
Using Recursive Sorting to Improve Accuracy of
Memory-based Collaborative Filtering

Recommendations
Serhiy Morozov and Hossein Saiedian

Electrical Engineering and Computer Science
University of Kansas, Lawrence KS, USA

Abstract—Modern user behavior datasets contain millions of
records, so quickly combining all potentially relevant ratings is
often not feasible. Instead, we make suggestions from a small
set of the most relevant ratings, so that the memory-based
recommender systems could produce simple and accurate results.
We propose a new instance selection algorithm that removes
irrelevant data after sorting it twice, unlike the traditional
approach where the data is only sorted once. The accuracy of the
resulting recommendations on the Netflix dataset is considerably
better than the standard approach.

I. INTRODUCTION

Collaborative filtering systems recommend items that
other users enjoyed, essentially automating “word-of-mouth”
suggestions. The assumption is that one user’s favorite items
may be inferred by observing other users with similar interests.
As the name implies, personalized recommendations are
derived from filtering all available items through preferences
of similar users [13]. However, user opinions are subjective
and have little to do with content similarity. In fact, a
pure collaborative filtering system has no knowledge of item
content, which makes it ideal for abstract domains such as
paintings, music, and poetry [13].

Memory-based collaborative filtering is simple and intuitive,
does not require many tuning parameters or long training
sessions, and can justify recommendations [3], [16]. The
recommendation is a consensus of similar users or items,
called neighbors. Because some neighbors are more influential
than others, this method is often called the K Nearest
Neighbors (KNN) approach [18]. To quantify a neighbor’s
influence, we measure its similarity to the user or item in
question, i.e., the active vector [10], [16]. Depending on
whether the dataset is a collection of user or item vectors
it would be a user- or item-based approach.

The estimate for an active user u on active item a is a
weighted sum of neighbors’ ratings adjusted by their mean,
r̄i.

Pu,a = r̄u + k

n∑
i=1

w(u, i)(ri,a − r̄i)

n∑
i=1

w(u, i)

In this formula, n is the neighborhood size, w(u, i) is the
influence of a neighbor i, and k is a tuning coefficient [5].
The bottom of this fraction is the sum of the neighbors’
weights, which we call net weight. The neighborhood size may
vary greatly. Also, some neighbors may offer little influence
due to their low similarity. Therefore, the instance selection
method that reduces the neighborhood has a large impact on
the recommendation accuracy.

When predicting a known rating, the error of an estimate
is Pu,a − ru,a. The accuracy of the entire system may be
summarized by the Root Mean Squared Error (RMSE), a
popular metric that is especially sensitive to large errors. The
goal of this work is to reduce the RMSE.

RMSE =

√√√√√
∑

u∈U,i∈I

(Pu,a − ru,a)2

|P |
We evaluate our instance selection algorithms on the Netflix

dataset. It contains over 100,000,000 ratings, representing
over 17,000 items and over 480,000 users. To establish
a point of reference for our experiments, we examine
some of the well-known results from the Netflix website,
www.netflixprize.com. It lists the typical prediction
errors of many trivial recommendation approaches that suggest
the same rating for every item. For instance, recommending a
four star rating for each movie is the most accurate (RMSE =
1.1748), because each recommendation is close to the overall
average rating of 3.6 stars. Likewise, recommending 3.6 stars
for everyone gives an even smaller error of 1.1287. This value
may be reduced further by recommending the movie or user
average for each movie and user vector. This results in a
typical error of 1.0533 for an average movie and 1.0651 for
an average user approach. In general, recommendations with
RMSE ¿ 1 are not worth the effort.

II. RECOMMENDATION ACCURACY PROBLEM

There is a demand for recommender systems that can
consistently produce accurate recommendations, but there are
few systems that successfully do so. On the one hand, humans
are notoriously unpredictable, but on the other hand, there
are processing and storage limitations that prevent extensive
dataset analysis. Furthermore, user behavior data is not perfect,



and there is usually little of it. However, it is often the
only source of information available, so we need a way to
infer user behavior patterns from sparse data. Many studies
show dramatic recommendation quality improvements due to
changes in the data [5], [9], [17]. In a sense, optimizing
anything else is comparable to fixing the symptoms, while
improving the data addresses the root of a problem.

