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Abstract— This paper presents a feature selection methodology 

that can be applied to datasets containing a mixture of 

continuous and categorical variables.  Using a Genetic Algorithm 

(GA), this method explores a dataset and selects a small set of 

features relevant for the prediction of a binary (1/0) response.  

Binary classification trees and an objective function based on 

conditional probabilities are used to measure the fitness of a 

given subset of features. The method is applied to health data to 

find factors useful for the prediction of diabetes.  Results show 

that our algorithm is capable of narrowing down the set of 

predictors to around 8 factors that can be validated using 

reputable medical and public health resources. Key Words: 

Genetic Algorithms, Decision Trees, NHANES, Diabetes. 

1. INTRODUCTION 

The National Health and Nutrition Examination Survey 

(NHANES) database (www.cdc.gov/nchs/nhanes.htm) contains 

a complete health survey for a sample of the U.S. Population.  

Included in the survey are nutritional, demographic, and 

socioeconomic data as well as results of medical examinations 

and laboratory analyses for the study participants.  The survey, 

which began gathering data in the 1960s, contains information 

from around 5000 adults and children per year and results are 

presented in a biannual format, which means that each two-

year dataset contains information from about 10,000 

respondents. 

The NHANES dataset is a rich environment in which a 

supervised learning algorithm can be applied.  The dataset 

contains hundreds of features in a variety of formats.  There are 

continuous features (age, body-mass index, cholesterol level), 

ordered categorical features (for example, annual household 

income value is expressed as integers where, in general, a 

higher number represents a higher level of income) and 

unordered categorical features (pregnancy, for example).  Data 

gathered from the NHANES survey has been used in the past 

to inform and monitor the effects of public policy decisions [1], 

[2] and by researchers to help test relationships between 

lifestyle or nutrition levels and medical conditions or illness 

[3]. 

Although the vast majority of the NHANES related 

research uses the data to focus on testing hypotheses involving 

a small number of previously selected predictors, there has 

been recent development in applying data mining and pattern 

recognition algorithms [4], [5] to the information gathered 

from the NHANES survey.  The work in [4] used 2005-2006 

laboratory and questionnaire data for 10348 participants and 

constructed classification trees for an attribute of interest (the 

respondent has high blood pressure, for example) using the rest 

of the variables as potential predictors.  The work in [4] used 

total accuracy of prediction as the objective function and 

discarded decision trees that result in too low (below 80%) or 

too high (above 95%) predictive accuracy.  The work in [4] 

aimed at discovering predictive relationships among variables 

in the dataset that may shed new light on the association 

between health conditions and lifestyle choices, but its broad 

application produced a myriad of results that may be difficult 

to sift through and validate.  The work in [5] used data for a 

subset of 4979 respondents.  They develop a clustering 

approach to find associations between conditions of interest 

(high blood pressure and high cholesterol, for example).  Their 

aim was to explore the data for new and interesting disease 

associations that could then be substantiated (or disproved) by 

searching literature in the appropriate field.  The work in [5] 

was only reported for people with known illnesses or 

conditions, excluding respondents without the diseases, and 

their results show only disease associations, not associations 

between diseases and other factors. 

The NHANES database contains hundreds of features, 

some of which may be useful for classification purposes.  A 

key challenge is to find a small set of features whose combined 

use is optimal in some sense for a classification task, while at 

the same time avoiding the computationally impractical task of 

testing every possible combination of factors.  The approach 

presented in this paper uses a combination of decision trees and 

a Genetic Algorithm (GA) to optimize the selection of a set of 

predictors that are useful to describe a condition of interest.  

2. IMPLEMENTATION AND RESULTS 

Genetic Algorithms (GA) are a heuristic optimization 

technique with mechanisms inspired by the process of 

evolution and natural selection.   A solution to a problem is 

represented as a string of characters and a number of these 

solutions are generated, typically at random, to form the initial 

parent population.  New, or offspring, solutions are created by 

recombining information from selected parents, and the best 

performing offspring individuals are then selected to form the 

new parent population. To avoid premature convergence, some 

solutions in the new parent population are subjected to a 

mutation mechanism, which may alter their contents.  A GA 

works by repeatedly applying the mechanisms of 

recombination, selection and mutation to an initial population 

of solutions until some measure of convergence has been 

reached [6].  Genetic algorithms are well suited to explore 



large and complex problem spaces and are not deterred by 

noisy, constrained, or discontinuous objective functions.  On 

the other hand, a GA cannot guarantee that an optimal solution 

will be found.  

