑎𝑔𝑖 =  𝑇𝑖 ×
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑗𝑗∈𝜱 
 × 𝑁 

(3) 

 
where 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 is the weight of task 𝜏𝑖, 𝛷 is the set of all the 
runnable tasks in the entire system, and 𝑁 is the number of 
CPUs. As the average load of the entire system is 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 =  
∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑗𝑗∈𝜱 

𝑁
 , 

(4) 

 
∆𝑙𝑎𝑔𝑖 can also be defined as below. 
 



∆𝑙𝑎𝑔𝑖 =   𝑇𝑖 ×
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑
 

(5) 

 
Since the lag increases consistently unless the task is 
scheduled, the time that the task should be scheduled can be 
calculated back from 𝑙𝑎𝑔𝑖  and ∆𝑙𝑎𝑔𝑖 . Let 𝑙𝑎𝑥𝑖𝑡𝑦𝑖  denote the 
remaining time until task 𝜏𝑖  exceeds a certain specified lag 
bound without being scheduled. The 𝑙𝑎𝑥𝑖𝑡𝑦𝑖  for any task 𝜏𝑖 is 
defined by 
 

𝑙𝑎𝑥𝑖𝑡𝑦𝑖 =  �
𝑙𝑎𝑔 𝑏𝑜𝑢𝑛𝑑 − 𝑙𝑎𝑔𝑖

∆𝑙𝑎𝑔𝑖
� . 

(6) 

 
Note that tasks tend to have large lag values in a high load run 
queue. As time progresses, the lag values of one or more tasks 
will exceed a specified bound. To avoid this, we need to 
constantly monitor the lag values and check in advance if they 
will exceed the bound or not. Specifically, whenever the 
Linux kernel makes a scheduling decision for each run queue, 
the proposed approach checks if there exist more than one 
tasks that will have zero laxity at some identical time point. If 
found, only one of those tasks remains in the original run 
queue and other tasks are moved to less-loaded run queues. 
Figure 2 shows this algorithm in flowchart where 
count_laxity_zero(τ ) checks if there exists more than one 
tasks that will have zero laxity at some identical time point, 
min_vruntime(CPU) is the value of minimum virtual runtime 
for the given CPU, and vruntime(τ) is the virtual runtime of 
the given task. 
 

 
Figure 2. Flowchart of lag-based load balancing algorithm. 

Whenever virtual runtime of the task is calculated, lag-based 
load balancing performs as follows: 

(i) Lag-based load balancing algorithm calculates 
laxities of tasks in the same run queue. 

(ii) If there are two or more tasks with laxity 0, tasks 
should be migrated. 

(iii) The algorithm scans run queues of the other CPUs in 
min_vruntime(other CPU) – vruntime(τ)  > 0. The 
virtual runtime of task τ  should be lower than the 
minimum virtual runtime of other run queue, so the 
task τ  will get chance to be scheduled right after 
migration. 

If the suitable CPU is found, move the task τ into the run 
queue of the CPU. 
 
4 Experimental Evaluation 

We conducted to evaluate proposed load balancing 
algorithm in terms of the fairness. The algorithm was 
implemented in the Linux kernel 2.6.34.13. We used 
ideal_time value, which is calculated by Linux kernel to 
measure a dynamic time slice to check preemption, as a lag 
bound. Our experiments were performed on Ubuntu 10.10. In 
order to evaluate the fairness of the proposed algorithm, we 
ran four compute-intensive tasks with different weights, 1024, 
335, 335 and 335. Let 𝐷𝑚𝑚𝑚(𝑡)  be difference in virtual 
runtime of two tasks, between the task with the largest virtual 
runtime and the one with the smallest at time 𝑡 . Since the 
virtual runtime of task has a concept of weighted CPU time, 
𝐷𝑚𝑚𝑚(𝑡)  represents unfairness; the lower 𝐷𝑚𝑚𝑚(𝑡)  is, the 
fairer the algorithm is. The experimental result represented by 
the graph in Figure 3 shows that our approach enhances the 
fairness. 
 

 
Figure 3. Comparison of 𝐷𝑚𝑚𝑚(𝑡) between legacy Linux 

2.6.34.13 and the one with lag-based algorithm. 

5 Conclusions 
 In this paper, we proposed a lag-based load balancing 
scheme to guarantee global fairness in Linux-based 
multiprocessor systems. The proposed approach introduces 
the notion of lag and provides fairness across multiple 



processors through lag-based load balancing. We also 
implemented the proposed approach in the Linux kernel and 
experimentally evaluated it. The results demonstrate that our 
algorithm shows significant improvement in terms of fairness. 
 
6 Acknowledgement 
This work was supported partly by Seoul Creative Human 
Development Program (HM120006), partly by Mid-career 
Researcher Program through NRF (National Research 
Foundation) grant funded by the MEST (Ministry of 
Education, Science and Technology) (NRF-2011-0015997), 
partly by the IT R&D Program of MKE/KEIT [10035708, 
“The Development of CPS (Cyber-Physical Systems) Core 
Technologies for High Confidential Autonomic Control 
Software”], and partly by the MSIP(Ministry of Science, 
ICT&Future Planning), Korea, under the 
CITRC(Convergence Information Technology Research 
Center) support program (NIPA-2013-H0401-13-1008) 
supervised by the NIPA(National IT Industry Promotion 
Agency). 
 
7 References 
[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. 
Varvel, “Proportionate progress: A notion of fairness in 
resource allocation,” Algorithmica, vol. 15, no. 6, pp. 600-625, 
1996. 

[2] A. K. Parekh, and R. G. Gallager, “A generalized 
processor sharing approach to flow control in integrated 
services networks: the single-node case,” IEEE/ACM 
Transactions on Networking (TON), vol. 1, no. 3, pp. 344-357, 
1993. 

[3] S. Wang, Y. Chen, W. Jiang, P. Li, T. Dai, and Y. Cui, 
"Fairness and interactivity of three CPU schedulers in Linux." 
pp. 172-177. 

[4] T. Li, D. Baumberger, and S. Hahn, “Efficient and 
Scalable Multiprocessor Fair Scheduling Using Distributed 
Weighted Round-Robin,” Acm Sigplan Notices, vol. 44, no. 4, 
pp. 65-74, Apr, 2009. 

[5] S. Huh, J. Yoo, M. Kim, and S. Hong, "Providing Fair 
Share Scheduling on Multicore Cloud Servers via Virtual 
Runtime-based Task Migration Algorithm." pp. 606-614. 


	Lag-based Load Balancing for Linux-based Multiprocessor Systems
	1 Introduction
	2 Completely Fair Scheduler
	3 Lag-based Load Balancing
	4 Experimental Evaluation
	5 Conclusions
	6 Acknowledgement
	7 References

