
A Programmer Self-training System with Programming Skill
Evaluation and Personalized Task Recommendation

Shu Lin, Qinjian Zhang, and Wenxin Li
Department of Computer Science, Peking University, Beijing, P.R.China

Abstract— Thanks to the widespread use of computers, the
basic programming ability is becoming an essential skill
for almost all the college students. Although many current
online judge systems provide stable and efficient services
in automated programs testing [1], it seems that there is
limited help to the learners since few study suggestions is
given to them. In this case, learners may feel disoriented
during their studies. This paper aims to solve this problem
by implementing a system based on one existing platform
– Bailian, which will evaluate the learner’s programming
skills by combining three scores from different perspectives
separately, and then recommend some suitable tasks to them
according to the grades of both learners and problems.
The system also includes an automatic contest generator
to generate contests for self-testing. The quality of these
contests is guaranteed since the grades as well as the
categories of problems are considered during generating.

Keywords: Online judge system, Bailian, programming skill
evaluation, personalized task recommendation, automatic contest
generation

1. Introduction
With the advent of information era and the popularization

of computers, programming is no longer a peculiar skill
of programmers. Almost all subjects requires programming
skills – for example, we need to process large data sets or
solve complex formulas in mathematics and physics, tabulate
statistics data or predict the developing trade of some object
in social science, design and produce fantastic animations
in arts, and so on. Without programming, these jobs would
become tall orders.

Nowadays, there are many kinds of platforms designed
for helping learning programming, and the most efficient
one is called Online Judge System, or “OJ” for short. An
online judge system may contain hundreds of thousands
of problems which demand diverse ideas and techniques
to solve. A learner can practice his programming skills by
registering a new account, opening one problem and reading
its description, coding a program which does exactly what
the problems demand, and submitting the solution to the
online judge system. Because the online judge system uses
robot judges instead of humans, it will return an objective
verdict in mere fractions of seconds just after the submission.
Thus the learner is able to know whether his solution is

correct or not, and may correct the errors according to the
result [2].

However, it is far from enough for learners. Since most of
online judge systems are initially designed for programming
contests, beginners will be completely flummoxed by the
sea of problems – in another word, the green hands have
no idea where to begin. Even old hands may lose their
positions if they are not aware of their actual grades. It
happens occasionally when a learner

• Tries to solve hard problems which beyond his ability,
or

• Has solved many similar problems redundantly, which
he should not have to.

Both of them are wasting learner’s precious time.
Another flaw in most of the current online judge systems

is the utilization rate of problems is quite low. Learners
prefer to solve “famous” problems, because these problems
have been solved many times, and proved to be good ones.
Also it is easy to find lots of reference solutions for these
problems, which is really helpful once a learner is getting
into trouble. If things continue in this way, the “famous”
will become more “famous”, fewer and fewer learners show
their interest in other “infamous” problems, even some of
those “infamous” ones may be good.

In this paper, we are going to design and implement a
system that

• Evaluates programming skill of learners;
• Gives some personalized study advices (by task recom-

mendations) to learners;
• Generates contests for testing learner’s programming

ability.
The system is based on OpenJudge, an existing online judge
system maintained by Peking University.

In order to provide a better programming learning plat-
form, at first we have graded all problems according to the
levels of difficulty. We have also classified them by what
algorithm is used during solving. Then for each learner, we
determine the grade of his programming skill by the grades
as well as the classifications of solved problems. After that,
we can recommend some proper problems to the learner.
Finally, we provide a service that generates contests individ-
ually for each learner, which will test learner’s programming
skill in a more effective way.

The next section describes the current online judge sys-
tems in detail. From Section 3 to Section 7 shows the current



implementation of our system. Section 8 introduces how to
use our system. Finally, we draw a conclusion in Section 9.

2. Brief Introduction to Online Judge
Systems
2.1 General View

In a general online judge system, users need to solve
problems in the problem set. Two kinds of problem sets
are available:

• Practices: Users can solve the problems whenever they
want;

• Contests: Users need to solve the problems within the
limited time.

