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Abstract— In multiple industries, including automotive one,
predictive maintenance is becoming more and more important,
especially since the focus shifts from product to service-based
operation. It requires, among other, being able to provide
customers with uptime guarantees. It is natural to investigate
the use of data mining techniques, especially since the same
shift of focus, as well as technological advancements in the
telecommunication solutions, makes long-term data collection
more widespread.

In this paper we describe our experiences in predicting
compressor faults using data that is logged on-board Volvo
trucks. We discuss unique challenges that are posed by the
specifics of the automotive domain. We show that predictive
maintenance is possible and can result in significant cost savings,
despite the relatively low amount of data available. We also
discuss some of the problems we have encountered by employing
out-of-the-box machine learning solutions, and identify areas
where our task diverges from common assumptions underlying
the majority of data mining research.

Index Terms— Data Mining, Machine Learning, Fault Pre-
diction, Automotive Diagnostics, Logged Vehicle Data

I. I NTRODUCTION

With modern vehicles becoming more and more sophisti-
cated cyber-physical systems, increased software and system
complexity poses new development and maintenance chal-
lenges. For commercial ground fleet operators, including bus
and truck companies, the maintenance strategy is typically
reactive, meaning that a fault is fixed only after it has become
an issue affecting vehicle’s performance.

Currently, there is a desire for truck manufacturers to
offer uptime guarantees to their customers, which obviously
requires a shift in the paradigm. New ways of thinking about
component maintenance, scheduling and replacement need to
be introduced. Statistical lifetime predictions are no longer
sufficient, and workshop operations need to be planned and
their results analysed at the level of individual vehicles.

At the same time, it is slowly becoming feasible to analyse
large amounts of data on-board trucks and buses in a timely
manner. This enables approaches based on data mining and
pattern recognition techniques to augment existing, hand
crafted algorithms. Such technologies, however, are not yet
in the product stage, and even once they are deployed, a
significant time will be required to gather enough data to
obtain consistently good results.

In the meantime, it is necessary to explore existing data
sources. One example of that is Volvo’s “Logged Vehicle

Rune Prytz is with the Volvo Group Trucks Technology, Advanced
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Database” (LVD), that collects statistics about usage and
internal workings of every vehicle. This data is stored on-
board Electronic Control Units during regular operation, and
uploaded to a central system during visits in authorised
workshops.

The LVD is just one database among many that are of
interest for predictive maintenance purposes. Others thatare
being currently used in related projects include “Vehicle
Data Administration” (VDA) and “Vehicle Service Records”
(VSR). These databases each contain different, but comple-
mentary information: usage statistics and ambient conditions,
up-to-date information regarding vehicle equipment, design
and configuration specifications, as well as history of all
maintenance and repair actions conducted at Volvo Autho-
rised Workshops.

In a typical data mining study, the underlying assumption
is that a lot of information is available. For example, it is
common in fault prediction research to be able to contin-
uously monitor the device in question. In this regard, the
automotive domain is much more restrictive. We are only
able to observe any given truck a couple of times per year,
at intervals that are unknowna priori and difficult to predict
even during operation.

In this project we have decided to focus on analysing two
components: compressor and turbocharger. Due to lack of
space, in this work we only present results related to the
compressor, but most of our discussions are valid for both
subsystems. The main motivation of predictive maintenance
is the possibility to reduce the unplanned stops at the road
side. They can be very costly, both for the customer and for
the OEM.

If the truck is under warranty or service contract the
following expenses could typically be incurred: towing, dis-
ruption of garage workflow, actual repair, rent of replacement
truck and loss of OEM reputation. During a service contract
all maintenance and service costs are covered by a fixed
monthly fee. A secondary motivation is to minimise the
amount of maintenance that is done on trucks under service
contract while still guaranteeing required level of uptime
towards the customer.

