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Abstract— Query suggestion plays an important role in
search engines which helps to improve user experience by
suggesting related terms. Conventional query suggestion
methods usually employ pair-wise contextual correlation
evaluation or complete sequence matching. However, when
confronted with a long or newly appeared sequence, these
methods cannot guarantee satisfied performance. This paper
presents a novel query suggestion method to solve this
problem. We first evaluate the similarities between current
query sequence and each sequence in the training set, then
calculate the transition probabilities from each sequence to
its subsequent query. We can calculate relevance of each
candidate query to the current query sequence with these
interim results and retrieve the most relevant candidates for
suggestion. We evaluated our method against four commonly
used methods with a dataset from a commercial search
engine. The experimental result shows that our method
provides more relevant suggestion queries and offers better
recall and precision.
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1. Introduction
Search Engines help users retrieve interesting documents.

But users often input too few keywords [1] [2] and contain
insufficient information for search engines to understand
their intention. This is because users usually do not have
a clear concept about what they want, or they use improper
words to describe it. Besides, the polysemy phenomenon
of words also makes it more difficult to get the exact user
requirement.

Query suggestion technology solves these problems by
suggesting several related query candidates to users accord-
ing to their input queries, assisting them to use proper
keywords to describe their search intents, and reducing the
search attempts unnecessary.

There are two steps in query suggestion process: query
candidates extraction, and contextual correlation evaluation.
Query candidates can be extracted from both documents
and query logs. When selected from documents, we often
choose terms co-occurred with the current query in high
ranked documents [3] [4]. This method suffers from high
complexity, and the queries input by users is not employed
to refine the candidates. While selected from query logs [5]

[6] [7] [8], the advantages include: representing the intent
of user directly, reflecting the modification process of user
input queries, querying log data concisely, being easier to
analysis, etc.

After selection, we need to rank the candidates in order
to provide users with several of the most relevant ones,
where similarity evaluation method plays an important role.
There has been many researches on evaluating the corre-
lation between query and its candidates, such as by user
information [9], user feedback [10] [11] [12], arch [13],
content [14], user intention [15], etc. Some methods evaluate
the correlation between two queries by constructing bipartite
graph with click-through data, existing user queries, and the
clicked URLs [2] [6] [16] [17]. Other methods, like [18], use
queries, URLs, terms to evaluate the correlation between the
query and terms in document. Because the query log are very
sparse, only a few popular queries link to a few high ranked
URL and most URL has no query associated.

The rest of this paper is organized as follows. Section
2 discusses related works. In Section 3, we proposed our
algorithm. In Section 4, we compared our method with three
other existing methods, and demonstrate the experimental
results. At last, we drew conclusions in Section 5.

2. Related Work
Many methods use session to cluster queries and generate

query candidates [5] [19] [20] [21]. These methods need
to define and identify the session [22] [23], then cluster
queries with sessions and other property, such as content
[24], submit time [25] [26] [27], clicked URL [28], searching
topic [28], etc.

Yanan Li, et al [29] use query trace graph to calculate tran-
sition probability of queries and obtain candidates according
to the probabilities. [30] improved this method with time
information. However, both of the methods only calculate
the transition probability of consecutive query pairs. The
scarcity of taking all the prefix sequence into consideration
lead to a decreasing precision in recommending queries with
a long sequence.

Qi He, et al [31] proposed a new method to generate
candidates. They first use the training set to generate Mixture
Variable Memory Markov model, then select the candidate
based on the resemblance between the user input query
sequence and historical query sequence models retrieved
from search engine logs.



In [31], a statistic shows that 34.34% of session patterns
(specialization, generalization, parallel movement, and oth-
ers) is related to the order of query session. To find out
the relation between the length of sequence and the ses-
sion pattern, we employed similar categories and performed
similar experiments for each of the length from 2 to 5.
The session set we used contains 2,000 unique sessions.
Figure 1 illustrates a similar result from that in [31], which
shows that 34.34% of session patterns are related to the
order of query session (spelling change, generalization, and
specialization). Figure 1 support the following observations:
as the session length increases, roughly the proportion of
specialization pattern tends to decrease, the proportion of
parallel movement pattern tends to increase, the generaliza-
tion pattern stays low, and the proportion of other patterns
keeps fluctuating.