The easiest way to reduce data sparsity is to add default
ratings to the dataset. Some of the simplest default ratings
include mean rating and majority rating [5]. However,
aggregate defaults are usually poor approximations for the
actual opinions [9], so they are often made neutral or
negatively skewed to ensure a more conservative prediction.

Sometimes, default ratings come from external sources
of actual opinions. For example, the MovieLens project
populated missing values with existing ratings from a different
movie dataset [17]. Likewise, Basu, Hirsh, and Cohen used
the Internet Movie Database website to supplement their
dataset [2]. Using external sources of default ratings is a simple
and effective way to reduce data sparsity, but those sources
may not always be available.

Missing data can also be inferred from a cluster of
similarly classified vectors. For example, the GroupLens
project clustered users based on their preferences and related
news articles based on their topic [12]. As a result, each
cluster appeared to have a rich rating history. Such clusters
provide good default ratings, but require a way to determine
vector membership. In order to group users with no expressed
preferences, some systems consider additional properties like
age, gender, and education [1]. Item clusters often use
domain-specific knowledge, which is rarely available and may
not have clear-cut boundaries. Clustering is an effective way
to reduce sparsity and improve performance, but it sacrifices
personalization.

One way to improve the quality of data, without
supplementing the dataset, is to remove unnecessary ratings.
Data reduction algorithms shrink a dataset without damaging
it. They preserve the useful information, remove noise, and
decrease the amount of computation necessary to complete
a recommendation [7], [11]. Such algorithms are especially
relevant when scaling up is not an option.

Instance selection is a common data reduction technique that
has been traditionally used for data classification. The instance
selection algorithm chooses the smallest possible portion of
the available data, such that a successful classification may
still occur [7], [11]. For example, some algorithms remove
instances that do not affect other classifications [14] and
some employ a ranking mechanism to eliminate irrelevant
instances [6]. A memory-based recommendation is essentially
a way to classify one’s opinion, given a set of friends’
opinions and a way to quantify their influence. Therefore,
instance-based learning algorithms, like KNN, could benefit
from instance selection.

Even though instance selection algorithms are meant to
manage an overwhelming amount of data, the algorithms
themselves do not scale well. In fact, most approaches exhibit

at least quadratic complexity, which makes them unsuitable for
many serious applications [7], [8]. Therefore, most instance
selection algorithms do not apply to the problems that
would benefit most from their use. However, recommendation
accuracy improvement is considerable and we focus our
research on this aspect of instance selection.

III. INSTANCE SELECTION ALGORITHMS

Before making a recommendation, we first identify all
potentially relevant ratings. We locate all users who rated the
active item and all items that were rated by the active user.
Based on these two lists, we locate a set of ratings that are
either on a related item (according to the active user) or given
by a related user (according to the active item). The ratings
are then placed in a matrix where items are rows and users are
columns. Each cell contains a rating that is associated with a
single user and an item. We refer to rows in such a matrix as
item vectors and columns as user vectors. A transposed matrix
would represent users as rows and items as columns, so we
can produce user- and item-based recommendations from the
same data.

The standard instance selection approach ranks neighbors
based on every dimension. It compares every row of the matrix
to the active vector and rearranges the rows in the order of
decreasing similarity. As a result, the most influential vectors
are concentrated at the top of the matrix because the active
vector is the first row. Truncating such a matrix deletes only
the least relevant data.

The recursive instance selection approach also sorts and
truncates the matrix, except it does so in two passes.
The first pass sorts and identifies the top 30 most similar
dimensions. The second pass selects vectors with the highest
similarities according to these dimensions. A single sort can
establish the most similar dimensions, but not the nearest
neighbors according to those dimensions. The recursive
approach chooses the best neighbors according to the best
dimensions.

Both methods eventually truncate the matrix to 30 rows, i.e.,
a neighborhood of at most 30 most similar vectors. Empirical
results show this size to be particularly accurate [15], [16].
A truncated matrix contains enough data to establish the
mean of a vector, which is used to support a particular
recommendation, yet does not introduce unnecessary noise that
causes over-fitting.