In this work, a GA is applied to a subset of the NHANES 

data to find a set of features that best predicts the presence of 

diabetes.  At any given iteration, a solution to the feature 

selection problem consists of a vector with binary (1/0) entries, 

where a ‘1’ indicates that the corresponding feature is present 

and may be used by a decision tree.  The initial dataset includes 

45 features (including demographic information, cholesterol 

data and body measures from 9965 respondents in the 1999-

2000 NHANES database), and the initial population size is 35 

solutions, each solution generated randomly.  The 

recombination mechanism produces 175 offspring solutions 

(five times the size of the parent population).  Each offspring 

solution is formed using two randomly selected individuals 

from the parent population.  The new solution is created by 

joining alternating portions of each parent.  Individuals in the 

offspring population are evaluated using a 90/10 train/test 

strategy, where the partitions are created anew in every 

generation to maintain, roughly, the proportions of (1/0) 

present in the overall dataset, and the best performing 35 

individuals are selected for further processing.  In the next step, 

up to 20% of the 35 individuals selected are mutated by having 

their contents randomly altered (it is possible that any given 

entry in a mutated solution remains unchanged).  The GA was 

implemented in MatLab [7], using the CLASSREGTREE tree 

function. 

A somewhat related approach was implemented in [8] who 

employed a GA for feature and instance selection using a 

support vector machine (SVM) and k-NN (nearest neighbor) 

classifiers on several datasets.  The work presented in [8] 

focused solely on accuracy of prediction and their results 

suggest that in a dataset with many potential features, it is 

possible to greatly reduce the number of features without, in 

most cases, affecting classification performance.  The work in 

[8] does not measure feature importance -- it is implicitly 

assumed that all features selected by their algorithm are equally 

important-- and their interest lies mostly in comparing accuracy 

of classification when feature and instance selection are used 

individually or together.  The application of a GA for feature 

selection is also presented in [9]. 

During a run of the GA for the present work, the GA 

procedures are executed repeatedly, keeping track of the 

number of times each feature is present in every new parent 

population and the best objective function value in every new 

generation.  The variable used for classification is the diabetes 

1999-2000 set where the response was re-coded as follows: 

respondents with diagnosed diabetes or borderline diabetes are 

coded as ‘1’, respondents without diabetes are coded as ‘0’ and 

individuals that responded ‘Don’t know’ or refused to answer 

are coded as ‘N/A’ (not available).  The diabetes dataset is 

highly unbalanced, with around 5% of the respondents affected 

by the illness.  Aside from cholesterol levels and body 

measures (such as waist circumference, height, weight), other 

demographic predictors (or features) include information about 

age, gender, ethnicity, education and income level, military 

veteran status, and others.  Feature data were pre-processed to 

re-code values not useful for classification.  This particular 

dataset was chosen to develop and test the optimization 

approach described in this document because findings on the 

relationship between diabetes and factors like age, ethnicity, 

socioeconomic and cholesterol data can be supported by 

numerous reputable sources 

(http://diabetes.niddk.nih.gov/dm/pubs/causes/#causes, and 

[10]). 

The objective function developed for the GA produces 

conditional probability estimates of having diabetes or 

borderline diabetes for a given set of predictors and predictor 

levels.  The simplest way of computing conditional probability 

estimates using binary classification trees involves computing 

the relative frequency of one of the classes at the leaves 

(terminal nodes) for a set of training data.  Using relative 

frequencies as conditional probabilities is known to produce 

very poor estimates [11], because terminal nodes may have 

high purity (a single class assigned to it) but a very small 

number of observations.  This is particularly true in highly 

unbalanced datasets like the one used for this work.  Better 

probability estimates can be obtained by smoothing [12], 

curtailment [13], or averaging [14] probability estimates, or by 

applying a combination of these techniques.  In this work, 

several different probability estimates were tested.  These 

estimates were obtained using Laplace estimators, m-

estimators and values from a Naïve Bayesian classifier, either 

alone or in combination.  Probability estimates were used as 

inputs for an objective function in the form of the average 

negative cross entropy (NCE, [15]). 