While solving a problem, the user reads the problem
description, picks one of his favorite programming languages
and writes a program which does exactly what the problem
demands, then submits it to the online judge system. Once
the robot judge on the system receives a program from the
user, it will test the program by some test cases to see if
it runs normally, and produces the right answer under the
problem requirements1. It takes only a few seconds. Then
the user will receive a verdict indicating the result of the
judgment.

The rules of scoring the solution vary in different sys-
tems. Many of them use the ACM International Collegiate
Programming Contest (ACM/ICPC) rules. The user gets full
score if and only if the solution produces right answers
in all test cases, otherwise, no score points received. The
submitted time and the penalty time (twenty minutes for
every previously wrong solution for that problem) is also
considered in the contests [3]. Other systems use rules that
the solution gets score points of each right answers. Some
systems even use more complicated method to calculate the
score, for example, TopCoder [4].

2.2 POJ

Fig. 1: POJ Home Page

Figure 1 shows the home page of Peking University
Online Judge System (POJ [5]). It is developed by Artificial

1Each problem has a time limit as well as a memory limit for the
programs.

Intelligence Lab of Peking University in 2003. POJ used to
be an ACM/ICPC training platform for Peking University
students only. Today, POJ is a platform not only for contest
training but also for daily practice, and it is providing
services to learners around the world.

POJ is a typical “ACM/ICPC-style” online judge system.
Most of the problems are selected from ACM/ICPC and the
ACM/ICPC rules are applied in scoring users’ solutions. As
a result, the problems might be too hard for the beginners
to start with.

2.3 OpenJudge

Fig. 2: OpenJudge Home Page

Several years ago, the POJ development team had released
a free version POJ, so that everyone can build their own
judge systems for programming related courses. However,
due to the difficulties of system configuration and lack
powerful servers to support, it does not work out fine.
Therefore, a new online judge system – OpenJudge [6] is
built for this application. Teachers or coaches can create
their own private groups on OpenJudge, and use their own
problem sets for teaching or training [7].

At present, there are over 180 active groups on Open-
Judge, including middle school hobby groups, collegiate
teaching groups, as well as many on-job programmer groups.

The problems in OpenJudge are from many different
sources: ACM/ICPC, Olympiad in Informatics for high
school students, homework of academic courses, etc. So
that learners in any grade can find suitable problems for
themselves in OpenJudge.

3. Preparation
We choose the largest public group – Bailian [8] (Means

“Hundreds of Practices” in English) group as the basic
platform to implement our system. That is because:

• This group contains the most learners among all groups;
• Everyone can join this group without any limitation;
• All problems in the problem set are public to every-

body;



• There are many easy as well as hard problems in the
problem set, meeting the needs of both beginners and
expert programmers.

So far, there are up to 2267 problems in the problem set
of Bailian. It takes nearly half a year grading and classifying
these problems manually.

3.1 Grading Problems

We have graded all problems in our system from Grade
1 to 5 according to the levels of difficulty, Grade 1 is the
easiest and Grade 5 is the hardest.

Table 1: The result of problem grading.

Grade Count Level of Difficulty

Grade 1 288 Basic programming training
Grade 2 368 Simple but fallible process
Grade 3 429 Data structures and algorithms
Grade 4 418 Algorithm analysis
Grade 5 641 Challenges for contestants
Other 123 Do not recommend

Table 1 shows the number of problems and the levels of
difficulty on each grade.

We also suggest that:
• On Grade 1, learners are going to get familiar with

programming languages as well as our system.
• On Grade 2, learners are facing problems which may be

simple but required a lot of patience. These problems
will make the learners realize that how important a
clean coding style is – nobody enjoys finding bugs in
a mess.

• On Grade 3, learners start to learn some basic algo-
rithms as well as data structures, which are important
in increasing performance of programs.

• On Grade 4, learners need to know how to analyze
advanced algorithms, for example, discuss the time
complexity and space complexity of them, or do some
mathematical deductions before solving problems.