IV. RECURSIVE SORTING RATIONALE

Collaborative filtering assumes that users who agreed in
the past are likely to agree in the future. As a result, users
who agree more tend to have a bigger influence. Ideally, the
opinions are unanimous and every neighbor has a weight of
1. In the worst case scenario, everyone’s weight is 0, which
means that neighbors have no shared dimensions. Therefore,
the total influence in a neighborhood of n vectors is between 0
and n. In reality, the net neighborhood weight is somewhere in
the middle, because both instance selection algorithms require
at least one shared dimension for all neighbors. Maximizing



the net weight of a fixed size neighborhood more closely
resembles the best case scenario.

Since neighborhoods are restricted to a fixed size, the
only way to guarantee high net weights is to consider the
most influential neighbors first. The first n vectors ordered
by their influence will always produce a net weight greater
than that of a random sample of neighbors. Sorting ensures
that after truncation the neighborhood contains most similar
vectors as opposed to a random sample of them. Truncating
the neighborhood without sorting it first may still produce a
high net weight, but such outcome is unlikely.

Another fundamental assumption of collaborative filtering
is that similar users agree on most items, regardless of their
domain. We refer to this type of comparison as “global
similarity” because all common dimensions contribute to the
similarity of any two vectors. Global similarity can identify
very influential neighbors, which are extremely rare. Our
approach requires two users to agree on a few of the most
relevant items, not all of them. We refer to this type of
comparison as “local similarity” because only a subset of all
common dimensions contributes to the similarity.

Standard approach uses global similarity to rank vectors.
Recursive approach first identifies a subset of dimensions
and then ranks the vectors by their local similarity on those
dimensions. For instance, two globally similar users may
disagree on a few movies. As long as the number of such
movies is sufficiently small, the global similarity remains
high. However, local similarity according to these movies
would conclude the two users to be less similar. Likewise,
one may compare the two globally dissimilar users across the
commonly liked movies and get a high local similarity.

Consider the following examples that demonstrate the
changes in global and local similarity between two users. We
use cosine similarity to quantify the strength of a relationship
between two vectors. It is the baseline metric for many
collaborative filtering systems [15]. In this case, both users
have rated the same three movies. However, the similarity
between user vectors may be established across all or just
the first two common dimensions. In fact, the choice of
common dimensions has a large effect on the perceived vector
similarity.

u1 =< 1, 2, 3 >;u2 =< 1, 3, 1 >; cos(u1, u2) = 0.806

u′1 =< 1, 2 >;u′2 =< 1, 3 >; cos(u′1, u
′
2) = 0.990

u1 =< 1, 2, 3 >;u2 =< 5, 1, 3 >; cos(u1, u2) = 0.723

u′1 =< 1, 2 >;u′2 =< 5, 1 >; cos(u′1, u
′
2) = 0.614

Comparing two vectors on fewer dimensions could produce
a higher similarity if the dimensions are sorted. Consider a
case where we sort the matrix by rows and columns such that
the most similar vectors are positioned closer to the top left
corner of the matrix. Assuming that dimensions are sorted,

comparing vectors on less similar dimensions will allow the
outliers on a neighbor’s rating scale to affect the similarity
metric. Extreme opinions on different scales are less likely
to agree, so the similarity of such vectors would decrease. If
this is false, then considering an extra dimension will result
in higher vector similarity, i.e., most of the rows agree on this
column. If that were the case, the additional columns should
be considered earlier, since columns for which the rows agree
most often are placed first. However, this is impossible because
the columns are considered in order of decreasing similarity.

To demonstrate this principle, consider five vectors with five
dimensions < a, b, c, d, e > in Figure 1. The net weight of such
matrix is 3.56, where the weight of each vector is quantified
by its Pearson’s correlation to the active vector. In other words,
we sum the similarities of the 1st row and the 2nd row, 1st
row and 3rd row, 1st row and 4th row, etc. Then we delete
one of the columns and recompute the similarities again. The
net weights of four truncated versions of this matrix, with
one of the dimensions removed, are as follows: no e = 3.87,
no d = 4.08, no c = 3.38, no b = 2.94. Removing some
dimensions increases the net weight, but how does one know
which dimensions to remove?
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Fig. 1. A 5× 5 Matrix

Consider the similarity of each dimension to a: a =
1.00, b = 0.65, c = 0.50, d = 0.35, e = 0.42. The d and e
dimensions are the least similar and removing them increases
the net weight. Figure 2 shows the negative correlation
between the similarity of a dimension and the net weight of a
truncated matrix that does not contain it.
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Fig. 2. Truncated Matrix Net Weights