Additionally, certain components, such as the turbocharger
or timing belt, cause significant collateral damage to the
vehicle when they fail. Such components are often already
either designed to last the full lifetime of the vehicle or
scheduled for planned maintenance. In practice, however, this
is not enough to prevent all unexpected failures. In these
cases predictive maintenance would also be very effective
in reducing the excess cost, even though the number of



breakdowns is low.
Obviously, predictive maintenance not only saves money,

it also introduces additional expenses in terms of unnecessary
repairs for the wrongly diagnosed vehicles as well as wasted
component life. The latter comes from the fact that the still
working component gets exchanged.

The importance of this factor varies greatly depending
on particular application. In this study we disregard it
completely, since both turbocharger and compressor are
exchanged at most once during a vehicles lifetime.

The other cost factor, incorrectly diagnosed failures, can
never be completely avoided, but is expected to be surpassed
by the savings obtained from finding vehicles before they
have an unexpected breakdown. This expense will be the
major focus of our discussions in this work.

From classification point view, this can be directly linked
to the ratio between True Positive examples and False
Positive ones. As mentioned previously, the cost of one
on-the-road breakdown is far greater than the cost of one
unnecessary component replacement. It is also important to
notice that the number of False Negatives is almost irrelevant
in this application. They represent “wasted opportunity,”i.e.
money that could potentially be saved but was not, however
they do not incur any direct expenses.

The predictive maintenance solution we are proposing in
this paper is designed to be used as an aid in the garage.
Whenever a truck is in the workshop for whatever reason,
logged data is collected and analysed. The classification
algorithm then marks the vehicle as either normal or in
need of compressor replacement (within a specified predic-
tion horizon). The workshop will then either exchange the
compressor right away, perform additional diagnostics, or
schedule another visit in the near future.

This paper is organised as follows. In the next section we
describe in more detail the type of data we are working with,
as well as present the business constraints that dictate how
we state the problem and how are we trying to solve it. We
follow by a discussion of related research in Section III. We
present our approach in Section IV and results of experiments
we have conducted in Section V. We close with conclusions
in Section VI.

II. DATA AND CONSTRAINTS

A typical quality measurement in the automotive industry
is the fault frequency of a component. It’s percentage of
components that fail within a given time: most typically,
either a warranty or service contract period. However, thatis
not a representative measure for our case. Our data consists
of a number of data readouts from each truck, spread over
long time, but compressor or turbocharger gets replaced at
most once.

Most of the vehicles never have a failure of the compo-
nents we are interested in. Even for those that do, many of
the readouts come from the time when the compressor is in
good condition, and only in some cases there is a readout
from the workshop visit when it is exchanged.

In order to get representative data, we need to select our
examples from three scenarios: some of the data should come
from trucks on which compressor never failed, some should
come from readouts shortly before compressor failure, and
some should come from trucks on which the compressor
failed far in the future. In order to ensure that, we also
consider the number of readouts that is available from each
vehicle. Trucks that have too few readouts or do not contain
all the data parameters we are interested in are discarded at
this stage.

One of the topics of our analysis is to investigate how
does the relative ratio of positive and negative examples in
train and test datasets influence machine learning results.It is
obvious that component failures are an exception rather than
a norm. However, there are different ways of measuring the
precise ratio between “faulty” and “good” cases. Neverthe-
less, the fault frequency in the vehicle population does not
necessarily translate directly into exactly the same levelof
imbalance between examples.

We are not able to disclose any real fault frequency data.
However, as a guidance, high fault frequency is between 5-
10% while a good components may have fault frequency
in the range of 0 to 3%. In this paper we will construct the
dataset in such way that the baseline fault frequency is 5%. It
is important to be aware, however, that there are many factors
affecting this and under different circumstances, the datacan
look very different. Examples include truck configuration and
age, usage patterns, geographical location and many more

As a simple example, we can easily imagine a predictive
maintenance system being deployed and not applied to all
vehicles, but only to those that service technicians consider
“high risk”. Similarly, while compressor is an important com-
ponent to monitor, the methodology itself is fully general,
and there are other parts that could be targeted. Some of
them are designed to be replaced regularly, and thus could
have failures that occur on almost all trucks. Therefore, in
several places in this paper, we will discuss how different
fault frequencies affect classification results.