• On Grade 5, these problems are so hard that only
recommended to the expert programmers.

• For other ungraded programs, we will not recommend
them to anyone because they are not worth solving2.

3.2 Classifying Problems

Another preparation before evaluating learner’s program-
ming skill is classifying problems by the algorithms used in
the standard solutions.

We roughly classify the problems into ten categories [9],
which are listed in Table 2.

2Sometimes the description of a problem is ambiguous, or there is
something wrong in the test data, or the problem is almost the same as
another one.

Table 2: Categories of problems.

Categories Count

Basic Practice 382
Divide-and-conquer 49
Greedy Algorithms 86
Dynamic Programming 335
Search Algorithms 306
Simulation 237
Data Structures 130
Graph Algorithms 236
Computational Geometry 131
Number-Theoretic Algorithms 252

4. Programming Skill Evaluation
through Different Perspectives

Almost every online judge system is using the same
method for calculating user’s rank: just sort the users in a
decrease order of their scores.

Though this method is quite simple, it has some disad-
vantages:

• The weight gap between easy problems and hard prob-
lems is too small, especially in ACM/ICPC scoring
rules (no difference at all). In this case, many users
will prefer to solve easier problems in order to raise
their rank quickly. There is no benefit to improving
their programming skill.

• Some users practice hard and have solved a lot of
problems, but always get bad scores in contests; other
users seldom practice programming on the system, but
often perform well during contests. In this method, the
previous ones are better, but apparently the truth is to
the contrary.

• Users only need to concentrate on solving their prob-
lems, though helping others is also a good way to
improve their programming skill. There is no reward
mechanism for contribution.

In our evaluation system, we evaluate learner’s program-
ming skill in three independent perspectives: accumulation,
challenge, and contribution. The result of evaluation is much
more accurate and it encourages learners to do things which
are more useful.

4.1 Accumulation Score

We still calculate accumulation score by adding the
weights of solved problems. However, these weights are
quite different from previous ones – they are related to how
many times the problems have been solved. The fewer times
a problem has been solved, the higher weight it will have,
and vice versa. In addition, we want to enlarge the weight
gap between easy problems and hard problems. Then the
learners may be led to challenge harder ones.

The problem weights are calculated by Function 1.

W (x) = max (100− 10 log2(x), 1) (1)



Where x is the times the problem has been solved. The
image of it is shown in Figure 3.

Fig. 3: The Image of W(x)

4.2 Challenge Score

Challenge score is designed for evaluating learner’s per-
formance during the contests. It can also make the contests
more competitive, and contestants will gain more experience
from it.

In our system, learner’s challenge score gained in a contest
can be calculated as follow:

CALCULATE-SCORE(CONTEST)
1 user ← {users joined in contest ordered by rank}
2 N ← length(user)
3 for i← 1 to N
4 do score[i]← previous score of user[i]
5 � Discard contests which few users join in
6 if N < 10
7 do exit
8 for i← 1 to N
9 do point[i]← −99i+100N−1

N−1

10 for i← 1 to N
11 do for j ← 1 to i− 1
12 do if score[i] > score[j]
13 do point[i]← point[i]− 1
14 sum← 0
15 for i← 1 to N
16 do sum← sum+ point[i]
17 for i← 1 to N

18 do score[i]← score[i] + 10·N ·point[i]
sum

The function for calculating point on Line 9 is linearly
related to the rank of contestants, and the champion will get
100 points, the last one will get only one point.

For each contestant, his point will decrease by the number
of players who perform better than him in this contest but
have lower challenge score before this contest. The code
from Line 10 to Line 13 is dealing with the process.

The final challenge score a contestant received is cal-
culated on Line 18. It ensures that the total challenge
scores received in a contest is ten times of the number
of contestants. Notice that someone may “gain” negative
challenge score due to his extremely awful performance
during the contest.

To avoid losing challenge score, contestants will pay more
attentions in contest. Everyone will try his best to compete,
making the contest becomes a rat race, which is good for
every contestants.

