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Abstract — Social media has grown rapidly in the past few 
years. Facebook, Twitter, LinkedIn, and many other social 
media sites contain public and confidential information about 
their users. In order to protect the users’ privacy, social 
network graphs are anonymized before being published or 
released to a third party for data mining or statistical analysis. 
Many social network anonymization models have been 
proposed, each with different assumptions and settings 
regarding the information that needs protection and possible 
privacy attack scenarios. The ultimate goal of all the 
anonymization models is to preserve the privacy of the social 
network’s users and, at the same time, preserve enough 
information to enable a good analysis of the social network. In 
this work, we study how well we can preserve the important 
features in a social graph, specifically the nodes’ influence in 
the network (as quantified by influence spread measures) while 
preserving privacy with different anonymization models. 

I. INTRODUCTION 

As with other types of data (microdata, streams, location-
based data etc.), social network graphs can be subjected to 
an anonymization process, before the social network data 
can be publicly released; the goal is to ensure the privacy of 
the social actors. Up until now, there are no standard models 
and algorithms for social network anonymization. Various 
solutions have been developed in the recent past, for 
different problem settings. Different anonymity approaches 
vary in their assumptions about: data available about the 
social actors and their relationships; private information that 
needs protection; background knowledge of an attacker [15]. 
Consequently, different anonymity models and methods to 
achieve them have been created corresponding to these 
problem settings. The resulting anonymized networks are 
very dissimilar, and so is the extent to which they preserve 
information inherent in the original network. For example, 
recent studies investigated how structural properties such as 
diameter, centrality measures, clustering coefficients, and 
topological indices are preserved between the original 
networks and their anonymized versions [14]. In this paper, 
we investigate how influence is preserved in social networks 
that undergo an anonymization process. Influence modeling 
has been studied with applications in understanding 
information diffusion, viral marketing ([6]), outbreak 
detection in networks ([9]). Influence spread was modeled 
and analyzed so that to find a small set of nodes in a network 
such that: their overall influence in the network is 
maximized (viral marketing), or they are able to detect most 
effectively the spreading of a process over a network 

 
* Department of Computer Science, Northern Kentucky University, USA 
{campana1, alufaisany1}@nku.edu 

. 

(outbreak detection). We used two distinct anonymization 
approaches to mask several real and synthetic social 
networks: k-anonymity for social networks ([3]), which can 
be enforced on a network by using the Sangreea algorithm, 
and k-degree anonymity, enforced by the Fast K-Degree 
Anonymization algorithm ([11]). We measured and 
compared influence spreading in the original networks and 
in the anonymized networks. For networks masked with 
Sangreea, we had to do de-anonymization prior to 
measuring influence: this to make comparison with the 
original networks feasible, as we will explain later. 

The paper is structured as follows. Next section reviews 
the two models we used for social network anonymization: 
k-anonymity and k-degree anonymity, and their respective 
anonymization methods. Section 3 presents our approaches 
to de-anonymize networks masked with Sangreea. We 
describe in Section 4 the influence spread measure we 
analyzed and the method we used to approximate influence. 
Section 5 describes how we measure influence preservation 
between an original network and its anonymized / de-
anonymized version. Section 6 describes our experimental 
setup and results. The paper ends with conclusions. 

