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Abstract— The Mizar project focuses on the formalization
of mathematical theorems and their proofs using a formal
descriptive language. It is an international joint project
concerning the construction of a library system that will
make automatic verification possible by a computer. The
purpose of this study is to develops contents for distance
education programs in advanced university mathematics
using Mizar, and here we report on the current situation
of this study.
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1. Introduction
When teaching mathematical content to students who have

varying levels of knowledge and understanding, making the
material perfectly understandable without lapses in logic
can be exceedingly difficult. This is not simply limited to
the topic of logic algorithms covered in the present study.
Even if an extensive textbook were to be used, a student
would still need to make an effort to “read between the
lines," and a teacher would need to teach in accordance
with the student’s level of understanding. In addition, to
confirm and consolidate that understanding, in all likelihood,
it would also be necessary for the students solve some
part2.1 of a proof problem and completely describe the
logical steps taken. Is it truly possible for teachers to explain
the material in the text to each student individually, correct
and edit solutions submitted by all students, and follow
up according to instructions until the student’s answers are
complete? As a solution to these issues, we have been
researching and developing a system of teaching materials
that uses the formal mathematical descriptive language of the
Mizar processing system to support teachers.[1]1 Mizar is
an international joint project in which current work includes
using formal mathematical descriptive language to provide
formal descriptions of present mathematical theorems and
their proofs, thereby forming a system of automatic checking
via a computer and creating a library.[2] The authors are
participants in this project, and the system of teaching
materials introduced in this study is being developed using
the achievements of Mizar as a resource. We developed
the formalized library on the Euclidean algorithm;[3] it is
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also recorded in the Mizar Project Library and is publically
available at

http://mizar.uwb.edu.pl/version /current/html/ntalgo_1.html

These libraries store complete documentation of every single
result and proof and link all necessary theorems to the
mathematical system of axioms from which they are derived.
They are presented as self-complete libraries that use formal
mathematical descriptive language and have no need for
outside referencing. Upon clicking the “proof" button on the
webpage, every line of the proof is displayed. Furthermore,
links for the definitions of all theorems and terminology
used in each library are included, so that by continually
linking back to definitions, one can return back to the axiom
system of set theory. The Mizar system is based on Tarski-
Grothendieck (TG) set theory and first-order predicate logic.
Using a formal descriptive language based on this, Mizar
documents formal proofs of theorems and automatically
detects mistakes in a proof by using a processing system
known as the Mizar Proof Checker. Our current research
aims to set up a system of teaching materials that will
integrate both the libraries and proof checker with a general-
use CMS system.(CMS system + Mizar)[4][5][6] A group
of students used this system. We present the data and discuss
the lessons learned.

2. MANUSCRIPT PREPARATION
In the process of developing the teaching materi-

als, it is necessary to have a text where all con-
tents of the teaching materials are formally described,
their validity is expressed as mathematical propositions,
and descriptions of complete proofs are provided. The
full formal developed in this study are available at
http://mizar.uwb.edu.pl/version/current/html/ntalgo_1.html .
Because of presentational constraints, from this point on,
please refer to the above URL for details whenever “ref-
erence webpage" is mentioned. As mentioned in the In-
troduction, when clicking on the “proof" button on the
webpage, one can read the complete proof. Furthermore,
links are included for all terminology and current theorems
used in the library. In this section, we provide an overview
of how this works.[7][8] The Euclidean algorithm is a well-
known algorithm where, given two arbitrary integers a and



b, the greatest common divisor is obtained through repeated
calculation. An example implementation in Python is shown,
as Code 2-1. There are many ways to express this algorithm

Table 1: Code 2-1
def gcd(a, b):

Return the greatest common
divisor of 2 integers a and b
a, b = abs(a), abs(b)
while b:
a, b = b, a % b
return a

in formal mathematical descriptive language. A simple way
is to use the given integers a, b- to be exact, their absolute
values abs (a) and abs (b),respectively- as initial values and
then express them in terms of two successive constructive
procedures, shown below, in the form of progressions of
natural numbers.(Mizar Code 2-2) The equal to sign (=)

Table 2: Mizar Code 2-2
A . 0 = abs a
B . 0 = abs b
A . (i + 1) = B . i
B . (i + 1) = (A . i) mod (B . i)
( for all natural number i )

is a symbol literally expressing that the terms on both
sides of the sign are equal to each other, unlike in the C
programming language, where the value of the variable on
the right replaces that of the variable on the left. Thus, in
the process of finding the greatest common divisor of a, b,
we took the operating variables temporarily used to keep
the results in memory and expressed them as progressions
with subscripts that indicate the number of times the cal-
culations are successively repeated. Furthermore, to express
the stopping conditions for the aforementioned algorithm,
as well as express what equates to the return value of the
function (e.g., in a programming language) obtained when
the stopping conditions are satisfied, we introduced the set of
all subscripts “i" of the number progression B satisfying the
stopping conditions, in other words, B. i = 0 (Mizar Code 2-
3) and minimum natural number belonging to this subset of

Table 3: Mizar Code 2-3
{ i where i is natural number
such that B.i = 0}

natural numbers (Mizar Code 2-4) giving it the value “A.i0."