4.3 Contribution Score

We also encourage programming learners to help others or
even make contributions to the development of our system by
giving them contribution score. It gives the learners a sense
of accomplishment, which will push them to study harder.
We always believe that, only when a learner can be able to
teach or test others, does he really mastery the knowledge.

We provide three different ways of contribution, from easy
to hard:

1) Write short but critical hints for the solved problems;
2) Share the studying experience with others by giving a

public lecture;
3) Set some new problems for coming contests.

5. Grading Programming Ability
We make use of the result of problems grading and

classifying to grade the learners’ programming ability. The
accumulation, challenge, and contribution scores are also
take into account.

We divide the learning process into three phases:
1) The main task at Phase 1 is practicing more, and

learning new skills.
2) Once the learner holds lots of knowledge in hand, he

may start to join contests frequently, in order to raise
the ability of programming under pressure.

3) After programming for several years, the learner may
become an expert. Then he is encouraged to show his
talent in helping others.

6. Personalized Task Recommendation
The other important service provided by our system is

personalized task recommendation, which can be important
study advices for learners.

Before recommend problems to a learner, we first examine
into the problems solved by him to determine which grade he
is on. On each grade, a learner is required to solve enough
number of problems of the same grade for each category.
Once the requirement is met, the learner will upgrade.

After determined the learner’s grade, we find some suit-
able tasks for recommendation using the algorithm:



TASK-RECOMMENDATION(USER)
1 solved← {problems solved by user}
2 grade← previous grade of user
3 recommended← {previous recommendation}
4 while solved meets the requirement on grade
5 do grade← grade+ 1
6 recommended← {}
7 recommended← recommended− solved
8 while length(recommended) < 5
9 do problem← select(grade, recommended)

10 Insert problem into recommended

The function “select(grade, recommended)” on Line 9 will
select a problem randomly from problem set which:

• It has not been solved by the learner yet;
• Its grade is equal to the learner’s grade;
• Its category is not appeared in previous recommended

problems.
These limitations ensure that, the recommended problems
are suitable for the learner according to their difficultness,
and we will not give two or more similar problems to the
learner at the same time.

In addition, we put the recommended problems on a
striking position – on the right side of Bailian home page
(see Figure 4). Thus, it will remind the learners to solve
these problems all the time.

Fig. 4: Bailian Home Page

7. Automatic Contest Generator
A regular contest provides a platform for contestants to

enjoy competing with each other. However, it requires new
problems, which is hard to get. And the result of the contest
contains no useful guideline for testing what learners have
already learned, because at most time, the problems are
either too easy or too hard for them.

We also implement an automatic contest generator for
generating private contests for learners. Unlike a regular
contest, a private contest is only available for a particular
learner. The only opponent in a private contest is the learner
himself. And we do not need to worry about having no new
problems, since the problem set of Bailian is so large that we
can always find some suitable unsolved problems for only
one learner.

The process of problems selection is quite similar to the
one in problem recommendation. However, in private con-
test, eight problems of different categories will be selected
instead of five, and two of them come from the next grade
– to see if the learner is ready for upgrading. The result of
the private contests will be recorded.

The automatic contest generator is used for not only
testing oneself but also generating examinations for course
teaching. Teachers may simply input the expected number
of problems, the average difficultness of problems, and then
press “OK” – a suitable exam is born. It will save teacher’s
time from problem selection, and make the resource of
problems be fully used.

8. Directions for Using Our System
At present, our system provides 2267 problems for users.

Thousands of active users and hundreds of active groups are
using our system for programming learning or teaching or
something related.

We are pleased to give some brief instructions to both
learners and teachers who want to experience the services
on our system.

8.1 Directions for Learners
As a learner who is going to start your way of program-

ming learning on our system, you need to
1) Register a new account on OpenJudge [10].
2) Join in Bailian group by clicking “Join in” on the home

page of Bailian [8].
After that, you are able to see the “My Status” column on the
right side of the page, including evaluation scores of your
programming skill as well as recommendations. Now you
can practice yourself by solving recommended problems, or
generate a contest for self-testing.

