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Abstract 
 

The optimization of quantum computing circuitry and compilers at some level must be expressed in terms of 

quantum-mechanical behaviors and operations.  In much the same way that  the structure of conventional 

propositional (Boolean)  logic (BL) is the logic of the description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra (BA), so also the algebra, C(H), of closed linear subspaces 

of  (equivalently, the system of linear operators on (observables in))  a Hilbert space is a logic of  the 

descriptions of the behavior of quantum mechanical systems and  is a model of an ortholattice (OL).  An 

OL can thus be thought of as a kind of “quantum logic” (QL). C(H) is also a model of an orthomodular 

lattice (OML), which is an ortholattice to which the orthomodular law has been conjoined.  Now a QL can 

be thought of as a BL in which the distributive law does not hold.  Under certain commutativity conditions, 

a QL does satisfy the distributive law; among the most well known of these relationships are the Foulis-

Holland theorems (FHTs).  Here  I  provide an  automated deduction  of  one of the four FHTs from OML.  
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1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”, i.e., can be measured in 

either order, yielding the same results) and is 

isomorphic to a Boolean lattice ([10], [11], 

[19]), so also the algebra, C(H), of the 

closed linear subspaces of  (equivalently, the 

system of linear operators on (observables 

in))  a Hilbert space H ([1], [4], [6], [9], 

[13]) is a logic of the descriptions of the 

behavior of quantum mechanical systems 

(e.g., “the measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [4]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  Figure 1 shows a set of axioms 

for an orthlolattice

. 

 

 

 



 

 

 
Lattice axioms 

 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

 

A useful definition 

     1_2 = y v ((x ^ c(y)) v (c(x) ^ c(y)))  
 

 

 

where  

   x, y are variables ranging over lattice nodes 

   ^ is lattice meet  

   v is lattice join 

   c(x) is the orthocomplement of x 

   <-> means if and only if 

   =  is equivalence ([12])  

   1 is the maximum lattice element (= x v c(x)) 

   0 is the minimum lattice element (= c(1)) 

 

 

       Figure 1.  Lattice, ortholattice,  ortholattice axioms, and a useful definition. 

 

 

 

C(H) is also a model of an orthomodular 

lattice (OML; [4], [7]), which is an OL 

conjoined with the orthomodularity axiom 

(OMLaw):  

 
   y v (c(y) ^ (x v y)) =  

       x v y     (OMLaw)  

 

 

The rationalization of the OMA as a claim 

proper to physics has proven problematic 

([13], Section 5-6), motivating the question 

of whether the OMA is required in an 

adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA and its equivalents are specific to an 

OML,  and that as a consequence, banning 

the OMA from QL yields a "truer" quantum  

logic.    

 
Now a QL can be thought of as a BL in 

which the distributive law 

 

   (D)      (x v (y ^ z) =  

        (x v y) ^ (x v z))    

 

 

does not hold.  Under certain commutativity 

conditions, a QL does satisfy the distributive 

law; among the most well known of these 

relationships are the Foulis-Holland 

theorems (FHTs ([7])): 

 

 

 

 



 
   % Foulis-Holland theorem FH1 

   (C(x,y) & C(x,z)) ->  ( (x ^ (y v z)) = ((x ^ y) v (x ^ z))  ) 

 

   % Foulis-Holland theorem FH2 

   (C(x,y) & C(x,z)) ->  ( (y ^ (x v z)) = ((y ^ x) v (y ^ z))  ) 

    

      

   % Foulis-Holland theorem FH3 

   (C(x,y) & C(x,z)) ->  ( (x v (y ^ z)) = ((x v y) ^ (x v z))  ) 

 

   % Foulis-Holland theorem FH4 

   (C(x,y) & C(x,z)) ->  ( (y v (x ^ z)) = ((y v x) ^ (y v z))  ) 

  

 

  where C(x,y), "x commutes with y" is defined as 

 

         C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))   

 

Figure 2.  The Foulis-Holland theorems. 

 

 

2.0  Method 
 

The OML axiomatizations of Megill, 

Pavičić, and Horner ([5], [14], [15], [16], 

[21]) were implemented in a prover9 ([2]) 

script ([3]) configured to derive  FH3, then 

executed in that framework  on a  Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium /Cygwin operating 

environment. 
 