Table 4: Mizar Code 2-4
i0= min { i where i is natural
number such that B.i = 0}

Here i0 is the first subscript- the natural number indicating

the number of times the algorithm is repeated- to satisfy
the stopping conditions. Below is the formal expression
using Mizar language, which expresses the process for
obtaining the greatest common divisor of a, b using the
method mentioned above, by defining it as the functional
application ALGO_GCD (a, b). Reference Mizar Code 2-5.
INT and NAT, respectively, are expressions for all integers

Table 5: Mizar Code 2-5
definition
let a, b be Element of INT ;
func ALGO_GCD (a,b)
-> Element of NAT means
ex A, B being sequence of NAT st
( A . 0 = abs a \& B . 0 = abs b
\& ( for i being Element of NAT holds
( A . (i + 1) = B . i \& B . (i + 1)
= (A . i) mod (B . i) ) )
\& it = A . (min * { i
where i is Element of

NAT : B . i = 0 }));
existence (WEB page reference)
uniqueness (WEB page reference)
end;

and natural numbers. “st" is an abbreviation for “such that."
The English pronoun “it" is a natural number, and represents
ALGO_GCD (a, b) itself (in other words, what equates to the
return value of the function in a programming language). For
the above definition to be mathematically valid, the natural
number “it" satisfying the description above needs to exist
and also needs to be uniquely identified in relation to a, b;
Mizar calls these conditions “existence" and “uniqueness,"
respectively. In the formally described definition including
the proofs which show that both can be established is
necessary. This enables us to deductively prove that the
computation algorithm is feasible for any given integers a, b,
which always stops and gives some value as a return value.
This alone, however, is not sufficient to inductively prove the
validity of the above algorithm; the fact that ALGO_GCD
(a, b), defined in relation to given arbitrary integers a, b,
actually gives us the greatest common divisor of a, b is
asserted below as a proposition and is proven. Reference
ALGO_GCD.

Table 6: ALGO_GCD
theorem
for a, b being Element of INT holds
ALGO_GCD (a,b) = a gcd b
proof (WEB page reference)
end;

3. Teaching Materials and Practice
Problems

As stated in Section 1 and explained in Section 2, the
formal descriptions in



http://mizar.uwb.edu.pl/version
/current/html/ntalgo_1.html

are, similar to the definitions and theorems already in
the Mizar library, a self-complete text without the need
of outside references. Each theorem includes a complete
proof. For any referenced or applied theorems, definitions, or
terminology, links are posted to the reference source and the
system of axioms in set theory can eventually be reached by
following these links. We developed a textual commentary
on this formalized account of the Euclidean algorithm as
teaching material. This text commentary is stored in the
general-use course management system Moodle. We high-
light the substantial sections of this commentary below.

3.1 Feasibility of the Computational Algorithm
Given integers a, b, to show that the computational algo-

rithm is always feasible, proving the existence, as well as
uniqueness in relation to a, b, of natural number “it" as the
return value of the function appearing in the formal definition
Mizar Code 2-5 is necessary. For this, showing that the nat-
ural number progressions A and B satisfying the recurrence
formula (2-2 reposted) can always be constructed from the

Table 7: Mizar Code 2-2
A . 0 = abs a
B . 0 = abs b
A . (i + 1) = B . i
B . (i + 1) = (A . i) mod (B . i)
( for all natural number i )

given integers a, b is first necessary. The natural number
progressions A, B are functions to themselves from the set of
all natural numbers NAT, and the possibility of constructing
A, B depends on the proof of existence of A, B by recursive
functions based on the recurrence formula Mizar Code 2-2.
To prove the existence of recursive functions, an existence
theorem of functions, based on set theory axioms, is used. In
the teaching materials, this is formalized using the scheme
provided below, which corresponds to the recurrence formula
Mizar Code 2-2 and general recursive definitions stored in
the Mizar library. Reference Mizar Code RECDEF_2:sch 2.
In the teaching materials, a detailed explanation is provided,
mainly using the following lemma. (Mizar Code 3-1) For
practice problems, to reinforce understanding of the recur-
sive concept, a proof and description problem is given on
the existence theorem of the number progression satisfying
the recurrence formula that defines the Fibonacci sequence.