II. ANONYMITY MODELS FOR SOCIAL NETWORKS  

K-degree anonymity was proposed for protection against 
identity disclosure due to attacks that use background 
information about nodes’ degrees. A social network modeled 
as a simple graph G = (N, E), where N is the set of nodes and 
E is the set of edges, is said to be k-degree anonymous, for a 
given k value (5, 7 etc.), if for every node X in N, there are at 
least k-1 other nodes with the same degree as X [10]. Lu et. 
al. proposed in [11] an efficient solution for enforcing k-
degree anonymity on social graphs: FKDA (Fast K-degree 
Anonymization Algorithm). FKDA works by trying to 
anonymize groups of at least k nodes in one step. Nodes to 
be next in an anonymized group are selected in decreasing 
order of their degree, among the nodes which haven’t been 
yet anonymized in previous steps. The anonymization 
consists in wiring new edges to nodes in the group, until all 
have the same degree, equal to the largest degree in the 
group at the beginning of the step. Wiring is attempted with 
nodes with smaller degrees than the highest one in the group, 
and which haven’t therefore been put through anonymization 
before. If anonymization cannot be achieved for a group by 
following this procedure, a more relaxed wiring is allowed, 
which can destroy the anonymity of nodes processed in 
previous steps (then, the whole process is re-started). We 
used FKDA for enforcing k-degree anonymity. 
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K-anonymity for social networks, introduced in [3], can 
protect against identity disclosure and against content (or 
attribute) disclosure. According to this model, both the data 
and the structure associated to nodes are anonymized such 
that a node becomes undistinguishable from at least k-1 
other nodes in the network. The key to the anonymization 
process as applied by Sangreea consists in clustering the 
nodes into a partition with sets of cardinality at least k, and 
which are as similar as possible to each other in terms of 
their attributes and their neighborhoods. Nodes in each 
cluster are merged into a supernode in the masked network. 
For each supernode, there is some information that will be 
released: its cardinality (is k or greater), the number of edges 
internal to the cluster, and the generalized attribute values 
describing all nodes in the cluster. Connectivity information 
between supernodes is also released: for each pair of 
supernodes, a weight representing the number of edges with 
ends in the two clusters is published. Sangreea can be geared 
towards preserving more the attributes of the nodes or the 
structure of the graph, by using two user defined parameters. 
We used Sangreea to take into account only the structure of 
the network, and not the nodes’ attributes. 

A network masked with Sangreea will obviously have a 
number of supernodes at most the size of the original 
network divided to k. Such an aggregated network cannot be 
fairly compared w.r.t. influence preservation with the 
original network or the FKDA anonymized network. To be 
able to inspect how influence is preserved through Sangreea 
anonymization, we need to execute an extra-step: we try to 
reverse the anonymization process and create a replica of the 
original network. We called this process de-anonymization. 
De-anonymization is implemented based on the information 
packaged in the aggregated network and assumes certain 
statistical distribution of the nodes’ degrees. The de-
anonymization process is described next. 
 Let G = (N, E) be an initial social network and MG = (MN, 
ME) be a corresponding k-anonymous social network 
masked with Sangreea, where MN  = {Cl1, Cl2,…, Clv}, and 
Clj = [gen(clj), (|clj|, |Eclj|)], j = 1..v. This anonymized 
network was built based on a partition S = {cl1, cl2, … , clv} 

such that = N; cli  clj = ; of the node set N, 

 i, j = 1..v, i  j; where nodes were grouped such that nodes 
within every cluster cli were as similar to each other as 
possible w.r.t. their attributes and neighbors. The 
corresponding masked social network MG = (MN, ME) has: 
 MN = {Cl1, Cl2,…, Clv}, node Clj corresponds to cluster 

clj  S and is described by a “tuple” gen(clj) (the genera-
lization information of clj, w.r.t. quasi-identifier attribute 
set) and an intra-cluster generalization pair (|clj|, |Eclj|); 

 ME  MN   MN ; (Cli, Clj)  ME iif Cli, Clj  MN  and 
  X  clj and Y  clj, such that (X, Y)  E. Each 
generalized edge (Cli, Clj)  ME is labeled with the inter-
cluster generalization value |Ecli,clj|.  
For both anonymity models, we make the assumption that 

nodes’ identities are released, as follows. For k-degree 

anonymity, we assume that identities of the nodes are 
released together with those nodes’ degree in the 
anonymized network; for example, nodes John, William, and 
Mary have an anonymized degree of 4 – in this example, we 
assume k to be 3, therefore each group of nodes with the 
same degree has cardinality at least 3. We will call these 
groups of nodes with the same anonymized degree 
anonymity clusters. Obviously, for random networks, the 
anonymity clusters will contain a rather large number of 
nodes from N. However, for scale-free networks, it is 
expected that anonymity clusters for large degree values will 
have cardinality close to k, while anonymity clusters for 
small degree values will still have large cardinality. 

For k-anonymity for social networks, we assume that the 
identities of the entities in each supernode are disclosed; for 
example, the supernode Cli in the 3-anonymous network 
consists of the nodes John, William, and Mary. In this 
model’s case, each supernode is an anonymity cluster.  