8.2 Directions for Teachers
As a teacher who decides to use our system on your

course, you are required to
1) Register a new account on OpenJudge.
2) Send a Request for creating a new group to the

webmaster of OpenJudge [11]. You will received a
reply from the webmaster soon.

3) If your request is accepted by OpenJudge, you will
see a new private group under your full control. You
can arrange the problem set, contests, and users in this



group freely. And you can use the automatic contest
generator as many times as you want.

4) You need to ask your students to join in this group
first, or they will have no access permissions on the
resource in it.

9. Conclusion
The evaluation and recommendation system and the auto-

matic contest generator we have implemented make a great
improvement on the original Bailian group. The purpose is
to provide a more suitable programming learning platform
for learners at all levels. Learners can be able to studying
programming on our system by themselves. As well, they are
encouraged to exchange their experience and ideas during
learning. And the system can be applied in any programming
related courses.

There is still room for improvement in our system. For
example, grade problems in an automatic way. Although the
result of classifying a problem’s category is quite unanimous
among most experienced programmers, the grade of the
problem may be controversial. That is because the difficulty
of the problem depends on subjective judgments from dif-
ferent people. In this case, we need to do more research
on automatic problem grading to make the grades more
objective and forcible.

We also plan to evaluate the actual effectiveness of our
system by tracking learner’s behavior. We will collect the
feedbacks from learners as well as the records of learner’s
actions, in order to figure out how much has the system
changed in learner’s programming learning.

We are welcoming programming learners from all over the
world into our system for studying programming. And we
are also looking forward to seeing more and more teachers
are using our system in their courses.

References
[1] Wikipedia. (2013) Online judge - Wikipedia, the free encyclopedia.

[Online]. Available: http://en.wikipedia.org/wiki/Online_judge
[2] S. S. Skiena, M. A. Revilla, Programming Challenges, 2003 ed. New

York, USA: Springer, 2003.
[3] ACM/ICPC. (2013) World Finals Rules. [Online]. Available: http:

//icpc.baylor.edu/worldfinals/rules
[4] Topcoder. (2012) Algorithm Competition Rating System. [On-

line]. Available: http://apps.topcoder.com/wiki/display/tc/Algorithm+
Competition+Rating+System

[5] (2013) The POJ website. [Online]. Available: http://poj.org/
[6] (2013) The OpenJudge website. [Online]. Available: http://openjudge.

cn/
[7] OpenJudge. (2013) About. [Online]. Available: http://openjudge.cn/

about.html
[8] (2013) The Bailian website. [Online]. Available: http://poj.grids.cn/
[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to

Algorithms, 3rd ed. Cambridge, USA: MIT Press, 2009.
[10] OpenJudge. (2013) Register. [Online]. Available: http://openjudge.cn/

register/
[11] OpenJudge. (2013) Create New Group. [Online]. Available: http:

//openjudge.cn/groups/new

http://en.wikipedia.org/wiki/Online_judge
http://icpc.baylor.edu/worldfinals/rules
http://icpc.baylor.edu/worldfinals/rules
http://apps.topcoder.com/wiki/display/tc/Algorithm+Competition+Rating+System
http://apps.topcoder.com/wiki/display/tc/Algorithm+Competition+Rating+System
http://poj.org/
http://openjudge.cn/
http://openjudge.cn/
http://openjudge.cn/about.html
http://openjudge.cn/about.html
http://poj.grids.cn/
http://openjudge.cn/register/
http://openjudge.cn/register/
http://openjudge.cn/groups/new
http://openjudge.cn/groups/new

	Introduction
	Brief Introduction to Online Judge Systems
	General View
	POJ
	OpenJudge

	Preparation
	Grading Problems
	Classifying Problems

	Programming Skill Evaluation through Different Perspectives
	Accumulation Score
	Challenge Score
	Contribution Score

	Grading Programming Ability
	Personalized Task Recommendation
	Automatic Contest Generator
	Directions for Using Our System
	Directions for Learners
	Directions for Teachers

	Conclusion
	References