http://cai2.cs.shinshu-u.ac.jp/mizar
/moodle/mod/mizar/view.php?id=787

3.2 Stopping of the Computational Algorithm
In addition to showing the possibility of constructing (or

the existence of) the natural number progressions A, B that

Table 8: Mizar Code RECDEF_2:sch 2
scheme :: RECDEF_2:sch 2
DoubleChoiceRec{
F1() -> non empty set ,
F2() -> non empty set ,
F3() -> Element of F1(),
F4() -> Element of F2(),
P1[ set , set , set , set , set ] } :
ex f being Function of NAT,F1()
ex g being Function of NAT,F2() st
( f . 0 = F3() \& g . 0 = F4()
\& ( for n being Element of NAT holds
P1[n,f . n,g . n,f . (n + 1),

g . (n + 1)]))
provided
A1: for n being Element of NAT
for x being Element of F1()
for y being Element of F2()
ex x1 being Element of F1()
ex y1 being Element of F2()
st P1[n,x,y,x1,y1]

Table 9: Mizar Code 3-1
for a, b being Element of
INT ex A, B being sequence of NAT st
( A . 0 = abs a \& B . 0 = abs b
\& ( for i being Element of NAT holds
( A . (i + 1) = B . i \& B . (i + 1)
= (A . i) mod (B . i) ) ) )

satisfy the recurrence formula Mizar Code 2-2, it also needs
to be shown that the repeated calculation algorithm stops at
a finite number of iterations. For this, the existence of the
set of all subscripts “i" of the natural number progression B
satisfying the stopping condition B.i = 0 (2-3 reposted), as

Table 10: Mizar Code 2-3
{ i where i is natural number

such that B.i = 0}

well as the existence of a minimum natural number belong-
ing to this subset of natural numbers (2-4 reposted), must

Table 11: Mizar Code 2-4
i0= min { i where i is natural number such that B.i = 0}

be shown. For this, the well-known theorem “a minimum
element exists for a non-empty set of natural numbers" is
used. In addition, in terms of the existence itself of the set
Mizar Code 2-3, there is a formal proof based on the axiom
schema of separation in set theory. To show that this set is
not empty, we use proof by contradiction and begin with
the assumption that a natural number “i," which gives B.i =
0, does not exist. It is then shown that the natural number
progressions A, B from the recurrence formula Mizar Code
2-2 are decreasing progressions, and as a result, A.i and B.i
must have been negative values; thus, contradicting the fact
that A.i and B.i are natural numbers. In the teaching material,



this section is explained using the following lemma, (Mizar
Code 3-2) and the meaning of proof by contradiction is also

Table 12: Mizar Code 3-2
for a, b being Element of INT
for A, B being sequence
of NAT st A.0
= abs a \& B.0
= abs b \&
( for i being Element of NAT holds
(A . (i + 1) = B . i \& B . (i + 1)
= (A . i) mod (B . i))) holds
{ i where i is Element of NAT :
B . i = 0 } is
non empty Subset of NAT

discussed. For practice problems, we provided fill-in-the-
blank questions based on the description of this proof and a
proof by contradiction proof problem involving a proposition
related to simple set operations.

http://cai2.cs.shinshu-u.ac.jp/mizar
/moodle/mod/mizar/view.php?id=792

3.3 Uniqueness of the Return Value in Relation
to a, b

Under the formal definition Mizar Code 2-5, the unique-
ness of natural number “it" (the return value of function
ALGO_GCD (a, b)) in relation to a, b, comes down to its
uniqueness in relation to initial values A.0 = abs (a) and
B.0 = abs (b) of the natural number progressions A and
B satisfying the recurrence formula Mizar Code 2-2. For
this, it must be proven that the two pairs of natural number
progressions A, B1 and A2, B2, both satisfying the same
initial conditions

A1.0= abs( a), B1.0= abs(b),
A2.0= abs( a), B2.0= abs(b),

and having been constructed by the recurrence formula
Mizar Code 2-2, are consistent as functions to themselves
from the set of all natural numbers NAT- in other words, as
functions, they must satisfy verbatims A1 = A2 and B1 =
B2. To this end, it must be shown that the verbatims A1.i =
A2.i and B1.i = B2.i hold for any arbitrary natural number
“i" and that mathematical induction is used in relation to
“i." There are a number of mathematical induction schemes
stored in the Mizar library, and in the teaching material
presented here, we used the following Mizar Code 3-3
In the teaching material, commentary is provided on this
section, which includes a number of different forms of
mathematical induction. As practice problems, we provided
a fill-in-the-blank problem based on the proof in this section,
and, to ensure that students become more familiar with
mathematical induction proofs, we also provided a proof
problem involving progressions of natural numbers, with the
proposition shown here: Figure 2

Table 13: Mizar Code 3-3
scheme
NatInd{ P1[ Nat] } :
for k being Nat holds P1[k]
provided
A1: P1[ 0 ] and
A2: for k being Nat st P1[k]
holds P1[k + 1]

http://cai2.cs.shinshu-u.ac.jp/mizar
/moodle/mod/mizar/view.php?id=784

The students are asked to fill in a section of the proof in the
blank space. The system performs a check, and students can
continue studying by themselves until no errors remain.