The vehicles in our dataset are all Volvo trucks, from the
same year model, but equipped with three different com-
pressor types. They also vary with respect to geographical
location, owner, and type of operation, for instance long-
haul, delivery or construction.

We have selected 80 trucks which had compressor failures
and at least 10 LVD readouts, with the right number of
parameters available. In addition we have chosen 1440 trucks
on which, so far at least, no compressor had failed. They all
fulfil the same requirements on LVD data. We could easily
obtain more “non-faulty” vehicles, but it is the ones with
compressor failures that are the limiting factor.

A. Logged Vehicle Data

Logged Vehicle Data is a Volvo internal database which
gathers usage and ambient statistics collected from Volvo
vehicles. The data is downloaded from the truck when it
is serviced at an authorised Volvo workshop, or wirelessly
through a telematics gateway. The database is used for



various tasks during product development, after market and
even sales support.

A typical task for product development would be to
support a simulation or validate an assumption with real
usage statistics from the field. For instance, such questions
could concern the relationship between average fuel economy
and weight, altitude or engine type. During the sales process
the database can provide usage statistics for already existing
customers, which is helpful in configuring the right truck for
a particular purpose.

This database contains data of varying types and has high
number of dimensions. Typically a vehicle record contains
hundreds of parameters and at most tens of readouts. The
number of readouts directly depends on the availability of
telematics equipment and on whether the vehicle has been
regularly maintained at a Volvo workshop. For example, in
our dataset the average number of readouts per vehicle is 4
per year. However, the variance is very high and many trucks
have one or less readouts per.

There is also a problem with missing values, typically
caused by connectivity issues or software updates. Modern
on-board software versions log more parameters, which
means that older readouts tend to include less data than newer
ones.

Finally, the stored parameters are typically of cumulative
nature. This means that the readouts are highly correlated
and not independently identically distributed, as is usually
assumed in machine learning. It could be interested to
analyse, instead of the LVD data itself, the changes between
subsequent readouts — but it can be complicated because
there is a number of different aggregation schemes employed
(for example, averages, accumulators and histograms).

B. VSR and VDA

The Volvo Service Records a database that keeps track of
all maintenance and repair operations done on a particular
vehicle. The database is mainly used by the workshop
personnel for invoicing purposes, as well as for diagnostics,
allowing to check previously carried out repairs.

A typical repair event contains date, current mileage, and
a list of unique maintenance operation codes and exchanged
part numbers. In addition to that there may be a text note
added by the technician. For the purposes of this work, we
are using VSR to find out whether and when a compressor
was replaced on a given truck.

The VDA database contains vehicle specification for all
vehicles produced by Volvo. It lists the included components
such as gearbox model, wheel size, cab version, or engine
and compressor type. All options have a unique label which
makes it easy to use for classification.

III. R ELATED WORK

In a survey of Artificial Intelligence solutions being
used within automotive industry, [1] discusses, among other
things, both fault prognostics and after-sales service andwar-
ranty claims. An representative example of work being done
in this area are [2] and [3], where authors present two data

mining algorithms that extracts associative and sequential
patterns from a large automotive warranty database, captur-
ing relationships among occurrences of warranty claims over
time. Employing a simple IF-THEN rules representation, the
algorithm allows filtering out insignificant patterns usinga
number of rule strength parameters. In that work, however,
no information about vehicle usage is available, and the
discovered knowledge is of a statistical nature concerning
relations between common faults, rather than describing
concrete individual.

More recently [4] presented a survey of 150 papers related
to the use of data mining in manufacturing. While their
scope was broader than only diagnostics and fault prediction,
including areas such as design, supply chain and customer
relations, they have covered a large portion of literature
related to the topic of this paper. The general conclusion is
that the specifics of automotive domain make fault prediction
a more challenging problem than in other domains: almost
all research considers a case where continuous monitoring
of devices is possible, e.g. [5] or [6].