Fig. 1: Relationship between session length and session
patterns

In our approach, we follow the idea of retrieving query
candidates from query logs for its effectiveness and high
efficiency. Some methods, such as variable memory Markov
model [31], if cannot find completely matching sequence,
will discard the head of sequence and try to match the rest.
For example, if sequence [q1, q2, · · · , qi−1] cannot be found
in the training dataset, they remove its first element and
try again to match the remaining sequence [q2, · · · , qi−1].
However, according to Figure 1, relying only on com-
plete sequence matching is not enough. Also, we need to
consider the order of elements in the sequence, for the
similar sequence may also provide contextual information
for subsequent query suggestion. Instead of complete se-
quence matching along, our approach searches all the sim-
ilar sequences, and measure the correlation between query
sequences with similarity measures. Early researches showed
that the usage of N-gram model tends to increase accuracy
[31]. We also use this method and generalize it to suit the
circumstance of variable length sequence - query transition
probability.

We propose a novel method based on query sequence
similarity and transition probability. Our method first cal-
culate the similarity between input query and existing query

sequences in the training set, then calculate the transition
probability from each query to their subsequent query. After
accumulating the products of each pair of similarity and
transition probability to a certain subsequent query, the
recommendation score of it can be obtained. According to
these scores, we list the most contextual related queries to
the input query as candidates.

3. Algorithm
3.1 Notation and Problem Statement

Let Q be the set of unique queries, Q = {q1, · · · , qn}, S
be the set of distinct sequence formed by elements in Q, S =
{S1, · · · , Sm}, where Si = [qi1, · · · , qij , · · · , qik], qij ∈ Q.
For example, a user u may input query “computer”, “DELL
computer”, “DELL OPTIPLEX 755”, “DELL OPTIPLEX
755 price” sequentially. The query sequence of user u is
Su, Su = [q1, q2, q3, q4], q1 is “computer”, q2 is “DELL
computer”, and q3 is “DELL OPTIPLEX 755”, etc.

The problem of query suggestion is to recommend can-
didate queries to users based on their historical query se-
quence. This process can be divided into 3 steps: (1) calcu-
late the similarity between current user‘s input sequence and
the sequence in the training set; (2) calculate the transition
probability from a given query sequence to a query (both of
them are in the training set); (3) for each candidate query
in the training set, accumulate the products of each pair
of sequence similarity and the transition probability to this
query, so we can obtain the queries with the highest score
as suggested queries. In the following sub-sections, we will
elaborate each step in detail.

3.2 Similarity of Sequence
Many measures can be adopted to calculate the similarity

of two sequences, such as Cosine Distance, Jaccard Co-
efficient, Hamming Distance, Minkowski Distance (includ-
ing Manhattan distance and Euclid distance), Levenshtein
Distance, Damerau-Levenshtein Distance, etc. Among these
measures, Cosine Distance and Minkowski Distance do
not concern about position information; Hamming Distance
only evaluates the distance between the sequences with
the same length and only adopts substitution operation;
Levenshtein Distance has no transposition operation; Only
Damerau-Levenshtein Distance, which is a special type
of edit distance, has insertion, deletion, substitution, and
adjacency transposition operation, which often been used
by search engine users to modify their original input query
strings. Besides, we have two other considerations: first,
when two pairs of query sequences have same length, the
longer common sequence the pair of query sequence has, the
higher similarity it has; second, when two pairs of sequence
have common sequence of the same length, the pair of
sequence with the larger length has the lower similarity.
Based on the above-mentioned considerations, we define the



similarity between two query sequences based on Damerau-
Levenshtein Distance as:

sim(sa, sb) = 1− (DL(sa, sb)/MaxLen(sa, sb)) (1)

where sim(sa, sb) is the similarity between sa and sb,
DL(sa, sb) is the Damerau-Levenshtein Distance between
sa and sb, and MaxLen(sa, sb) is the length of the longer
sequence of sa and sb. The range of this similarity measure
is [0, 1] and a larger value means the two query sequences
are more similar. Similar to [24], we set the threshold to 0.4,
which means we regard the two sequences having a similar-
ity less than 0.4 as completely irrelevant sequences and do
not choose those sequences for the further calculation.

3.3 Transition Probability from sequence to
query

By analyzing query logs, we can observe one query
sequence may be followed by different queries, while dif-
ferent query sequences may lead to the same subsequent
query. This can be depicted in a sequence-query bipartite
graph with vertices representing query sequences and their
subsequent queries.

