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 Abstract -- Hunger ranks as the number one health risk 

facing the world today, with scarcity of natural resources 

playing a key part in the problem.  Aquaponics has the 

potential for high-yield plant and animal production but has 

parameters that are substantially more difficult to maintain.  

To prevent failure and ensure maximum yields for minimal 

outside input, this paper proposes AI-based data mining to 

learn and maintain proper environmental conditions.  

Experiments are conducted that determine the 

appropriateness of various AI techniques for this project.  

These AI techniques are being applied in a real-world 

aquaponics farm. 
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I.INTRODUCTION 

 

 With approximately 870 million malnourished people 

in the world today, hunger tops the list of the worst health 

risks facing mankind (FAO, 2011).  This problem is being 

addressed from multiple directions, including 

technological developments, policy implementation, 

education improvements, and financial assistance 

(Sanchez, 2009; Bratspies, 2012). 

 One cause of hunger is scarcity of natural resources, 

particularly water and fertile ground.  Aquaponics has 

shown potential as a method of overcoming this problem 

by completely eschewing the use of soil and needing only 

2 to 10% of the water required by traditional farming 

methods. 

 The term aquaponics is a portmanteau of the terms 

aquaculture (raising aquatic animals such as fish) and 

hydroponics (cultivating plants in water).  In such a 

system, plants and animals exist in a symbiotic 

relationship, nourishing each other and removing toxins 

harmful to the other.  In its most basic form shown in 

Figure 1, bacteria break down the toxins created by fish 

and provide nourishment to the plants in the form of 

nitrogen compounds.  The plants then filter out the 

nitrogen and provide a beneficial habitat for the fish.  

 

One complication with the use of aquaponics is the 

margin of error restrictions when compared to traditional 

farming techniques.  While traditional farming can be 

successful under a variety of conditions, aquaponics is far 

less forgiving.  If the margin of error in traditional 

farming could be compared to the width of a two-lane 

highway, the margin of error in hydroponics is a six-foot 

sidewalk, and aquaponics’ is a narrow footpath.  Thus, 

constant monitoring must be provided to maintain ideal 

conditions lest the system break down with disastrous 

results. 

 In its most basic form, this monitoring could be 

performed manually by humans.  However, as the size 

and complexity of the aquaculture system increases, the 

chance of human error increases.  In fact, the complexity 

of the system could prevent humans from even noticing 

correlations between events occurring in seemingly 

unrelated portions of the structure.  This problem 

increases as modern sensor technology is added; although 

sensors provide round-the-clock monitoring, the 

significance of particular details in massive amounts of 

data can easily be obscured. 

 This paper proposes the use of artificial intelligence 

to provide data mining of relevant sensor data in an 

aquaponics system.  The AI could discover growing 

parameters that are most successful in the farm’s 
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Figure 1: Aquaculture Cycle 



particular climate and maintain those parameters once 

reached.  The experiments in this paper aim to isolate AI 

techniques that pertain to this goal. 

 The remaining portions of this paper are as follows.  

Section 2 explores the history of aquaponics and current 

research on the topic.  Section 3 examines potential 

methods for modeling the farm and AI.  Section 4 details 

our experimentation and results.  Section 5 describes our 

on-going real-world work on this topic. 

 

 

II. AQUAPONICS BACKGROUND 

 

 Aquaponics has been in use for many centuries, 

notably in ancient Central American and Southeast Asian 

cultures.  However, recent developments in large-scale 

deployment have been pioneered by researchers at the 

University of the Virgin Islands (Rakocy, 2013).  Many 

other tropical countries and islands have followed suit, 

attracted to the prospect of food production in resource-

poor regions.  Unfortunately, these efforts have focused 

on tropical climates where plant growth is at its most 

ideal. 

 Modern aquaponics consists of two separate 

components, one for fish and one for plants.  The 

separation prevents the fish from eating plants destined 

for human consumption.  Fish are further separated 

between young fish fry and older fish that may eat the fry. 

 The system in which the plants and fish are raised is a 

closed loop.  This would generally limit the inclusion of 

no more than a few plants or fish before the system 

became toxic.  However, the synergistic properties of 

plants and fish, combined with aggressive oxygen 

dissolution, allow a much higher concentration of 

agriculture yield than would normally be found in nature. 

 While many different species of plants and fish are 

possible, certain types are more commonly used.  Tilapia 

are commonly grown fish, while leafy vegetables such as 

lettuce appear to perform well in an aquaponics system 

(Pantanella, et al, 2010).  

 There are several high-tech hobbyists who have 

begun to integrate sensors into aquaponics (ManyLabs, 

2013; Robb, 2012).  However, these systems are 

exclusively for monitoring conditions and alerting the 

operator to out-of-bounds conditions.  They provide no 

control systems, nor do they quantify the effect of their 

sensors on the food yield (e.g., fewer dead fish leading to 

increased number that reach maturity). 

 Variations on the system are possible.  Some could 

include additional small animals such as rabbits and 

chickens.  The waste products of these animals can be 

used for fertilizer while the unused portions of their 

carcasses can be ground into meal for cross-feeding to the 

other species of animals in the system.  In nutrient-poor 

conditions, additional fertilizer could be safely composted 

from many different types of waste materials, including 

sewage if necessary. 