It is more common to consider emergent solutions, where
vehicles are able to communicate using telematic gateways.
An early paper [7] shows a system architecture for distributed
data-mining in vehicles, and discusses the challenges in
automating vehicle data analysis. In [8] cross-fleet analysis,
i.e. comparing properties of different vehicles, is shown to
benefit root-cause analysis for pre-production diagnostics.
In [9] and [10], a method called COSMO is proposed for
distributed search of “interesting relations” among on-board
signals in a fleet of vehicles, enabling deviation detectionin
specific components.

A method based on a similar concept of monitoring
correlations, but for a single vehicle instead of a fleet, is
shown in D’Silva [11]. In Vachkov [12], the neural gas
algorithm is used to model interesting relations for diagnostic
of hydraulic excavators. Contrary to our work, however, both
the papers by D’Silva and Vachkov assume that the signals
which contain the interesting relations are knowna priori. In
[13], a method for monitoring relations between signals in
aircraft engines is presented. Relations are compared across a
fleet of planes and flights. Unlike us, however, they focus on
discovering relationships that are later evaluated by domain
experts.

Even though not particularly recent, [14] and [15] are
still excellent introductions to more general machine learning
and artificial intelligence topics. In this paper we are also
facing many challenges related to the imbalanced nature of
diagnostics data. In order to make our initial investigations
more widely accessible we have decided not to use any
specialised solutions, but an overview of research on this
area can be found, for example, in [16], [17] or [18].

IV. A PPROACH

We have decided to base our initial analysis on using out-
of-the-box supervised classification algorithms. From among
the available attributes, 4 interesting VDA parameters and8
LVD interesting parameters were chosen by experts within



Volvo. Those include, for example: compressor model, en-
gine type, vehicle mileage, average compressed air usage per
kilometre, etc.

At this stage of our research, we have decided to consider
each data readout as a single learning example. Even though
they definitely do not satisfy the basicindependent and
identically distributedassumption, this gives us flexibility
in both the classifier choice and in deciding how to analyse
actual faults.

When constructing the dataset we need to merge data
from the three databases. First we find, in the VSR, all
truck that had the compressor exchanged. To do that we use
the unique maintenance code for compressor replacement.
After that we find all the LVD and VDA data for the faulty
vehicles, up to and until the aforementioned repair occurred.
At this stage we discard some vehicles, either because they
do not have sufficient number of readouts or because not
all the interesting parameters selected by Volvo experts are
available. After that we also select some number of “non-
faulty” trucks.

For each LVD readout, we also create a new parameter
denoting time to repair. It uses the timestamp of repair entry
in VSR and this particular readout’s date. In the case of
non-faulty trucks we are assuming that they may break just
after the latest readout available, so that thetime to repair
parameter can be calculated for all trucks. This parameter
is later used for labelling examples as either positive or
negative, based on the prediction horizon, but is of course
not used for classification. This step is one of the areas where
there is definitive room for improvement, since it is definitely
not clear, however, when – if at all – the symptoms for the
imminent failure become visible in the data.

When selecting examples for classification a prediction
horizon and the desired fault rate must first be defined.
The time to repair parameter is used to determine which
readouts are considered as positive: those that fall within
the prediction horizon. After that, at most two examples per
vehicle are drawn to form the training and test datasets.

For the trucks marked as faulty, we select exactly one
positive and one negative example, at random. Finally, we
add one negative example from the remaining trucks until
the desired fault frequency is archived. By selecting an
equal (and small) number of positive and negative examples
from each truck we avoid the problem of classifiers learning
characteristics of individual vehicles rather than those of
failing compressors.