The bipartite graph can be constructed with the following
approach: (1) First, segment and extract sessions from
query log, then convert each session into a query sequence;
(2) For each sequence, we extract each possible pair of
sub-sequence and subsequent query. Supposing we have
the sequence [q1, q2, q3, q4, q5]. It can be decomposed
into the following 10 sequence-query pairs, with each
of them having an occurrence weight of 1: 〈[q1] , q2〉,
〈[q1, q2] , q3〉, 〈[q1, q2, q3] , q4〉, 〈[q1, q2, q3, q4] , q5〉,
〈[q2] , q3〉, 〈[q2, q3] , q4〉, 〈[q2, q3, q4] , q5〉, 〈[q3] , q4〉,
〈[q3, q4] , q5〉, 〈[q4] , q5〉. (3) Search each of the pairs in the
bipartite graph. If the sub-sequence or its subsequent query
does not exist, we add this node in the graph. Then we
attempt to add an edge to connect the sub-sequence node
to the subsequent query node with the weight of 1; but if
both of them are already in the bipartite graph, we simply
increase the weight of their edge by 1. A brief algorithm
of the bipartite graph construction process is formalized as
below.

Algorithm 1: Query sequence subsequent query bipartite
graph construction
Input:
T : Session training set.
Output:
G: Sequence-query transition probability bipartite graph.
Notation:
s: Session sequence in training set.
ls: Length of sequence, i.e. the number of queries in session
s.
node [s]: Node of sequence s.
node [q]: Node of query q.

edge 〈s, q〉: Edge from sequence s to query q.
φ 〈s, q〉: Weight of the edge from sequence s to query q.
for each s in T

for i = 0, . . . , (ls − 2)
for j = 2, . . . , ls − i

for k = i, . . . , j + i− 2
retrieve [qi, · · · , q(j + i− 2)] as query sequence
retrieve q(j+i−1) as subsequent query
if node

[
qi, · · · , q(j+i−2)

]
not exist in G

add node
[
qi, · · · , q(j+i−2)

]
to G

if node
[
q(j+i−1)

]
not exist in G

add node
[
q(j+i−1)

]
to G

if edge
〈[
qi, · · · , q(j+i−2)

]
, q(j+i−1)

〉
not exist

in G
add edge

〈[
qi, · · · , q(j+i−2)

]
, q(j+i−1)

〉
to G

φ
〈[
qi, · · · , q(j+i−2)

]
, q(j+i−1)

〉
= 0

φ
〈[
qi, · · · , q(j+i−2)

]
, q(j+i−1)

〉
++

return G
In the bipartite graph, each sequence node is connected to

multiple subsequent queries by edges. That means, for a user
whose current query sequence matches a certain one in the
training set, this graph provides us with his possible choices
for the next query. The transition probabilities indicate these
possibilities, which is evaluated by dividing the weights of
the edges of each sequence node by the sum of all the
weights of these edges. That is,

P (q|s) = φ(s, q)/(
∑

φ(s)) (2)

where the P (q|s) is the transition probability from sequence
s to its subsequent q, φ(s, q) is weight of edge from s to
q, φ(s) is the weight of edge out of s. For example: the
occurrence number of a sequence-query tuple < s, q > is x
and the occurrence number of sequence S in all sequence-
query tuples is y, then in bipartite graph φ(s, q) is x and∑
φ(s) is y. The transition probability from s to q is

x/y. The range of transition probability is [0, 1]. A larger
transition probability means the user who has input a certain
query sequence is more likely to choose the query connected
by this edge as subsequent query.

3.4 Recommendation Score of a Query to a
Sequence

The recommendation score R (s, q) of a query to a current
user query sequence is formed by accumulating the products
of each pair of the similarity between the current sequence
and the sequence in the training set and the transition
probability from the sequence in training set to this query.
Formalized by the following formula:

R (s, q) =
∑
st∈T

sim (s, st)× (sim (s, st))
ρ−1 × (P (q|st))

(3)



where the R(s, q) is the recommendation score of query q to
the user inputted query sequence s, st is a query sequence
in training set T . ρ is the case amplification power [32]that
modifies the influence of the similarity to the score by
punishing low similarity and reducing noise. Typical ρ ≥ 1.
A large ρ makes the similarity factor less influential to
the recommendation score. In this paper we set ρ to 2.5
according to [32] [33].