 

3.0  Results 

 
Figure 3 shows the proof, generated by [3] 

on the platform described in Section 2.0, 

that  FH3 is implied by an OML:  

 
 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 2.32 (+ 0.11) seconds: "Foulis-Holland Theorem 3". 

% Length of proof is 54. 

 

4 C(x,y) & C(x,z) -> x v (y ^ z) = (x v y) ^ (x v z) # label("Foulis-Holland Theorem 3") 

# label(non_clause) # label(goal).  [goal]. 

13 x = c(c(x)) # label("AxL1").  [assumption]. 

14 c(c(x)) = x.  [copy(13),flip(a)]. 

15 x v y = y v x # label("AxL2").  [assumption]. 

16 (x v y) v z = x v (y v z) # label("AxL3").  [assumption]. 

18 x v (x ^ y) = x # label("AxL5").  [assumption]. 

19 x ^ (x v y) = x # label("AxL6").  [assumption]. 

20 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

21 c(x) v x = 1 # label("AxOL2").  [assumption]. 

22 x v c(x) = 1.  [copy(21),rewrite([15(2)])]. 

23 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

67 1_2 = x v ((y ^ c(x)) v (c(y) ^ c(x))) # label("Df. 2.20").  [assumption]. 

68 x v (c(y v x) v c(c(y) v x)) = 1_2.  

[copy(67),rewrite([23(3),14(4),23(7),14(6),14(6),15(7)]),flip(a)]. 

75 x v (c(x) ^ (y v x)) = y v x # label("OMLaw").  [assumption]. 



76 x v c(x v c(y v x)) = y v x.  [copy(75),rewrite([23(3),14(2)])]. 

77 c1 v (c2 ^ c3) != (c1 v c2) ^ (c1 v c3) # label("Foulis-Holland Theorem 3") # 

answer("Foulis-Holland Theorem 3").  [deny(4)]. 

78 c(c(c1 v c2) v c(c1 v c3)) != c1 v c(c(c2) v c(c3)) # answer("Foulis-Holland Theorem 

3").  [copy(77),rewrite([23(4),23(15)]),flip(a)]. 

83 c(1) = 0.  [back_rewrite(20),rewrite([23(2),14(2),22(2)])]. 

84 c(c(x) v c(x v y)) = x.  [back_rewrite(19),rewrite([23(2)])]. 

85 x v c(c(x) v c(y)) = x.  [back_rewrite(18),rewrite([23(1)])]. 

89 x v (y v z) = y v (x v z).  [para(15(a,1),16(a,1,1)),rewrite([16(2)])]. 

98 x v (y v c(x v y)) = 1.  [para(22(a,1),16(a,1)),flip(a)]. 

99 x v (c(x v y) v c(c(y) v x)) = 1_2.  [para(15(a,1),68(a,1,2,1,1))]. 

108 x v c(x v c(x v y)) = y v x.  [para(15(a,1),76(a,1,2,1,2,1))]. 

110 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).  

[para(76(a,1),16(a,1)),rewrite([16(7)]),flip(a)]. 

113 1_2 = 1.  [para(76(a,1),68(a,1,2,1,1)),rewrite([84(13),15(7),15(8),22(8)]),flip(a)]. 

124 x v (c(x v y) v c(c(y) v x)) = 1.  [back_rewrite(99),rewrite([113(8)])]. 

133 c(x) v c(x v y) = c(x).  [para(84(a,1),14(a,1,1)),flip(a)]. 

137 c(0 v c(x)) = x.  [para(22(a,1),84(a,1,1,2,1)),rewrite([83(3),15(3)])]. 

141 1 v x = 1.  [para(83(a,1),84(a,1,1,1)),rewrite([137(6)])]. 

146 x v c(c(x) v y) = x.  [para(14(a,1),85(a,1,2,1,2))]. 

150 x v 0 = x.  [para(22(a,1),85(a,1,2,1)),rewrite([83(2)])]. 

151 x v c(y v c(x)) = x.  [para(76(a,1),85(a,1,2,1))]. 

165 x v (y v c(x v c(z v x))) = y v (z v x).  [para(76(a,1),89(a,1,2)),flip(a)]. 

196 0 v x = x.  [para(150(a,1),15(a,1)),flip(a)]. 

215 x v (c(c(x) v y) v z) = x v z.  [para(146(a,1),16(a,1,1)),flip(a)]. 