The reason for choosing random readouts as examples is
twofold. First of all, it is not entirely clear how to choose
which data readout is the best one to use. It is important that
there is sufficient distance between corresponding positive
and negative example, in order for the data to be changed
significantly. The further apart the two examples are, the
larger the chance that symptoms of failing compressor are
present in the positive example and are missing from the
negative one. On the other hand, selecting dates close to the
cutoff boundary would allow more precision in estimating

whenthe components is likely to break.
The random approach avoids any systematic bias in either

direction, but it means that actual training dataset only
depends on the prediction horizon to a limited degree. It
also means that we have no real control over how similar
positive and negative examples actually are. It is an inter-
esting question of how to find the appropriate cutoff point
automatically, preferable on an individual basis.

In the final step, we remove 10% of the dataset, to be used
as the test data, and use the rest as train data. Since we have
few examples available, we use both out-of-bag evaluation
on the training dataset, as well as the separate evaluation
on the test data. In section V we sometimes present both
evaluations, and sometimes only one of them, depending on
which one is more appropriate for a particular purpose.

One of the issues with out-of-bag evaluations is that it is
computationally intense. To speed up the processing, each
classifier is only evaluated on a subset of the train data.
The out-of-bag evaluation subset contains all the positive
examples, but only a portion of negative examples. The
resulting confusion matrix is then up-scaled for thetrue
negativesand false positives.

As an evaluation of the business case for the predictive
maintenance solution, we introduce measure of cost savings:

Csave = TP · (Cu − Cp)− FP · Cp

The method will be profitable if the correctly classified
faulty trucks (i.e.true positives TP) save more money than
the non-faulty trucks wrongly classified as faulty (i.e.false
positive FPwaste. Because an on-roadunplannedbreakdown
costs (Cu) is much higher than theplanned component
replacement (Cp), every TP reduces costs.

A. Learning algorithms

In this work we have used the KNN, C5.0 and Random
Forest learning algorithms. Each of them is evaluated in R
using the Caret package as described in [19]. By default, the
Caret package tunes the parameters of each classifier.

V. EXPERIMENTS

In this section we present the results of early experiments
we have performed. Throughout this presentation we have
two main goals. First, we argue that those initial results are
encouraging and promise a tangible business benefits, thus
warranting further work, and hopefully inspiring others to
investigate similar approaches in other applications. Second,
we demonstrate difficulties we have encountered due to the
type of data available and specifics of the domain.

As the first step towards familiarising the reader with
our data, we present how the dataset size affects quality of
classification. In Figure 1 we have plotted the classification
accuracy, both using out-of-bag evaluation and a separate test
set, for all three classifiers.

This figure is mainly useful to show the level of variance in
classifier behaviour, since — even though it looks impressive
— accuracy is not a particularly suitable measure for this
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Fig. 1. Impact of dataset size on classification accuracy

problem. As explained before, the baseline for our analysis
is to assume 5% fault frequency, and this is the ratio between
positive and negative examples in both training and test
datasets.

Therefore, accuracy of 95% can be achieved in a very
simple manner, by doing no generalisation whatsoever and
simply answering “No” to every query. As can be seen
from the plot, classification algorithms we are using are
employing more complicated schemes, but only Random
Forests consistently beats that simplest strategy, and only on
the test data set — which in itself is not entirely conclusive,
due to the limited size of the data we are working with.

Finally, this plot also shows that there is no significant
difference in results between out-of-bag and test data eval-
uations. Therefore, in some of the subsequent plots we
will limit ourselves to only presenting one of them, unless
particular scenario makes both interesting.

In figure 2 we are presenting the F-score:

F = (1 + β2)
precision ∗ recall

β2
∗ precision + recall

,

as this is one of the most popular measures that is actually
suitable for highly imbalanced data sets. In our case we have
decided to use parameterβ = 0.5, because in this appli-
cation, precision is significantly more important than recall:
every compressor that we do not flag as needing replacement
simply maintainsstatus quo, while every unnecessary repair
costs money.