These assumptions about nodes’ identities are not against 
the definitions of the two models, nor do they weaken the 
models’ strength. These assumptions are necessary; 
otherwise a masked network would be unusable, for 
example, for viral marketing. Identifying, even accurately, 
the most influential nodes in an anonymized network would 
be useless if the nodes were unidentified, since they could 
not be targeted with different promotions without knowing 
who are the people represented by those nodes. 

III. DE-ANONYMIZATION FOR SANGREEA NETWORKS 

We used two procedures to de-anonymize a network masked 
with Sangreea to try to reconstruct the original social graph 
G. Each one of these two procedures assumes a certain type 
of degree distribution for the nodes in the original network.  

The first de-anonymization method, uniformReconstruct, 
is based on the assumption that the node degrees, and 
therefore edges in the graph, are uniformly distributed 
among nodes. uniformReconstruct will then randomly 
reconnect with edges nodes that belong within each cluster, 
and then nodes in every pair of clusters. We are omitting the 
algorithm for uniformReconstruct due to space constraints. 

Many real-world networks do not have a uniform 
distribution of the nodes’ degrees. Instead, they are scale-
free, and their node degree distribution follows a power-law. 
Our second de-anonymization method, rmatReconstruct, is 
based on this assumption about node degree distribution. We 
use an R-MAT generation procedure ([4]) to de-anonymize 
an anonymous network MG = (MN, ME). 
 
Algorithm rmatReconstruct is 
Input: MG = (MN, ME) – a k-anonymous social 

network for G = (N, E) 
MN  = {Cl1, Cl2, ... , Clv}, where Clj has 
cardinality |clj|, and the identities of 
the nodes in clj  N  are known (*) 
ME  MN  MN  and each edge (Cli, Clj) 
ME has a weight |Ecli,clj|, which is the 
number of edges in E (Cli x Clj) 

Output: G’ = ( N, E’) a de-anonymized network with 
the same node set as G and |E’| = |E| 

 vj jcl
,1



 
 

 

Set the adjacency matrix of G’, AM’, to be the 
zero matrix; this is equivalent to E’ = ;  
For every Clj  ME do: 
 count = 0 
 While count < |clj|: 

Use rmatEdgeGeneration on the restriction 
of AM’ to the rows & columns representing 
nodes in clj to generate a random edge 
(X,Y): X,Y  clj, X  Y, (X,Y) E’ 
E’ = E’  {(X,Y)} 
Update AM’ to reflect the newly added edge  
count++ 

For every (Cli, Clj)  ME do: 
 count = 0 
 While count < |Ecli,clj|: 

Use rmatEdgeGeneration on the restriction 
of AM’ to the rows & columns representing 
nodes in cli  clj to generate a random edge 
(X,Y): X  cli, Y  clj, (X,Y) E’ 
E’ = E’  {(X,Y)} 
Update AM’ to reflect the newly added edge  
count++ 

End uniformReconstruct; 
 
Algorithm rmatEdgeGeneration is 
Input:  An adjacency matrix AM  

Parameters a, b, c, d: a + b + c + d = 1 
Output: A (row, column) location in AM, chosen 

according to parameters a, b, c, d, that 
indicates a new edge (X,Y) to be added 
to the graph represented by AM. 

If AM has a single row and column:  
Return that position in the matrix  

 

Generate a random number r, in range [0, 1]. 
Divide AM in 4 equal-size partitions, top-left, 
top-right, bottom-left, and bottom-right 
If r < a: 

rmatEdgeGeneration(top-left, a, b, c, d) 
Else If r < a + b: 

rmatEdgeGeneration(top-right, a, b, c, d) 
Else If r < a + b + c: 

rmatEdgeGeneration(bottom-left, a, b, c, d) 
Else: 

rmatEdgeGeneration(bottom-right, a, b, c, d) 
End rmatEdgeGeneration 

Note (*): we explained before why we assume that the 
identities of the nodes in the original network that belong to 
each supernode in MN are known for the corresponding 
released k-anonymous network MG = (MN, ME). 