The task of developing and testing the algorithm was 

carried out including redundant predictors in the initial set of 

features.  For example, NHANES contains several features 

related to family income.  This approach was used to observe 

the behavior of the GA under different formulations of the 

objective function, as the goal is to develop an approach that 

can be applied to datasets that have received only a minimum 

of pre-processing.  The objective function combined Laplace 

and binned Naïve Bayesian probability estimates [13], and 

aimed to minimize the average NCE of the test sets. 

In total, the candidate set of predictors contained 45 

variables, including demographic variables (age, ethnicity, 

gender, family income and others), results from blood analyses 

(total cholesterol, HDL cholesterol, C-reactive protein, 

Helicobacter pylori, fibrinogen, bone alkaline phosphate, N-

telopeptides), and body measures (weight and BMI, waist 

circumference, arm circumference and others).  Twenty 

generations of the GA produce the results shown in Figure 1. 

http://diabetes.niddk.nih.gov/dm/pubs/causes/#causes


 

Figure 1. Proportion of predictors present in the population of solutions (z-axis) as a function of generation number (y-axis) with the first generation in the 
forefront (left panel) and the last generation in the forefront (right panel).  The predictors that appear in a large proportion of the final population are Age, 

Ethnicity, Poverty income ratio (PIR), Education level, fibrinogen level, HDL cholesterol level, Body mass index (BMI), Upper leg length (XLeg). 

 

Figure 1 shows the evolution in the proportion of predictors 

present in the parent population of the GA starting with the 

first generation (created at random) until the 20
th

 generation.  

The first generation, shown in the left panel of Figure 1, 

contains all predictors in roughly the same proportion.  As the 

run progresses, some predictors were effectively eliminated, 

while a few others tended to be present in nearly all the 

individuals in the population of solutions. Results shown in 

Figure 1 were obtained after evaluating 35×5×20 = 3500 

solutions, not necessarily distinct.  The problem space consists 

of around 3×10
13

 possible solutions (a predictor is or is not 

present and there are 45 predictors available).  This means that 

convergence has been achieved after exploring less than10
-8

 % 

of the problem space, in other words, a small fraction of all the 

solutions.  Scientific support for the validity of the predictors 

selected by the GA can be found in [16],  

[10], and 

http://diabetes.niddk.nih.gov/dm/pubs/causes/#causes. 

In addition to being efficient, the GA appears to be robust 

as well.  The set of final features, shown in Figure 1 appears to 

be largely independent of the starting population. In particular, 

the GA was run several times with different, randomly selected 

starting populations and these runs produced essentially the 

same final population.  The only notable differences were the 

substitution of a related variable for one of those listed above, 

for example waist circumference instead of body mass index 

(BMI).  On the other hand, the final population doesn’t 

necessarily contain only critical variables, those predictors that 

are important for the success of a classification tree.  In fact, 

due to the way a GA processes information, it is possible for 

features to appear in the final population without having any 

role in the classification tree, simply because they happen to be 

chosen jointly with other, more critical predictors.   

 

 

 

 

 

 

 

 

 

In the interest of finding the smallest, most critical feature 

set, it is useful to measure the relative importance of each 

predictor present in a given solution.  In general, feature 

importance in decision trees is estimated by determining if the 

splitting variable improves the purity of the node (http://www. 

mathworks.com/ help/stats/classregtree.varimportance.html).  