By analysing this plot it is clearly visible that the dataset
we have currently access to is very small, only barely
sufficient for the analysis. Even when using all the data
as the training set, the F-score of the best classifier barely
exceeds0.2. On the other hand, this plot clearly shows that
we have not yet reached saturation levels, and it is reasonable
to assume that as more data becomes available, the quality of
classification will continue to increase. This also means that
most of the results presented subsequently can be expected
to improve in the future.

One of the most interesting questions with regard to
predictive maintenance is how early in advance can faults
be detected. In order to answer that, we have performed
an experiment where we were interested in evaluating the
influence of prediction horizon on the classification quality.
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In this case we have decided to present the results in
Figure 3 for three different values of fault frequency (colours
correspond to different classifiers, while line styles denote
5%, 20% or 50% class distribution). The imbalanced nature
of the data is obviously a problem, but as we have discussed
in section II, there is significant flexibility in how the final
product will be deployed, and that allows us some freedom.
Therefore, it is interesting to see prediction quality in a
number of settings. That said, the performance on highly
skewed data sets is still the most important one, because other
solutions typically involve various kinds of cost-incurring
tradeoffs. In order to not clutter the figure, we only include
F-score evaluated using out-of-bag method.

In most diagnostic applications the prediction horizon is
a very, if not the most, important measure. In out case,
however, it is both less critical and more difficult to define
precisely. The former comes from the fact that one is only
expected to exchange compressor once in a lifetime of a
vehicle. Therefore, the precise time of when is it done, as
long as it is reasonable, does not directly influence the costs.
There are, of course, some benefits of minimising wasted
remaining useful life, but they are difficult to measure since
they mainly relate to customer satisfaction.

The difficulty in defining the prediction horizon, however,
is definitely something we are interested in investigating fur-
ther. One idea would be to take into account individual usage
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patterns of trucks, for example by assuming that vehicles that
are rarely in the workshop should have longer advance notice,
while those that are maintained more regularly can wait until
the failure is more imminent.

At the moment, however, we are treating all data readouts
as individual and independent examples, and therefore each
of them has to be marked as either positive or negative
one. We use a very simple scheme of assuming that all
examples closer to the failure than the prediction horizon are
positive, and all examples further away are negative. This,
however, makes analysing influence of prediction horizon on
the classification quality more difficult, especially taking into
account the irregular intervals at which we obtain vehicle
data.

Moreover, during our first attempts of analysing the data
(which we are not presenting here due to space constraints),
we have encountered a situation that all machine learning
algorithms learned to almost exclusively consider charac-
teristics of particular trucks, instead of indicators of failing
compressor. They would provide, for most of the vehicles,
predictions that never changed over time. This resulted in
classifiers that achieved good accuracy and F-score, but were
completely useless from business point of view.

To this end we have decided to use exactly two data
readouts from each vehicle on which we have observed com-
pressor replacement: one positive and one negative example.
This solves the aforementioned problem, since now there is
no benefit to distinguishing individual, but it even further
reduces the size of available data. In addition, it is not entirely
clear how to choose which data readout to use, if we can only
use one of them.

On the one hand, one would want to use readouts as close
to the prediction horizon boundary as possible, to be highly
precise in predicting wasted life of the components. On the
other hand, it is not good to choose positive and negative
examples that are too close in time, since it is very likely
that the difference in logged data between those two points
does not contain any new information about state of the
compressor.

To this end, we have decided to choose one example from
each side of the prediction horizon boundary at random. It
means, however, that varying the prediction horizon only in-
troduces small changes in the actual training and test datasets.
It may even happen that for two significantly different values
of the horizon, we end up with the same data. This explains
the results that can be seen in Figure 3: prediction horizon
has very little influence on the F-score.