The diagram of sequence similarity model is shown in
Figure 2. We can see that it is a directed acyclic graph and
the recommendation score of a query for a input sequence is
equal to the sum of path products that from input sequence
to this query in training set.

Fig. 2: Evaluation model of sequence similarity model

4. Experiment Result
We evaluated the performance of our method against four

other existing query suggestion methods: text similarity [24],
co-occurrence [5], query trace graph [29], and VMM[31].

4.1 Train Data Set
We employed a 30 days query log extracted from a

commercial search engine (http://www.sogou.com/labs/dl/q-
e.html. Corpus Search Engine Click-through Log(SogouQ).
2012-12-15.) to test our suggestion model. This is a chinese
search engine and most of queries in the log are in chinese.
Table 1 shows its format. Among them user ID is automati-
cally assigned by the search engine according to the Cookie
information when the users get access to it.

The input queries in the period from a user‘s start browser-
ing to end has the same unique user ID. We only use user
ID and query content fields in our experiment. In this 30
days query log data, we use the earlier 25 days log data as
the training set and the rest as the test set.

Table 2 summarizes the statistics of the training dataset
and the test dataset. The number of unique queries is the
number of total query records after removing the adjacent
same query records and a few unrecognizable code.

Table 1: Format of query log.
user ID query content ... clicked URL ...

xxx q1 ... www.a.com ...
yyy q2 ... www.b.com ...

Table 2: Statistic of query log.
Data Searches Unique queries Query sequences

training 18,506,239 9,203,195 6,043,848
test 2,920,724 1,492,460 973,976

4.2 Session Segmentation and Selection
Session is defined as a sequence of queries input by a

user for a specific search purpose [5]. Sessions are identified
by cookie information. A cookie includes user ID, access
timestamps, query text, clicked URL, etc. In practice, a
session can be retrieved from search log of a search engine
system, or from the query sequence by input a user with a
terminal in the period from starting a browser to closing it.
We identify a query sequence by user ID, and consider the
query sequence as a session.

Fig. 3: Relationship between the counts and the length of
the sequences in training set and test set

Figure 3 shows the relationship between the counts and
the length of sequences in the training set and test set. We
can see from it that the number of sequences decreases as the
length of sequence goes up. 74% of sequences contain only
one query. The proportions of the Sequences whose length
larger than 5 are less than 1%. The sum of proportions of
sequences whose length large than 5 is less than 2%, which
can be safely discarded. So we selected the sequences with
the length varying from 2 to 5 for training and test.

4.3 Baseline Methods
In order to evaluate the performance of the proposed

method, we implement four widely-used query suggestion
methods as baselines: text similarity [24], co-occurrence [5],
trace graph [29], and VMM [31].

1 Text Similarity



For each query sequences we use (1) [24] to calculate the
similarity between queries, where sa and sb denote query
strings instead of query sequence. Then we select the queries
that have high similarity with the user input query as the
suggestion query candidates. Only the last query of the
user input query sequence is considered. In the following
experiment, when evaluating the recall and precision of text
similarity method, we set the threshold to 0.4 [24]. That
means if the similarity of a query in the training set and the
user query is less than 0.4, then the former query will not
be considered as a candidate.

2 Co-Occurrence
The method in [5] only evaluates the pair-wise similarity

between two queries. However, in our experiment we need
to evaluate the recommendation score of a query to a test
sequence. So when choosing recommendation queries, we
only search the queries that had co-occurred with all the
queries that appears in the test query sequence in the training
set. We sum up the co-occurrence between the recommen-
dation query and each query in test query sequence as
the recommendation score of recommendation query, then
we select the queries with high recommendation score as
candidates.

3 Trace Graph model & VMM model
We also use the trace graph model and Variable Memory

Markov (VMM) Model as the baseline to evaluate our
model. The details of those two model generation methods
can be found in [29] and [31].

4.4 User Evaluations
We randomly selected 4000 sequences from the test set,

with their lengths varying from 2 to 5. The numbers of
different length sequences are approximately the same. Then
we discarded the last query of each sequence to form test
sequences. For each test sequence, we calculated its recom-
mendation score with each of the five methods and chose up
to 5 the most recommendable queries (Some methods, such
as co-occurrence, might not generate enough candidates for
a long sequence) that did not appear in the test sequence for
suggestion.