The R-MAT procedure takes 4 probabilities, called a, b, c, 
d as input parameters, where a + b + c + d = 1. It works on a 
submatrix of the adjacency matrix of G’ which is: a 
restriction of it to a cluster (to generate internal edges in that 
cluster), or a restriction of it to two clusters (to generate 
inter-cluster edges). rmatEdgeGeneration recursively 
determines the location of a new edge in this matrix: the 
algorithm divides the adjacency matrix into 4 equal-sized 
partitions and the location of the new edge is 
probabilistically selected in one of the 4 locations, based on 
the 4 probability parameters. Once a partition is found, it is 
again divided into 4 sub-partitions until there will be only 
one location left in the partition. If an edge was already 
placed on that location, we will repeat this procedure from 

the beginning (multiple edges between the same pair of 
nodes are not allowed in our graph model). For all our tests 
we used the following values for the 4 probabilities: 0.45, 
0.15, 0.15, and 0.25. This choice seems to model better 
many real-world graphs that follow power-law degree 
distributions [4]. As explained in [4], this generation 
technique will create 2 large well-connected “communities” 
in the graph: one among the nodes in the first “half” of the 
node set (the top-left quadrant in the adjacency matrix), the 
other among the nodes in the second half of the node set (the 
bottom-right quadrant in the adjacency matrix). Edges are 
created with higher probability among nodes in those 
respective halves, since parameters a and d are higher. The 
two communities are more loosely connected, as decided by 
the lower probabilities b and c that command the placement 
of edges between nodes belonging to different halves. The 
process is repeated recursively in each quadrant such that 
larger communities are divided in smaller and smaller 
communities. 

Since we need a symmetric adjacency matrix to reflect 
that our social network graph is undirected, the adjacency 
matrix produced with rmatReconstruct is finally processed 
once more. The matrix entries above (or below) the main 
diagonal are discarded and the other half is copied over it to 
make it symmetric. Since parameters b and c are equal, the 
number of edges that result by applying this transformation 
is fairly equal to the number of edges in the uncut matrix. 

IV. INFLUENCE IN SOCIAL NETWORKS 

Influence spreading, or propagation, has been studied in a 
number of fields for a while now: sociology, viral marketing 
([6], [8]), outbreak detection in networks ([9]). The linear 
threshold influence model (LTM) and the independent 
cascade influence model (ICM) are among the most used 
models for influence spreading ([8]). Influence models are 
used in solving the influence maximization problem: given a 
network and a parameter k, find a set of k nodes in the 
network that, when activated, can spread their influence to 
more network nodes than any subsets of nodes of size k. 
Please note that k in this context has a different meaning, 
totally unrelated, from k as in k-anonymity. 

We chose to use the LTM for influence spreading, and the 
degree-discount algorithm ([5]) for determining the subset of 
nodes that could maximize the spread of influence.  

Under LTM, a social network is modeled as a directed 
graph, G = (N, E). Note: the two anonymity models we are 
studying both employ undirected graphs; we cope with this 
difference between the influence model and the anonymity 
models by simply considering each undirected edge in the 
anonymity models to be equivalent to two directed edges 
between the same nodes, when computing the spread of 
influence. Each node in G can be either active or inactive. 
Nodes that are active (i.e. have adopted a product or 
embraced a new idea) can further activate other nodes, 
which are currently inactive. Each node is influenced in a 
certain degree by each one of its neighbors. The influence 



 
 

 

that a node w exerts over its neighbor node v (this means that 
(w, v) is a directed edge in E) is denoted by bv,w where bv,w 
0 and ∑ b୴,୵ ൑ 1୵	୧ୱ	ୟ	୬ୣ୧୥୦ୠ୭୰	୭୤	୴ . A choice for the weights 

bv,w for a node v is 1 / |N v|, where N v = {w  N, (w, v)  E} 
is the set of all nodes in N that are connected to v through 
edges pointing to v. This means that all v’s neighbors have 
the same influence on v. Each node v chooses an activation 
threshold  v, uniformly at random from the interval [0, 1]; 
the node v will become active when the overall strength of 
all its active neighbors passes its threshold. In other words, v 
will become active when ∑ ܾ௩,௪ ൒ ,௩	௢௙	௡௘௜௚௛௕௢௥	௔	௜௦	௩௪ߠ

௪	௜௦	௔௖௧௜௩௘
. The 

randomness in choosing the activation thresholds of the 
network nodes models our lack of knowledge regarding how 
susceptible to influence are the social actors in a network. 