Accuracy and F-score are important measures from re-
search point of view. The inspiration for our work, however,
arises from practical needs of automotive industry, and the
major measure from the business perspective is clearly cost
reduction. It is very expensive to have components fail
during transport missions, because not only does it introduce
disruptions in the workshop operations, it also incurs other
costs, like towing, collateral damage, and customer dissatis-
faction. Therefore, it is cheaper to replace components during
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Fig. 4. Maintenance cost savings that can be achieved for varying fault
frequency in training dataset (test set always has 5% of positive examples).

scheduled maintenance. The exact degree to which this is the
case varies, of course, from component to component, and
depends on which factors are taken into account: reputation,
for example, is notoriously difficult to appraise.

Therefore, in order to be on the safe side, we have decided
to use a factor of2.5 to measure cost savings that can be
provided by our solution. In other words, it costs on average
two and a half as much to repair a truck in which compressor
failed on the road, as it would cost to replace this component
as a scheduled operation.

Figure 4 shows how the benefits of introducing our pre-
dictive maintenance solution depend on the fault rate in the
vehicle population. The most interesting is, of course, the
left side of the plot, because it shows that even the low
quality classification results that we are able to obtain from
our 1600 data samples are enough to offer tangible benefits.
Both Random Forest and C5.0 classifiers are accurate enough
to save expenses.

It is interesting to see how cost savings (at least looking at
out-of-bag data) grow as the imbalance in the data decreases.
This is consistent with results from Figure 2 and can be easily
explained by the higher quality of classification.

On the other hand, the cost when measured on the test set
drops very rapidly (except for the Random Forest classifier,
the result which we are not able to explain just yet). The
reason for this behaviour is that the test data always contains
95%–5% split of negative and positive examples. As the
distribution of data in the training set become more and
more different from the distribution in test set, the quality
of classification drops.

Finally, in Figure 5 we present the relation between True
Positives and False Positives, again as a function of fault
frequency. We are only using out-of-bag evaluation here. This
is the plot that actually contains the most information, since
those are the two factors that directly affect the economical
viability of our solution. As mentioned earlier, presence of
False Negatives does not affect the cost in any direct way.
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It is interesting to look at the differences between the three
classifiers, and the potential tradeoffs that may be important
from business perspective.

It is clear that KNN is not well-suited for this particular
problem, although it can possibly be explained by the fact
that we have not performed any data normalisation, and the
large differences in absolute values of various parameters
may be difficult for it to handle. Even for more balanced
data sets, this classifier is struggling to obtain more True
Positives than False Positives.

From the pure cost perspective, Random Forest seems to
be better than C5.0, because the difference between True
Positives and True Negatives is larger. On the other hand,
C5.0 actually detects more faulty compressors, in simply
makes more FP mistakes as well. In Figure 4 those two
classifiers score very close, but if we would assume another
relative costs for planned and unplanned component replace-
ments, the difference between them could be significant. It
would be interesting to investigate what is the reason for this
difference, and possibly to identify parameters that would
allow us to control this tradeoff.

VI. CONCLUSIONS ANDFUTURE WORK

The most important conclusion of this work is that using
data mining based on Logged Vehicle Data as predictive
maintenance solution in automotive industry is a viable
approach. We will continue the work in this area, investi-
gating more complex machine learning approaches. Current
classification quality and cost avoidance is not great, but it
is expected to increase as we get access to more data and as
we replace generic algorithms with more specialised ones.

It is known that data availability will dramatically increase
as the new Volvo truck reaches the customers. It is equipped
with new and enhanced telematics platform, enabling larger
and more frequent LVD readouts.

The second contribution of this paper is identifying a
number of distinctive features of automotive industry, and
discussion regarding to what degree do they fit typical
machine learning and data mining research paradigms.

Ideas for future work include extending this analysis to
other components, especially the ones where “exchange once

in a lifetime” assumption does not hold, as well as evaluating
known methods of dealing with imbalanced data sets.

It is also necessary to define the notion of prediction
horizon in a better way, preferably allowing learning algo-
rithm to choose the threshold in an individualised manner.
Another approach to investigate is to use regression to predict
time to repair. One possible solution would be to look
at the differences between readouts, as this may decrease
the correlation between examples and enhance classification
performance.
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