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Abstract— Recommendation systems take advantage of
products and users information in order to propose items to
targeted consumers. Collaborative recommendation systems,
content-based recommendation systems and a few hybrid
systems have been developed. We propose a dynamic and
adaptive framework to overcome the usual issues of nowa-
days systems. We present a method based on adaptation in
time in order to provide recommendations in phase with the
present instant. The system includes a dynamic adaptation
to enhance the accuracy of rating predictions by applying
a new similarity measure. We did several experiments on
films data from Vodkaster, showing that systems incorporat-
ing dynamic adaptation improve significantly the quality of
recommendations compared to static ones.
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1. Introduction
This work has been carried out in partnership with the

website Vodkaster1, often considered as the Cinema social
network in France. Users post micro-reviews (MR) to express
their opinion on a movie and rate it. These reviews should
not exceed 140 characters like on Twitter. More details on
the corpus are given in section 5.

Though for the moment, we use only the users ratings,
note that as future work, we intend to include the semantic
level derivable from the reviews. In this perspective we
will take into account for each pair movie-user both a
rating and the textual argument associated to it. However,
this is not the only reason we are working on the dataset
provided by Vodkaster. In fact, we are interested in building
a recommendation system relying on opinions expressed by
a cinephilic community, exactly what Vodkaster offers.

Nowadays, classical Recommender Systems (RS) are able
to suggest appropriate items to users from a large catalog of
products. Those systems are individually adapted by using
a profile for each user, itself made upon an analysis of
past ratings. The most common techniques used in RS are
Content-Based Filtering (CBF) and Collaborative Filtering
(CF). Hybrid systems combine collaborative and content-
based techniques, thus taking advantages from both methods.

1www.vodkaster.com

However, whatever the technique used, one of the biggest
issues remains reactivity [2]. The last decade has shown a
historical change in the way we purchase and/or consume
products. Nowadays, society demands having everything
instantaneously. The needs have to be satisfied and change
more and more quickly. This is mostly due to the growth
of the Internet use and it is Internet itself that allows us to
meet this legitimate expectation. It is therefore necessary to
design RS adapting themselves instantaneously [5].

In this paper, we propose a new method that makes the
system very fitted to dynamic behavior, reactivity and swift
adaptivity. From this point of view we have to avoid the
complete recalculation of models at each new incoming data
or update, but only update a few relevant variables. In this
way the system will be able to react promptly on the fly.

In the next section, we present the state of the art in
recommendation systems and introduce our improvements.
Then, we present our approach and define the methods
corresponding to it. We describe the evaluation protocol
and perform experiments. Finally we report our results and
compare them to a baseline.

2. Related work and choice of a baseline

In this section, we present the methods used in most of
classical recommender systems. [6] CF system uses logs
of users, mainly user ratings on items, with dates. In these
systems, the following hypothesis is made : if user a and
user b rate n items similarly, they will rate other items in
the same way [4]. This technique has many well-known
issues such as the cold start problem, i.e when a new
element (item or user) is created, it is impossible to make
a recommendation, due to the absence of rating data. Other
limitations of recommendation systems are the data sparsity
problem, the scalability problem, overspecialization and
domain-dependency.

In CBF systems it is supposed that users are independent
[3]. Hence for a given user, recommendations will be made
by taking into account items he previously liked. Metadata
are compared to explicit or implicit user preferences. Unlike
CBF, CF systems do not need a description of items to be
recommended, a simple identifier number is enough.



2.1 Similarity measures
The similarity measures between two entities (items or

users) is a cornerstone of systems based on neighborhood
methods and one well worth noting [11]. The Pearson
(eq.1) correlation coefficient was one of the first similarity
measure proposed by Resnick [1]. There exist other
similarity measures such as Jaccard [12] [14], Cosine,
similarity based on the Euclidian distance, etc.

Let Ti be the set of users who have rated item i, Su the
set of items rated by u, ru,i the rating of user u for item i
and rx the mean of x (user or item).

Pearson(i, j) =

∑
u∈Ti∩Tj

(ru,i − ri)(ru,j − rj)√∑
u∈Ti∩Tj

(ru,i − ri)2
∑
u∈Ti∩Tj

(ru,j − rj)2
(1)

We choose the Pearson similarity measure as a baseline.