3.4 Proving that the Return Value,
ALGO_GCD (a, b), Provides the Greatest
Common Divisor of a, b

As previously mentioned, to deductively prove the validity
of the algorithm, it needs to be proven that ALGO_GCD (a,
b), defined in terms of the given arbitrary integers, actually
gives the greatest common divisor of a, b; for this, a proof
is provided with the proposition shown below. (Mizar Code
NATLGO 1:2) The greatest common factor “a gcd b" of

Table 14: Mizar Code NATLGO_1:2
theorem
for a, b being Element of INT holds
ALGO_GCD (a,b) = a gcd b

a, b is defined in the Mizar library as follows : (Mizar
Code a gcd d) “Nat" and “Integer" are the variable forms of

Table 15: Mizar Code a gcd d
definition
let a, b be Integer;
func a gcd b -> Nat means
( it divides a \& it divides b \&
( for m being Integer st m divides a
\& m divides b holds m divides it ));
existence
uniqueness
commutativity ;
end;

natural numbers and integers, respectively. The pronoun “it"
represents “a gcd b" itself (as previously noted) and equates
to the return value of the function in programming language.
In addition, the predicate “x divides y," defined in terms of
integers x, y, is defined as follows. (Mizar Code x divides
y) To prove “ALGO_GCD (a, b) = a gcd b" of the theorem
above, it first needs to be shown that

A.i gcd B.i = A.(i+1) gcd B.(i+1)



Fig. 1: An example from the teaching material

Fig. 2: score of accuracy rate

Table 16: Mizar Code x divides y
definition
let i1, i2 be Integer;
pred i1 divides i2 means
ex i3 being Integer st i2 = i1 * i3;
reflexivity
end;

holds for any arbitrary “i" of the natural number progressions
A, B, obtained by the recurrence formula Mizar Code 2-2.
It then needs to be shown that because of this,

A.0 gcd B.0 = A.i gcd B.i

holds, and finally, when the stopping condition B.i = 0 is
satisfied,

A.i gcd B.i = A.i gcd 0 = A.i

holds. For this, we use (Mizar Code NAT_D:28) stored in

Table 17: Mizar Code NAT_D:28
theorem :: NAT_D:28
for m, n being Nat st m > 0 holds
n gcd m = m gcd (n mod m)

the library, and the lemma (Mizar Code 3-4) along with

Table 18: Mizar Code 3-4
LM6: for a being Element of
NAT holds a gcd 0 = a

mathematical induction. For this section, teaching materials



are still being created, and we are planning to include
commentary on both mod operations and various properties
of the gcd.

4. Evaluation of the Teaching Material
and Tasks for the Future

As a trial, approximately 20 undergraduate and graduate
computer science students studied and solved practice prob-
lems from the above teaching materials. Table 19 below
outlines the topic and score of the practice problems for
each subsection in Section 3. In addition, after one week, to
verify whether there is an effect on education, we conducted
a second experiment with some of the same problems
but different values as parameters. For Questions 5-7 of
subsection 3.1, we asked students to sketch a number of
simple proofs using regular mathematical expressions and
in the second experiment, the questions required knowledge
of how to express proof lines in the Mizar language. Fig.3

Table 19: Score of accuracy rate
Section Content 1st 2nd

Q.1 32.2% 100%
Q.2 43.7% 66.7%

3.1 Q.3 25.9% 85.7%
The definition Q.4 9.3% 12.5%

induction Q.5 42.8% 44.4%
Q.6 25.0% 17.4%
Q.7 26.1% 11.4%

Proof by Q.1 35% 30.8%
3.2 contradiction Q.2 25.3% 44.4%

Mathematical Q.1 50% 100%
3.3 of a recursive Q.2 66.7% 100%

function Q.3 80.0% 100%

shows that the accuracy rate of problem solving increased
for most questions, affirming the potential of the system
as an effective educational tool. For the proof-sketching
questions(3.1:5-7), students had some trouble translating
mathematical knowledge into the Mizar language, indicating
the need for a longer introductory training period for learning
Mizar expressions. As mentioned in Section 1, the novelty
of this teaching material lies in the fact that a formal
mathematical language and a processing system are used
to help students write their proofs and a computer is used
to automate the explanation of mistakes in an attempted
proof. The formal descriptive language used in the teaching
materials and practice problems of this study are for students
who are majoring in computer science or related fields, who
are already familiar with programming languages, should not
have any trouble. However, for the student who is relatively
unfamiliar with programming languages, continued efforts
are needed to lessen the burden of learning the formal
language, so that they can focus on understanding and
mastering content. In the future, considering measures such
as replacing the terminology of formal descriptions with
Japanese language might be worth.
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