Given randomly selected thresholds for all nodes in G, and 
a set of initially active nodes S (= the seeds), the activation 
process proceeds in steps. In each step, the previously active 
nodes remain active, and inactive nodes that have enough 
active neighbors will be activated as well. The spreading 
process stops when no further nodes can be activated. 

The influence maximization problem can be stated as 
follows. If (A) denotes the expected number of nodes that 
will be influenced if the set A is initially activated, find the 
set of seeds S, of size k, that has the maximum influence in 
the network. This set, called the seed set, is a solution for the 
optimization problem max஻⊆ே   .ሻ, such that |B| = kܤሺߪ

Kempe et al. showed in [8] that finding the optimum seed 
set under the LTM is NP-hard. They also proposed a greedy 
algorithm that is able to find an (1-1/e) approximation of the 
optimum solution; i.e. the solution found by the greedy 
algorithm will be at least 63% of the optimal one. This result 
is based on two significant properties that the influence 
function () has been proven to have: () is monotone and 
submodular (see [8] for definitions and proofs).  

This greedy algorithm for the influence maximization 
problem has unfortunately a drawback, its efficiency. We 
therefore chose to use a different algorithm for the influence 
maximization problem, which is based on heuristics and has 
been proven to reduce the running time by more than six 
orders of magnitude ([13]). Chen et al. proposed the degree 
discount heuristic for estimating the most influential nodes 
in a network. Selecting a seed set based on the degree 
discount heuristics has been shown to be very efficient and 
to achieve, under the ICM, an influence spread almost as 
large as the one produced by the greedy algorithm; for other 
influence models (LTM included), degree discount has been 
said to have an improved performance compared to other 
heuristics, such as the pure degree heuristic. 

Under the degree discount heuristic, the best k seeds for 
initial activation in the network are selected as follows. The 
selection proceeds in k steps, in each step a new seed is 
chosen, that has the highest discounted degree among the 
nodes not chosen yet. The discounted degrees of the nodes 
are initially, before the first selection is made, equal to the 
actual degrees of the nodes. After each seed selection, the 
discounted degrees of the nodes that are neighbors of that 

seed are decremented by 1. This alteration reflects the basic 
idea that it is not worth it to make a seed (i.e. initially active) 
a node that already has seed(s) in its neighborhood; this 
because that node will be potentially activated by the 
neighboring seeds, and then it will itself further spread its 
influence to its inactive neighbors. 

V. MEASURING INFLUENCE PRESERVATION 

In our experiments, we compared influence for the seed sets 
of the original social networks with seed sets of the 
corresponding FKDA anonymized network and the de-
anonymized Sangreea networks. We describe next how the 
comparison can be performed, taking into consideration the 
point of view of a user attempting to do marketing targeted 
to the most influential nodes in an anonymized network. 

Assume a user disposing of a budget for promoting 
products or services to p% of the network nodes. Of course, 
they would want the nodes they target to be the most 
influential in the network. Let’s first assume the network 
they have has been anonymized with Sangreea. They can 
de-anonymize this network and determine the k most 
influential nodes in the de-anonymized network, where k is 
chosen to be a certain percentage of the network size. How 
is the k value to be chosen? k cannot be |N | * p / 100, for the 
following reason. When we de-anonymize a network, we use 
information that we recorded during anonymization about 
the composition of each cluster: what node IDs belong to 
which cluster. However, the nodes within a cluster are 
anonymous and cannot be distinguished from each other, so 
a node restored from cluster clj = {Xj

1, Xj
2,…, Xj

|clj|} with id 
Xj

r will not necessarily be the same one that was identified 
by Xj

r in the original cluster; it could instead be anyone of 
the other nodes assigned to cluster clj. This further means 
that if Xj

r is determined as one of the seeds in the de-
anonymized network, any one of the nodes in its cluster 
could actually be the real influential node, not necessarily 
Xj

r. Therefore, someone who wants to be sure they do not 
miss the real influential node(s) in a cluster containing a 
seed / seeds will have to basically target all the nodes in that 
cluster. 