2.2 Rating prediction
Consider a given user u and a given item i. We assume the

pair (u, i) is unique since generally, social networks may not
allow one user to give multiple ratings for one item, and this
rule is applied by Vodkaster. We define two rating prediction
methods : one user oriented and the other item oriented. In
the following, Sim will denote a similarity function.

rating(u, i) =

∑
v∈Ti

Sim(u, v)× rv,i∑
v∈Ti
|Sim(u, v)|

(2)

rating(i, u) =

∑
j∈Su

Sim(i, j)× ru,j∑
j∈Su

|Sim(i, j)|

Finally, we do a linear combination of rating(u, i) and
rating(i, u) .

r̂u,i = β × rating(u, i) + (1− β)× rating(i, u) (3)

We add two components in order to balance and correct
the prediction by taking into account ru and ri. We combine
these two averages ratings with two coefficients, mi for ri
and mu for ru., with mi+mu = 1. We call this new rating
function weighted rating (r̂w)

r̂Wu,i = γr̂u,i + (1− γ)(miri +muru) (4)

In the case where r̂u,i is not computable, we apply a
backing off like strategy relying on miri + muru. It is
possible that i (or u) has no ratings, hence ri (or ru) does
not exist. In the absence of either one of these two averages,
we only rely on the other one.

3. Methods
In this section we present the methods we use and propose

some of the improvements we have implemented in our
system.

3.1 Distance of Manhattan
To derive a similarity measure from the distance of

Manhattan, also known as the taxicab distance [13], we take
the complement to one. Hence, the more ratings are close,
the more the similarity tends to 1, and therefore the more
the users or items are considered as alike. We normalize
the results by dividing the sum by the maximum difference
between two ratings (MaxD) times the number of elements
in the intersection. In the remainder, this similarity function
is used for both users and items. In the following k is either
an item or user, x, y is a pair of items or users depending
on the case.

Manhattan(x, y) = 1−
∑
k∈Tx∩Ty

|rk,x − rk,y|
|Tx ∩ Ty|MaxD

(5)

We add another component that takes into account the
difference of the means rx − ry , with a coefficient F . This
new component can be useful in some cases. For instance,
let us look at the similarity between user a and user b.
User a has a certain tendency to be very severe on items he
rates. On the contrary, b is more indulgent. This difference
of behaviors between a and b is somehow related to the
difference of average ratings. In the end, this heterogeneity
is taken into account in the similarity by a coefficient F .

Manhattan2(x, y) = 1−
∑
k∈Tx∩Ty

|rk,x − rk,y|+ F |rx − ry|
(|Tx ∩ Ty|+ F )MaxD

(6)
We use a coefficient proportional to the cardinality of the

intersection Tx ∩ Ty as a confidence measure. Therefore we
are giving more weight to items sharing a greater number
of users. We call this similarity measure the Manhattan
Weighted Corrected similarity (MWC).

MWC(x, y) =Manhattan2(x, y)×
(
1− 1

|Tx ∩ Ty|α

)
(7)

3.2 Metadata
Metadata allows our system to overcome the cold start

problem whenever a new item is added to the database and
thus has not been yet rated. It is therefore impossible to
compute the similarity with another item based on ratings
of common users. The use of metadata can fix this problem,
since we can now compare two items according to their
metadata. In our case, we are dealing with movies. Meta-
data are for instance the director’s name, main actors or
genre. Such data can be found on IMDB2 (Internet Movie
DataBase) and can be downloaded.

2www.imdb.com



3.3 Dynamic adaptation with Manhattan
In this section we present the process used to attain a

dynamic adaptation along time. The key idea follows the
simple principle that each update or new pair (u, i) has to be
taken into account instantaneously by the system. It cannot
be delayed for some days since everything changes so fast.
It could already be too late and thus mislead the following
recommendations, especially the ones based on a small
number of ratings. One log of rating can make the difference.

The similarity measure named Manhattan Weighted
Corrected (eq. 7) is designed to allow us to update items-
to-items and users-to-users similarities in a very efficient
way. Indeed, unlike Pearson or Cosine, this method does
not lead to a complete re-calculation of the pre-calculated
models.