20 volunteers had been chosen to evaluate the suggested
queries. Each of them selected one twentieth of the total
query suggestion results. After their inputting the test se-
quence as user query sequence, if they think the user will
choose the suggested queries, then they approve it; otherwise
they reject it. The volunteers not only need to consider the
contextual or semantic relation between test sequence and
the suggested queries, but also the intention of users after
inputting the sequence. For example, the user is likely to
select “DELL OPTIPLEX 755” after inputting “computer”
and “DELL computer”, but they seldom select “computer”
after inputting “DELL computer” and “DELL OPTIPLEX
755”, although they have semantic or contextual relationship.

We use the standard metrics - precision and recall -
to evaluate the performance of the five query suggestion
methods. Precision is defined as the ratio of the number
of queries approved by volunteers over the number of all
candidates. Recall is defined as the ratio of the number of
queries approved by volunteers over the expected number of
candidates.

4.5 Query Suggestion Recall
Figure 4 shows the recall measure achieved by the five

query suggestion methods. From the results, we make the
following analysis:

Fig. 4: Recall of five query suggestion models

1. When the length of sequence is equal to 1, the best
recall is achieved by sequence similarity, trace graph, and
VMM methods with the value of 0.86 because they apply
the same candidate generating method.

2. As the length of sequence get larger, the recall of
co-occurrence method decreases. That is ascribed to the
decreasing occurrence probability of a number of queries
occurred in a session as the number of queries increases.
The recall of text similarity method continuously decreases,
for the text similarity method only considers the last query,
but a text similar query to the last query has less contextual
relation with a long sequence. The trace graph, VMM, and
sequence similarity methods share the same change trend.
When session length is larger than two, the recall of trace
graph and VMM methods are very close. That indicates
VMM method tends to degenerate to trace graph method
when it is more difficult to find the complete matching
sequence with the increasing sequence length.

3. Sequence similarity method achieves the best recall
across all sequence lengths. Because sequence similarity
method will search similar sequences if it cannot find the



complete matching sequence. Thus it can always find enough
candidates.

4. When the length of sequence is larger than 2, the recall
of co-occurrence method drops to 0. Further analysis shows
this is because co-occurrence method can find no sequence
in the training set that has all the queries appeared in test
sequence and still has a query that is different from the
queries in test sequence for suggestion.

4.6 Query Suggestion Precision
Figure 5 shows the precision achieved by five query

suggestion methods. From the results, we make the following
analysis:

Fig. 5: Precision of five query suggestion models

1. The precision of each method has a downtrend as the
length of sequence increases. Co-occurrence method has the
lowest precision. When the length of sequence is larger than
2, its precision drops to 0 due to the same reason mentioned
in the previous sub-section.

2. The precisions of sequence similarity, text similarity,
trace graph, and VMM methods are very close when the
length of sequence is equal to 1. Combining with the
recall analysis, we know that is because the other three
methods retrieved fewer candidates than that of the sequence
similarity method. They may merely have few hits, but the
less quantity of suggested queries gets their precisions raised.

3. The sequence similarity and VMM method have
roughly the same change trend, because they all adopt the
sequence information to generate candidates. The sequence
similarity method has a higher precision due to its more
flexible matching strategy.

Figure 6 shows the overall precision and recall of the user
evaluation on the five query suggestion methods. We can
see that although the precision of sequence similarity, text

Fig. 6: Precision and Recall of volunteers’ evaluation of five
query suggestion models

similarity, trace graph, and VMM models are very close,
the recall of sequence similarity method has an obvious
advantage over the other four methods. The sequence simi-
larity model has an outstanding comprehensive performance.
We also can see from Figure 4 and Figure 5 that with the
increase of the length of query sequences, the advantage of
our method is more obvious.

5. Conclusions
In this paper, we present a novel method based on

sequence similarity and transition probability for query sug-
gestion. We evaluated the performances of our method with
a dataset by comparing with four other existing methods.
The experiment result shows that our method has both high
precision and recall. This is because we adopt not only
the query position information in a sequence and transition
probability from query sequence to the subsequent query,
but also employ a more flexible sequence matching strategy.

As future work, we will test our method with a larger
training set and then extend our similarity calculation by
adopting more attributes such as the time, IP, region of a
user’s query submission etc. Using more attributes of a query
makes it more precise to evaluate the similarity between
sequences.
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