To stay in the allowed budget, one has to find less than or 
at most equal to p% most influential nodes. One would first 
search for the p% most influential nodes. If they happen to 
populate exhaustively their clusters, then the process would 
stop. If however, and this is much more likely, the clusters 
containing seeds also contain other nodes, one has to reduce 
the target percent, repeat the seed set determination, and 
check if they are in the allowed budget. The process will 
stop at the first p*% found for which pcl

s
s 


||100*

*
N

S , 

where S* is the seed set with cardinality |N | x  p* / 100, and 
cls is the cluster containing the seed s. In our experiments, 
we computed p* as follows: we started with p* being equal 
to p; we then found the most influential p*% nodes in the 
anonymized network; next, we determined the set of all 
nodes found in clusters containing seeds, 

 *
*)(

S
S 

s
sclT - we call this set the targeted set; if its 



 
 

 

size is greater than the budget of |N | x  p / 100 nodes, then 
p* is reduced to 0.95 x p*; this adjustment process is 
repeated until the targeted set fits into the budget. 

Once the seed set S* is found, we can estimate and 
compare the spread of the most influential p% nodes in the 
original un-anonymized network, with the spread of the 
targeted set T(S*). The loss incurred by targeting the nodes 
in  T(S*) instead of targeting the most influential p% nodes 
in the original network can also be computed as

*))(( - )( SS Tloss  , where σ is the influence function 

defined under LTM and S is the seed set of size |N | * p / 100, 
determined in the original network. σ is computed for both 
T(S*) and S in the original network. The loss measure 
represents the estimated number of nodes that can be 
reached when activating S but cannot be reached when 
activating T(S*). Theoretically, loss should be a positive 
measure, since S is the most influential set that could be 
found by the degree discount procedure; this set is obviously 
not the optimum solution for the influence maximization 
problem, but it is very likely to still be better than T(S*). 

The algorithm we used to estimate the spread of influence 
in a network, for an initial set of active seeds, under LTM, is 
based on a Monte-Carlo simulation. 
 

Algorithm estimateSpread is 
Input:  G = (N, E)  and a set of seeds S  N  
Output: An estimate of (S) in G 
R = 10000; spread = 0; 
For i = 1, R do: 
 Select random thresholds for nodes in G 

Perform a LT spread simulation in G, with 
seed set S; let count be the number of nodes 
activated in that simulation 
spread += count 

Return spread/R 

End estimateSpread. 
 

For Sangreea, loss can be computed as the difference 
between the result of estimateSpread(G, S) and that of 
estimateSpread(G, T(S*)). For FKDA networks, the loss in 
influence due to anonymization can be computed similarly 
as for Sangreea, with a modification: when determining p*% 
and the seed set S*, the targeted set T(S*) is computed as   

.   

Since every seed in the FKDA anonymized network is 
undistinguishable from the other nodes in the network with 
the same degree, when a seed is selected in S*, all nodes 
with the same degree should be targeted, to be sure that the 
true influential node is targeted. Compared to Sangreea, the 
clusters of anonymous nodes that FKDA creates are the 
subsets of nodes in G’ with the same degree. Once T(S*) and 
S are determined, loss could be again computed as the 
difference between the result of estimateSpread(G, S) and 
that of estimateSpread(G, T(S*)).  

VI. EXPERIMENTS AND RESULTS 

We study influence preservation (with degree discount) in 
the original, anonymized (for FDKA), and de-anonymized 
(for Sangreea) versions of three datasets. 

The Enron dataset is a network of email exchanges 
available online at [7]. It is an undirected network with 
36,692 nodes and 183,831 edges. Each node in this network 
represents an email address. And edge exists between two 
nodes if at least one email was sent from one node to the 
other from that edge. The Random dataset is synthetically 
generated using the Erdos-Renyi random network model [1] 
using the social network analysis program Pajek [12]. We 
used as input parameters for the social network generator 
10,000 nodes and an average vertex degree of 20. The 
resulting network has 100,314 edges. The ScaleFree dataset 
is an undirected network generated based on the scale-free 
model [13]. This approach models real world social 
networks that follow a power-law degree distribution [2]. 
We generated this dataset using Pajek with the following 
parameters: the number of nodes 10,000, the average degree 
of nodes of 33, the number of nodes in the initial Erdos-
Renyo graph 10. The generated graph has a significant 
number of multiple edges which were eliminated in a post-
processing step. The final scale-free network that we used in 
experiments had 10,000 nodes and 152,909 edges. 