For instance, we look at the similarity between item a and
item b. User sarah has previously rated item a and now
rates item b, that she has never rated before. rsarah and rb
are updated very easily. Indeed, if we look at the details of
the MWC function, we clearly see that in the numerator sum
: ∑

u∈Ta∩Tb

|ru,a − ru,b|

since sarah is now belonging to Ta ∩ Tb, we just need to
add |rsarah,a − rsarah,b| to the pre-calculated sum. We also
have to increment the cardinality of the intersection by one.
And we are done. With only four simple additions, we have
updated the database. The same holds for items.

Taking advantage of this property, we ran the updating
algorithm on the training corpus. The results are outstanding.
The complexity has been reduced from o(n2) to o(n) (square
to linear). If we consider the whole set of updates, we
reduced from o(n3) to o(n).

Suppose now a new item is created and consequently has
not been rated yet. It is thus impossible to predict a rating for
this item, unless we take into account metadata. We define a
new similarity measure based on metadata, namely Metadata
Based similarity (MBS). Let Mx be the set of metadata of
x (user or item). We then have the following :

MBS(x, y) =
|Mx ∩My|
|Mx ∪My|

(8)

This ratio is also known as the Jaccard similarity coeffi-
cient, used to measure similarity between two sets.

In case the classical similarities cannot be calculated,
MBS allows the system to make a prediction and therefore
it increases the coverage. In other cases where an item has
already been rated, the use of MBS enhances the prediction
precision (see results).

4. Evaluation criteria
In this section we present our evaluation protocol. Since

we cannot make online experiments with real users, we are
not able to measure the impact of our recommendations,
that should lead in the best case to an act of consumption
with a good feedback (good rating). However, the key point
in a recommender system is the rating prediction accuracy
[10]. Hence, one could say that a recommender system
could be evaluated on his ability to predict the rating of a
given user u for an item i. From this perspective, we can
test the system on predicting a rating for which we know
the actual real rating. In other words, we compare ru,i and
r̂u,i.

If a prediction r̂u,i is less than a certain threshold rmin, we
assume item i is not recommendable for user u. Therefore,
any prediction below this threshold is not taken into account
in the evaluation. On the contrary, when r̂u,i > rmin and
ru,i > rmin, we consider our recommendation as successful.

Ideally we should be able to measure the quality and
the performance of two functionalities expected from a
recommender system. The first one is the ability to promote
an item appreciated by a small number of amateurs to a
maximum number of users themselves likely to appreciate
it. The second one consists in recommending to an user the
maximum number of items he is likely to appreciate. In this
paper, we did a hybrid evaluation. We evaluate the system
globally on each pair (u, i). Hence we are in between the
promotion of items for users and the promotion of users for
items.

4.1 Root Mean Squared Error
This measure namely Root Mean Square Error is often

used to evaluate different methods applied in RS. It also has
become popular with the Netflix Challenge [7]. Let R be the
set of the predicted ratings, the RMSE is defined as follows
:

RMSE =

√√√√ 1

|R|
∑

(u,i,r)∈R

(r̂u,i − ru,i)2 (9)

It is widely assumed that reducing the RMSE amounts to
increasing the relevance and precision of the recommenda-
tions.

4.2 Mean Absolute Error
We also use the Mean Absolute Error (MAE) to evaluate

how close our predictions are to the real ratings. The mean
absolute error is given by :

MAE =
1

|R|
∑

(u,i,r)∈R

|r̂u,i − ru,i| (10)



5. Experiments
5.1 Corpus

The corpus contains over 50,000 MR. For each MR, we
have : an unique ID, the author’s name, the text, the rating
(0.5 up to 5), the date of the post, the film title, its country,
and its release year. We have split the corpus into three sub-
corpuses : training, development and test. The date makes
the corpus chronologically sortable. It is very important to
note that in our experiments, we take into account the date
since we work on dynamic adaptation. The chronological
order, from old to recent is : training, development, test.