 

 

III. METHODOLOGY 

 

 Our real-world aquaculture farm utilizes many 

measurements taken from a number of locations.  

However, our data gathering experiments only those 

measurements that are provided by automated sensors.  

These sensors include sensors in both water and air.  Air 

sensors are limited to brightness and temperature.  Water 

sensors include clarity (brightness), temperature, 

dissolved oxygen, pH, nitrogen, and water current.  These 

sensors are located at the entrance and exit of each tank in 

the aquaponics system. 

 Additional inputs come from human operators that 

designate when certain maintenance functions are 

performed.  These include adding new fish, extracting 

healthy fish for food production, presence of dead or sick 

fish, addition of fish food, addition of water, addition of 

nutrients, and addition or removal of plant material.  The 

location of each of these events is also recorded.  Finally, 

the user records a range of times and dates where the 

system appears to be working well or poorly and assigns a 

confidence in the score.  

 We examined several potential methods for 

extracting relevant information from the data.  Of 

particular interest for this paper were two AI techniques:  

artificial neural networks and nearest neighbor models.  

Each of these techniques should be able to utilize the 

user’s assessments of times and dates as training data for 

future decisions. 

 

 

IV. EXPERIMENTATION AND RESULTS 

 

 Utilizing simulation recommendations from other 

researchers in environmental information systems (Boote, 

et al, 2010) and data generated from existing sensors, we 

built a simple agriculture simulator to determine which, if 

either, of our methodologies would show potential 

capability for predicting events and determining 

appropriate behaviors in our aquaponics system.   

 We implemented the nearest neighbor model (Stanfill 

and Waltz, 1986) using a k-d tree, allowing it to search in 

O(log N) time and allowing real-world data to logged and 

used as training data at the same time.  Accuracy was 

boosted by utilizing a support vector machine (Boser, et 

al, 1992) to kernalize the algorithm.  This model did a 

good job of recognizing situations that were similar to 

known events, labeling them properly, and determining 

appropriate actions.  However, solution time was over 100 

times slower than a simulated neural network as shown in 

Figure 2.  A neural network implemented in hardware 

would show significant improvements. 

 The neural network was implemented as a basic 

multilayer feed-forward network utilizing back-

propagation for inputting the training set.  This method 

had success rates lower than the nearest neighbor model, 

but the results were returned significantly faster. 



 

 Errors in the returned data were most likely caused 

by errors in the recorded times for events.  If operators 

over- or under-estimate the time in which an event 

occurred (such as dying fish), unrelated data would be 

erroneously accused of being involved in the event. 

 Examination via qualitative analysis of these two 

algorithms provides similarly murky conclusions.  

 The slower speed of nearest neighbor doesn’t appear 

to be a significant problem in an aquaponics system.  

While poor conditions can quickly kill fish stock, these 

times are measured in hours, not minutes or seconds.  

Thus, the slower speed should not impact our decision. 

 The nearest neighbor algorithm is also able to 

continuously learn from new data.  This allows it to 

incorporate unforeseen events into its knowledge base.  

The neural network would require its operator to 

manually feed the new event data back into the AI as 

additional training information.  On the other hand, the 

neural network’s lack of a growing database allows for 

much cheaper memory requirements. 

 Additionally, the neural network can be implemented 

in much simpler hardware than the nearest neighbor 

algorithm.  While the nearest neighbor algorithm may 

seem to be the clear winner, the reality is that the 

aquaponics system will likely be deployed in “rugged” 

conditions where maintenance of a complex computer 

system is not feasible.  The neural network would be 

implemented as a simple “black box” control circuit. 

 It appears the best solution would be a neural 

network with a limited data memory.  If a new training 

case was encountered, the data memory would allow the 

information to be fed back into the network for additional 

training.  This capability should be provided in a very 

simple user interface, ideally with two dials to set the time 

range to include and a button to execute the retraining.  

Thus, the basic neural network could be trained for a 

general climate, with future modifications adjusting it to 

the local microclimate.   

 

 

V. ON-GOING AND FUTURE WORK 

 

 This sensor network is currently being implemented 

on a farm in western Arkansas.  One initial goal is to 

determine if such a system can boost the yield of an actual 

aquaculture system in a temperate zone.  The farm has 

been in place for a year and has produced an average of 

over 3.5 pounds of food per square foot, a significant 

improvement over traditional farming at almost 0.25 

pounds per square foot.  Experiments will show if the AI 

can actually improve those numbers further.  Experiments 

are currently being performed on tilapia and lettuce, but 

future trials will be performed on beans and roses. 

 Future experimentation will focus on association rule 

learning to allow an AI to determine appropriate actions 

for complex systems without requiring human input.  For 

example, feeding fish may trigger a chain reaction that 

alters the pH of the hydroponic plant tanks.  If the 

relationship is discovered, the AI could take pre-emptive 

measures to level the pH and prevent a spike whenever 

the fish are fed. 

Figure 2: Reaction speed of Algorithms 



 On the engineering side, steps will be taken to 

ruggedize the components for use by non-technical 

personnel.  

 Regarding quality assurance, steps can be taken to 

allow this system to degrade gracefully.  Experiments will 

be run which will intentionally limit the capabilities of 

components to see if the system can be made to 

successfully adapt. 
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Figure 3:  Error rate of algorithms 