The flow of our experiments is shown in Figure 1. This 
experimental framework consists of 6 steps. We start from 
the initial social networks (Enron, Random, and ScaleFree) 
previously described. First, the initial social networks are 
anonymized into k-anonymous social networks, using FKDA 
(step 1a) and Sangreea (step 1b) as described in Section 2. 
For each dataset we used the following values for k: 2, 3, 4, 
5, 6, 7, 8, 9, 10, 15, 20, 25, and 50. Second, from each k-
anonymous Sangreea network we generated two de-
anonymized social networks, one following the Uniform de-
anonymization strategy (step 2a) and the other the R-MAT 
de-anonymization strategy (step 2b). The need for 
performing de-anonymization on Sangreea networks was 
explained in Section 2. In Step 3, we computed the seed set S 
of the most influential p% nodes in the original networks, 
where p has values 2, 4, 6, 8, 10. In Step 4, we computed the 
seed set S* of the most influential p*% nodes in the FKDA 
networks and the de-anonymized Sangreea networks, where 
p* is computed as described in section 5 for p values 2, 4, 6, 
8, 10. Each of these sets S* have the corresponding T(S*). In 
Step 5, we also consider random selections for the seed sets 
in the original networks, denoted by Srandom, for the same p 
values 2, 4, 6, 8, and 10 – 5 random seed sets of each size, 
for each of the networks. In Step 6, we compare the 
influence of seed sets S, T(S*), and Srandom: the influence of 
these seed sets in the original network is estimated using the 
estimateSpread procedure, and is reported as a percentage of 
the network size. Since we generated 5 random seed sets for 
each original network, the influence determined in those 
cases is averaged. 

Figures 2 a-f show the results of steps 5 and 6, for the 
Random, ScaleFree, and Enron datasets.  

For the Random network, FKDA preserved reasonably 
well the spread of influence (Figures 2 a-b). The only 
situation where FKDA dropped rapidly is when p = 8 and k 
was 25 or 50 (not shown here). The reason for that behavior 
is that the targeting set T(S*) kept decreasing by 5% of its 
size multiple times, until its size reached 578 nodes with 
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k=25 and 581 nodes with k=50 – by comparison, the size of 
the seed set for the original network was 800 (= 8% of 
10000). Any significant difference in the size of the 
targeting set, compared to the current p% budget size, will 
definitely decrease the spread of influence for the targeted 
set; this happens regardless of the anonymity model. In this 
particular case, for k=25 and k=50, the size of the targeted 
set before the final 5% reduction might have been just a little 
bit over 800, and the last 5% adjustment was too drastic. 
With Sangreea R-MAT(Reconstruct), the spread of influence 
was well preserved especially when k got larger. Sangreea 
Uniform(Reconstruct), on the other hand, was the weakest in 
influence preserving, which indicates that it is not worth it to 
de-anonymize Sangreea networks with the Uniform 
algorithm for any random network. 

For the ScaleFree network (Figures 2, c-d), FKDA and the 
original networks have almost identical spread of influence 
for all p values. Sangreea de-anonymization with R-MAT 
and Uniform have the same spread of influence until the 
anonymity parameter k reaches 10, for 2% the size of the 
seed set, and until k reaches 7, for the remaining p values. 

For Enron, FKDA preserved well the most influential 
nodes with all the p values (similar behavior was recorded 
for the p values 4 and 8, which are not illustrated here).  

However, R-MAT and Uniform de-anonymization for 
Sangreea have a similar behavior for all p values: the spread 
of influence decreased almost linearly, with p. In all these 
cases R-MAT had much better results than Uniform. 

So, overall, FKDA preserved well the spread of influence 
in all networks. De-anonymized Sangreea networks weren’t 
as good as FKDA networks, except for the Random network, 
where R-MAT over performed FKDA in about ½ of the 
cases. But always R-MAT behaved better than Uniform, even 
for the Random network. We also noticed that the random 
selection of the seed set didn’t preserve the most influential 
nodes in any of the networks. 