220 c(x) v c(y v x) = c(x).  [para(14(a,1),151(a,1,2,1,2))]. 

230 x v (y v c(y v x)) = 1.  [para(15(a,1),98(a,1,2,2,1))]. 

234 c(x) v (c(x v y) v z) = c(x) v z.  [para(133(a,1),16(a,1,1)),flip(a)]. 

236 c(x) v (y v c(x v z)) = y v c(x).  [para(133(a,1),89(a,1,2)),flip(a)]. 

259 c(x v y) v c(y v c(x v y)) = c(y).  

[para(220(a,1),76(a,1,2,1,2,1)),rewrite([14(6),15(5),220(11)])]. 

260 c(x) v (y v c(z v x)) = y v c(x).  [para(220(a,1),89(a,1,2)),flip(a)]. 

262 x v (y v (c(y v x) v z)) = 1.  

[para(230(a,1),16(a,1,1)),rewrite([141(2),16(5)]),flip(a)]. 

326 c(c(x) v y) v (z v x) = z v x.  

[para(146(a,1),110(a,1,2,2,1,2,2,1,2)),rewrite([215(10),165(9),146(9)])]. 

741 x v c(x v c(y v c(x v y))) = 1.  

[para(98(a,1),124(a,1,2,1,1)),rewrite([83(2),15(6),196(8)])]. 

855 c(x) v (y v (c(z v x) v u)) = c(x) v (y v u).  

[para(326(a,1),215(a,1,2,1,1)),rewrite([16(6),16(9)])]. 

3700 x v c(y v c(x v y)) = x.  

[para(741(a,1),108(a,1,2,1)),rewrite([83(2),150(2),15(5)]),flip(a)]. 

3710 x v c(y v c(y v x)) = x.  [para(15(a,1),3700(a,1,2,1,2,1))]. 

3719 x v c(y v x) = x v c(y).  

[para(3700(a,1),151(a,1,2,1)),rewrite([15(5),236(5)]),flip(a)]. 

3992 c(x v y) v c(y v c(x)) = c(y).  [back_rewrite(259),rewrite([3719(5)])]. 

4092 x v c(x v y) = x v c(y).  

[para(3710(a,1),151(a,1,2,1)),rewrite([15(5),260(5)]),flip(a)]. 

4098 x v (c(x v y) v z) = c(y) v (x v z).  

[para(262(a,1),3710(a,1,2,1,2,1)),rewrite([83(6),150(6),15(6),855(6)]),flip(a)]. 

4422 c(c(x v y) v z) = c(c(x) v z) v c(c(y) v (x v z)).  

[para(234(a,1),3992(a,1,1,1)),rewrite([14(8),15(7),4098(7)]),flip(a)]. 

4544 $F # answer("Foulis-Holland Theorem 3").  

[back_rewrite(78),rewrite([4422(10),133(7),14(3),4092(9),89(8),4092(10)]),xx(a)]. 

 

============================== end of proof ========================== 

 
Figure 3.  Summary of a prover9 ([2]) proof of FH3 from OML.  The proofs assume the default  

inference rules of prover9. The general form of a line in this proof is “line_number conclusion 

[derivation]”, where line_number is a unique identifier of a line in the proof, and conclusion is the 

result of applying the prover9 inference rules (such as paramodulation, copying, and rewriting), noted 

in square brackets (denoting the derivation), to the lines cited in those brackets.  Note that some of 

“logical” proof lines in the above have been transformed to two text lines, with the derivation 

appearing on a text line following a text line containing the first part of that logical line. The detailed 

syntax and semantics of these notations can be found in [2].  All prover9 proofs are by default proofs 

by contradiction.   

 

 



The total time to produce the proofs in 

Figure 3 on the platform described in 

Section 2.0 was approximately 2.4 

seconds. 

 

4.0  Discussion 
 

The results of Section 3.0  motivate several 

observations: 

 

   1.  FH3 is derivable from OML. 

 

   2.  The proof in Section 3.0 is, as far as I 

know, novel. 

 

   3.  Companion papers provide derivations 

of the remaining FHTs from OML, and a 

derivation of the OMLaw from an OML 

without the OMLaw, conjoined with the 

FHTs.  The union of these proofs constitutes 

a proof of the equivalence of the OMLaw 

and the FHTs within OML theory. 
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