Unfortunately, in some of our trials, calculating variable 

importance in this way produces results contrary to available 

information (ethnicity often appearing as having no importance 

as a factor affecting the incidence of diabetes, for example).  A 

different approach to defining variable importance in decision 

trees is presented in [17].  In his approach, [17] proposes 

counting the predictor variables that direct an individual 

observation from the root to the leaf of the tree and 

apportioning importance accordingly.  In this paper the 

approach proposed in [17] was implemented, using individuals 

in the test set to determine variable importance.  Variable 

importance for a GA solution produced the results shown in 

Figure 2. 
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Figure 2. Relative importance of the predictors present in a GA solution.  The 
y-axis represents the proportion of individuals in the testing set that are 
directed down the tree using the variables shown inside the box. HDL refers 

to HDL cholesterol.  According to this analysis, age has, by far, the largest 

impact. 

 

Combining the information from Figures 1 and 2 provides a 

much clearer picture of the importance of the predictors  

selected.  Because Age was the variable at the root of the 

decision tree, it affected 100% of the individuals tested and is 

therefore the most important feature.  At the other end, 

Education level impacted a relatively small percentage of the 

individuals in the testing set.  Despite these differences, we are 

interested in all of these variables because the tree may identify 

relatively small portions of the space where an otherwise 

noncritical variable plays a big role in determining the presence 

or absence of the disease. 

It is useful to compare the feature set obtained using this 

methodology to a situation where all the predictors are 

available for the construction of a decision tree.  Figure 3 

compares values of the average loss function applied to 

observations in the test sets used as the objective function of 

the 35 GA solutions in Figure 1 to results of 100 classification 

trees constructed from the complete set of predictors.  In both 

instances, the same training/testing datasets, randomly created, 

have been used for every pair of GA/”all-available” solutions 

and the evaluation is over all folds, so that results can be 

directly compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows that, on average, the GA solutions are better 

than the “all-available” solutions.  This conclusion is likely a 

consequence of the greedy nature of the splitting algorithm 

when confronted with a large number of predictors, especially 

if some of the predictors are categorical.  In addition to 

reducing the average loss function as shown in Figure 3, the 

GA also produces much more parsimonious solutions, with 

many fewer variables than the “all-available” case. This result 

is important because the “all-available” solutions generally 

produce many non-zero importance values, resulting in a 

confusing picture and making it difficult to discriminate 

between more and less important predictors. 

3. CONCLUSIONS 

Using a dataset from the NHANES database, an 

optimization methodology that employs binary classification 

trees, genetic algorithms and a probability-based loss function 

has been employed to build decision trees with a small number 

of features, effectively and efficiently pruning a large number 

of variables down to a small number of highly important 

predictors.  The predictors for diabetes found (age, ethnicity, 

income, education level, HDL cholesterol level, fibrinogen 

level, and two body measures) can be validated through 

reputable sources in the medical and public health fields.  As 

implemented, the methodology allows for a more complete 

understanding of a complex variable space, including (1) the 

elimination of uninformative or redundant features, (2) the 

discovery of the most important predictors, (3) the level at 

which a given predictor is useful for discrimination, and (4) the 

relative importance of the predictors found.  This approach 

allows to efficiently mine a database, identifying a small but 

important set of predictors for diabetes without having to elicit 

 

 

Figure 3. Average performance of GA-generated solutions (first 100 values 

shown) and “all-available” solutions using the same training/test sets.  The 

objective function is the loss function described in the text.  The GA solutions, 
in general, perform better than those for which all predictors are potentially 

available. 

 



input from subject-matter experts or start from a well-defined 

hypothesis.  In its current form, the decision trees produced by 

the GA can be examined to indicate combinations of features 

and feature levels that make a difference between 

subpopulations with high and low probabilities of diabetes.  

These findings may be useful in furthering understanding of 

factors that can be changed, cholesterol levels and body mass 

index, for example, to improve probabilistic health outcomes 

when other risk factors, such as age and ethnicity, are present.  

In future work currently underway, the methodology shown 

in this paper is being applied to other health-related responses, 

using larger sets of predictors from NHANES, with the 

objective of discovering identifying features for conditions that 

are not well understood and developing probabilistic 

predictions when a given set of predictor levels are present. 
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