Training Development Training+Development Test
Size 57631 9999 68502 9999

Films 8680 3298 9428 3951
Users 1824 730 2080 737

Development Test
User unseen 2858 3274
Film unseen 2452 1895

User and Film unseen 446 375
User unseen different 244 235
Film unseen different 675 849

User and Film unseen different 442 375

Table 1: Statistics on the corpus

The second part of Table 1 shows how important the
adaptation is. Indeed, the number of unseen users and unseen
films is quite large (first two rows). Note that these users and
films are re-appearing at least twice in the development (or
test) corpus. In this case, adaptation makes even more sense.
This is not the case when an unseen user or film appears only
once (last 3 rows of the table). The worst case is when we
have a two sided cold start, from the user’s side and the
film’s side (user and film unseen).

5.2 Evaluating
To evaluate the system, we first create our item-users

database from the training sub-corpus. (8680 items, 1824
users) Then, we go through the development sub-corpus.
Each element in it is a pair user-item (u, i), containing the
rating of user u on item i. In the remainder, an item (or user)
that has been rated by users (resp. rated items) is considered
has seen. Otherwise it is unseen. For each of the following
cases, the system reacts differently.

a) u and i are seen: This is the simplest case in which we
have rating data for i and u. We just use the weighted rating
method (eq. 4).

b) u seen, i unseen: Item i is a new item and has not been
rated yet. But u is seen. This means u has already rated
at least one item. We can thus use the user oriented rating

function with the metadata based similarity function. This
rating function is based on similarities between i and the
items already rated by u. It is hence not necessary for i to
be seen (i.e rated).

c) u unseen, i seen: User u is new and has not rated any
item yet. But i is seen. This means i has already been rated
once. In that case, we use the item oriented rating function
again with the metadata based similarity function. This rating
function is based on similarities between u and the users that
have already rated i. It is hence not necessary for u to be
seen.

d) u unseen, i unseen: In this extreme case, we generally
have access only to the metadata for items nor for users. It
is then difficult to make a prediction.
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Fig. 1: Accuracy in function of γ at constant coverage (2200
predictions) on the development corpus. Optimal value is 0.6

We did several tests on the development corpus in order
to determine the optimal γ. Recall that this coefficient
weights the average in the weighted rating prediction
formula (eq. 4). The results of these tests are shown on
figure 1.

Figure 2 shows the effect of adaptation. We recall that the
development corpus (and others too) is sorted chronologi-
cally, from older to newer ratings. Therefore in this graph,
the closer we are to time zero, the closer we are to the
training corpus, time speaking. The first observation we can
make is the global tendency for accuracy to decrease as time
goes by, that is as we go away from the training corpus in
time. However, we also observe that the adaptation slows
down this tendency and in some time ranges even reverse
the trend (between 1500 and 1800).
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Fig. 2: Evolution in time at constant coverage (2100 pre-
dictions) with adaptation and metadata, and none of them
(development corpus)

5.3 Results
To be able to compare different methods, we take a

constant coverage (2200 predictions).

5.3.1 Pearson
We present here the results obtained with our baseline.

Corpus Method Score RMSE MAE
Development No adaptation 84.36 0.93 0.73

Test No adaptation 86.77 0.94 0.71

Table 2: Results with Pearson

We observe that the results are better on the test corpus
than on the development corpus. This can be explained by
the fact that the training corpus used for predicting the test
is larger than the one used for predicting the development.

5.3.2 Manhattan Weighed Corrected
We present here the results with our method.

Score RMSE MAE
No adaptation No metadata 91.09 0.90 0.70

Adaptation only 92.76 0.88 0.69
Metadata only 91.50 0.89 0.70

Metadata and Adaptation 92.93 0.87 0.68

Table 3: Results with MWC on the development corpus

Table III and Table IV show the effect of adaptation and
metadata, together and separately. We can see that using
metadata only is not as useful as expected. However, the

Score RMSE MAE
No adaptation No metadata 89.6 0.98 0.75

Adaptation only 90.6 0.94 0.72
Metadata only 89.3 0.99 0.75

Metadata and Adaptation 90.7 0.94 0.73

Table 4: Results with MWC on the test corpus

adaptation combined with metadata allows a gain in accuracy
greater than 1.5%.

5.4 Analysis
We present some examples of good recommendations

and mistakes too.