To verify this phenomenon, we examined the neighbors
identified by the two algorithms on the Netflix dataset. Figures
3 and 4 show typical similarities in an item and user-oriented
neighborhood. In both cases, the recursive approach identifies
neighbors with higher similarities and greater net weight, i.e.,
area under the curve.
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Fig. 3. Item Similarity Comparison
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Fig. 4. User Similarity Comparison

V. JUSTIFICATION FOR RESORTED DATA

To further support the benefits of our recursive algorithm,
we considered a statistical justification of this approach.
The Rao-Blackwell theorem states that if g(x) is an
estimator for θ, then conditional expectation of g(x) given
a sufficient statistic T (x) is a better estimator of θ and
never worse [4]. This theorem employes a well-known
relationship between conditional and unconditional variance,
i.e., var(E(g(x)|T (x)))) <= var(E(g(x))). Smaller
variance means smaller Mean Squared Error, which means
higher overall system accuracy. Therefore, we can improve
recommendation accuracy by employing estimators which are
functions of the sufficient statistic. In other words, we need an

instance selection algorithm that represents a sufficient statistic
of the data.

In the context of our recommender system, x is a set of
ratings in the dataset, g(x) is the influence of a neighbor,
E(g(x)) is the weighted average of neighbor’s opinions scaled
by their influence, T (x) is a sufficient statistic computed
from the original data, and E(g(x)|T (x)) is the conditional
expected value of a rough estimator given a sufficient statistic.
In other words, it is a weighted average of all ratings that have
the same value for the sufficient statistic, i.e., local weights on
dimensions selected by their global similarity ranking.

A sufficient statistic is a function of the data that describes
it in such a way that a sample generated according to this
statistic would be as useful as the original data for estimating
θ, the actual rating we are trying to predict. The purpose of
the sufficient statistic is to capture all of the useful information
necessary for estimating θ, so that the data may be discarded in
favor of the statistic. The list of the most relevant dimensions,
established in the first step of the recursive algorithm, is
a sufficient statistic of the data. Once we know the best
dimensions, we no longer need the rest of them.

The first pass of the recursive algorithm decides which
dimensions are the most relevant. It categorizes the matrix
dimensions into two groups: top 30 and everybody else.
Vectors from the first group receive a weight of T (x) = 1
and everyone else receives a weight of T (x) = 0. Ignoring
dimensions from the latter group may improve the accuracy
of an existing estimator g(x). In fact, Rao-Blackwellisation of
g(x) is guaranteed not to make things worse.

We considered two alternative instance selection methods
with cosine similarity as well as Pearson’s correlation
measures on 1,000 randomly chosen ratings from the Netflix
Quiz dataset. Figure 5 shows that using Pearson’s correlation
is considerably better than cosine similarity. In fact, this
approach had lower RMSE scores for both vector orientations.
Also, resorting the data was more accurate for cosine as well
as Pearson’s similarities.

Even though Pearson’s correlation is a more accurate way
to compare vectors, the choice of a similarity measure is
irrelevant for our instance selection process. The benefits of
our approach come not from a particular weight metric, but
from reducing the number of dimensions and deciding which
dimensions should participate in the similarity computation.

Method KNN)Item KNN)User
Cosine'Standard 1.301 1.305
Cosine'Recursive 0.980 0.945
Pearson'Standard 0.786 0.826
Pearson'Recursive 0.423 0.465

Fig. 5. RMSE on the Netflix Quiz Dataset

VI. CONCLUSION

We believe that a small number of relevant ratings is
sufficient to make an accurate recommendation. Such ratings



may be chosen with a recursive approach that requires two
neighbors to be similar in some, but not all, domains. It
establishes more pertinent evidence for vector similarity, so
that selected ratings are more relevant. To test this claim,
we developed an algorithm that organizes ratings in matrices
sorted by user/item similarities.

The main purpose of our instance selection algorithm is
to produce small and dense matrices. It selects relevant data
by recursively resorting the matrix, since local similarities of
users and items are mutually dependent. The resulting vectors
do not necessarily agree in every shared dimension, but they
hold the most insight about the current recommendation. Our
analysis shows that resorting the matrix can not decrease
recommendation accuracy. Furthermore, our empirical study
shows that the recommendation accuracy from resorted
matrices is considerably better than the standard approach
where the data is only sorted once.
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