After all, the preservation of the spread of influence under 
the user’s point of view assumption is almost entirely 
dependent on the purity of the anonymity clusters w.r.t. the 
most influential nodes in the network. If anonymity clusters 

 

 

do not contain any residual nodes, meaning T(S*)-S* is close 
to , then S* is as big as the p% budget, and only real 
influential nodes are targeted. That would really ensure 
preservation of spread of influence compared to the original 
un-anonymized network. The question about the 
preservation of the influence spread is now reduced to how 
pure are the anonymity clusters produced by Sangreea or 
FKDA (purity from the point of view explained before). The 
FKDA anonymity clusters are induced by the groups of 
nodes anonymized together, which are nodes that have 
similar degrees. For high degrees, the FKDA anonymity 
clusters are small, since there are few nodes with high 
degrees, especially in scale-free networks. For smaller 
degrees and scale-free networks, the FKDA anonymity 
clusters could be bigger – and the chance of them becoming 
impure grows. On the other side, the degree discount 
procedure identifies the most influential seeds to be, more or 
less, the nodes with the highest degrees. Therefore, the most 
influential nodes will correspond to the anonymity clusters 
with the highest node degree, which are, as we discussed, 
small; their size should be about k, where k is the anonymity 
parameter, as in k- degree anonymity. Since we just look for 
p% of the most influential nodes, with p having small values 
in general, this means we never reach to the anonymity 
clusters with low node degree values, which could be larger 
than k and impure. Since the principle based upon which 
FKDA anonymizes nodes is so similar to the principle based 
upon which degree discount finds the most influential nodes, 
clearly the FKDA anonymity clusters, at least the ones that 
will be considered within the p% budget, tend to be very 
pure, for scale-free networks. For random networks, where 
nodes are more uniform in terms of their degrees, the FKDA 
clusters are not that pure anymore; this is reflected in smaller 
influence preservation scores. Only for the Random network 
had FKDA much smaller influence preservation; for Enron 
and ScaleFree, FKDA’s influence preservation was almost 
100%. For Random though, FKDA had in 2 cases smaller 
preservation compared to Sangreea R-MAT (for p: 2, 10). 

Sangreea attempts to put together in a supernode some of 
the original nodes that have the same neighbors, as much as 
possible. This could go somewhat against the way the degree 
discount procedure identifies the most influential nodes, and 
therefore it is expected to get more impure anonymity 
clusters compared to the ones created by FKDA. Also, in 
Sangreea’s case, more error is added to the one introduced 
by the anonymization itself, due to the de-anonymization 
process. As expected, Sangreea followed by R-MAT or 
Uniform de-anonymization will not preserve influence 
spread as well as FKDA.  

VII. CONCLUSIONS 

Anonymization models have been used to ensure the 
privacy of social networks. A conflicting goal with 
maintaining the privacy of a network’s information is the 
preservation of the structural properties of the social 
network. The goal of this work was to investigate whether 
we can preserve privacy in social networks using 
anonymization  techniques  and  in  the  same  time  preserve   
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Fig. 2. Influence spread of most influential  6% (a, c, e) and 10% (b, d, f) nodes in the original network vs. influence spread of targeted sets T(S*) of size 
6% and 10% in the FKDA Anonymized and the De-anonymized Sangreea networks – for the Random (a, b), ScaleFree (c, d), and Enron (e, f) networks 

enough information to allow a good analysis of the 
properties of the social graph. We looked at how an 
influence spread measure changed between the original and 
the anonymized networks. FKDA had a better preserving for 
the spread of influence, compared with Sangreea R-Mat and 
Uniform. When comparing R-Mat and Uniform, the 
experiments showed that R-Mat is a stronger approach than 
Uniform – in the sense that better reconstructs the original 
networks, without disclosing information, but preserving 
well the influence spread from the original networks. This 
was to be expected at least for the scale-free networks, but it 
was also true for random networks; the explanation can be 
that, for small values of k that correspond to small clusters to 
be reconstructed, R-Mat and Uniform reconstruction produce 
sub-graph structures that are not very different, and therefore 
have similar influence spread. The better preservation of the 
spread of influence in FKDA’s case comes with a cost: 
FKDA is a much weaker model for preserving privacy than 
Sangreea is. An attacker with knowledge about the 2-radius 
neighborhood of a target node could still reidentify his target 
in an FKDA network, if the target’s 2-radius neighborhood 
has some unique feature. Sangreea’s privacy preserving is 
stronger: an attacker won’t be able to breach the privacy of a 
Sangreea network based on any structural properties 
knowledge. 
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