• The Hobbit : An Unexpected Journey (2011, USA)
recommended to user Zarai.

#ratings in training #ratings in test Average
The Hobbit 0 7 3.76

Zarai 0 87 4.4
Predicted rating 5 Real rating 5

We are able to recommend a film that has not been
rated yet to an user unseen in the training. Thanks to
adaptation, this becomes possible and the prediction is
a very good one.

• Le Père Noël est une ordure (1982, France) recom-
mended to user Fernand.

#ratings in training #ratings in test Average
Le Père Noël... 14 2 4.1

Fernand 0 45 4.2
Predicted rating 5 Real rating 5

We recommend this film seen 14 times in the training
corpus to an user named Fernand unseen in the training
corpus (does not include any movie rated by him).
However, at the moment we recommend this movie,
we can take into account all of his ratings found in the
test so far. This example is a good proof of the interest
of a short-term adaptation.

• The Nightmare Before Christmas 3D (2006, USA)
recommended to user Bart.

#ratings in training #ratings in test Average
The Nightmare... 2 (r = 1, 3) 2 (r = 4.5, 5) 3.4

Bart 0 31 4.68
Predicted rating 4.7 Real rating 2.5

This is the first error observed when the predictions
values are sorted in decreasing order. The user has
rated this movie 2.5. However, it has been well rated
in the test and it’s probably the main reason we have
recommended it. Before the recommendation has been
done, Bart’s average rating was 4.68, which is very
high. In this case, adaptation misleads the system.



5.4.1 Accuracy in function of coverage
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Fig. 3: Accuracy for Pearson and MWC in function of the
coverage on the development corpus

Figure 3 depicts the difference of accuracy between a
classical Pearson similarity measure and the Manhattan
Weighted Corrected similarity at several levels of coverage.
We can see that in the case of the MWC method, the accu-
racy stays very high (over 92.5%) even for large coverages
(over 2000). On the contrary, the Pearson similarity leads
to a very fast decrease in accuracy. Indeed, the accuracy is
only 85.1% at a coverage of 2000, whereas the MWC gives
93.3%. Our method outperforms the baseline.

5.4.2 Robustness

As we can see in Fig. 4, the results obtained on the test
and development corpus can be considered as similar since
the confidence interval has been estimated to be 0.011 (i.e
1.1%).
Fig. 4 also depicts the fact that the knee of the curve,
for both development and test experiments is around a
prediction value of 3.75 (vertical line). Below this threshold,
the accuracy level drops very quickly. However, predictions
above the same threshold can be considered as trustworthy
(see Table V).

Threshold Coverage Accuracy RMSE MAE
Development 3.75 1537 94.5 0.84 0.65

Test 3.75 1455 92.4 0.92 0.69

Table 5: Accuracy at a preset confidence level
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Fig. 4: Accuracy in function of the predicted ratings on
development and test corpora

6. Conclusions and perspectives
In order to obtain a flash reactivity, we have proposed a

new similarity measure based on the distance of Manhattan.
This new measure named Manhattan Weighted Corrected
similarity leads to a significant decrease in complexity and
allows an instantaneous adaptation. Hence we are able to up-
date the parameters of the recommender system step by step,
whenever a new rating occurs. Thanks to this new method,
we obtained results outperforming the one’s obtained with a
classical Pearson. Moreover, by applying the same algorithm
during the training phase, we have dramatically reduced its
complexity. We have also shown that this method allows us
to perform a detailed analysis of the prediction errors (bad
recommendations). This analysis could be used for future
improvements of our system.
We are currently working on adding text content. The idea
is to extract information about users movies taste (horror
film, thriller, this actor, interested in soundtrack...) and
films characteristics (good scenario, too long, great special
effects...) as it is expressed in natural language in micro-
reviews. Therefore, it will be possible to take into account
the aesthetics tastes of users and not only their ratings.
We are also developing a new adaption method that adapts
itself according to the users taste at a given moment in
time. We will check whether it is worth or not to take into
account the entire rating history. This is coherent with our
conception of recommendation. We believe that nowadays
recommender systems have to be instantaneous, giving the
right recommendation at the right time, learning from their
mistakes, and adapting the model not to repeat again and
again the same errors.
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