
A Study of kNN using ICU Multivariate Time Series Data

Dan Li1, Admir Djulovic1, and Jianfeng Xu2

1Computer Science Department, Eastern Washington University, Cheney, WA, USA
2Software School, Nanchang University, Nanchang, Jiangxi, China

Abstract— A time series is a sequence of data collected at
successive time points. While most techniques for time series
analysis have been focused on univariate time series data
at fixed intervals, there are many applications where time
series data are collected at irregular and uncertain time
intervals across multiple input variables. The uncertainty
in multivariate time series makes analysis difficult and
challenging. In this research, we study kNN classification
approach applied to ICU multivariate time series data for
patient’s mortality prediction. We propose three time series
representation strategies to handle irregular multivariate
time series data. The experiments show the performance of
these three methods in different settings. We also discuss the
impact of imbalanced class distribution and the effect of k
in kNN classification.

Keywords: Classification, kNN, Multivariate Time Series.

1. Introduction
Time series data have become available in many fields

of study including signal processing, pattern recognition,
weather forecasting, electroencephalography, scientific simu-
lation, etc. Consequently, there have been increased interests
in analyzing and predicting time series data using data
mining techniques. Besides all the common features of data
mining, the research on time series analysis has its unique
challenges because of the high-dimensionality and multi-
granularity features of time series data. Therefore, it is a
non-trivial task to develop efficient and effective data mining
solutions for time series analysis.

The research on time series analysis has been focused on
two main areas [1]: (1) to find proper representation methods
to reduce high dimensional time series data; and (2) to de-
fine effective similarity/distance measures to compare mul-
tiple time series sequences. Many dimensionality reduction
techniques have been proposed and implemented to trans-
form original raw time series data into lower dimensional
representations. These techniques include Discrete Fourier
Transformation (DFT) [2], Discrete Wavelet Transformation
(DWT) [3], Piecewise Aggregate Approximation (PAA) [4],
Principal Component Analysis (PCA) [5], Symbolic Ag-
gregate approXimation (SAX) [6], Single Value Decompo-
sition (SVD) [7], etc. Correspondingly, similarity/distance
measures have been discussed in the literature focusing on
the comparison of time series data. The commonly used
measures include point-to-point distance measures such as

Euclidean distance and Dynamic Time Warping (DTW) [8],
and edit distance measures for strings such as the Longest
Common Subsequences (LCS) [9].

A time series is a sequence of data typically measured
at successive points over time at uniform time intervals.
The time granularity determines the interval length between
two adjacent time points [10]. While most time series
representation methods have been focused on the analysis
of time series data at fixed and stable time granularity, there
are many applications where time series data are collected
at irregular and uncertain time intervals. For instance, the
Computing in Cardiology Challenge (2012) provides the data
sets for predicting mortality of Intensive Care Unit (ICU)
populations [11]. The input time series measurements are
recorded in chronological order within each patient record.
Some measurements are recorded at regular intervals ranging
from hourly to daily, while others are recorded at irregular
intervals as required [11]. This is an example of irregular
time intervals caused by intended irregular data collection
patterns. There are other cases when the uncertainty and the
irregularity are caused by inherent imprecise data collection
tools and privacy-preserving transformations [12].

There have been some studies on the analysis of imprecise
and uncertain time series data [13], [14], [15], [16]. In
these studies, various distance measures and probabilistic
query models have been proposed to embrace the uncertainty
and the incompleteness of time series data. However, most
of these studies have been limited to the cases where the
time series data are collected over uniform time intervals,
and the time series itself is univariate time series. In this
paper, we focus on the study of multivariate time series
measurements being collected at irregular time intervals.
We use the data collected from patients’ ICU stays [11]
as an example and the ultimate goal is to design proper
analytical solutions to deal with multivariate time series
data at irregular intervals for ICU patients’ mortality pre-
diction. The rest of this paper is organized as follows:
Section 2 describes the notations and the concepts of the
related work on multivariate time series representations;
Section 3 discusses the methodologies we have proposed
for representing irregular ICU multivariate time series; The
experimental results and analysis are provided in Section 4;
Finally, concluding remarks along with directions for future
improvements are presented in Section 5.

2. Multivariate Time Series Representa-
tion

Typically, a multivariate time series instance can be rep-
resented as an m× n two-dimensional matrix D:

D =

d11 d12 . . . d1j . . . d1n
d21 d22 . . . d2j . . . d2n

...
...

. . .
...

. . .
...

di1 di2 . . . dij . . . din
...

...
. . .

...
. . .

...
dm1 dm2 . . . dmj . . . dmn

(1)

where m is the number of input variables, n is the total
number of time points, and dij is the data point measured
on input variable i at time point tj (1 ≤ i ≤ m and 1 ≤ j ≤
n). This representation assumes that all m input variables
are measured along the same time sequence (t1, t2, ..., tn)
and the time intervals between each adjacent pair are equal.
Here time interval is a time unit measuring the sampling
rate of a time series. One example of such representation is
for weather forecasting where the weather-related variables
(temperature, precipitation, wind, etc.) are collected over an
even time interval, e.g., every ten minutes.

Fig. 1: Time Series at Regular and Irregular Interval

While the above matrix D is typically used to represent
the multivariate time series at uniform time intervals, there
are many real-world applications where the time series
demonstrates various and irregular time intervals due to
various data sampling rates. For instance, Figure 1 shows
two time series sequences collected from two ICU patients
(eg001 and eg002) on variable pH (a measure of the activity
of a patient’s hydrogen ion) [11]. The time series of patient
eg001 has uniform intervals, while the time series of patient
eg002 demonstrates various and irregular time intervals.
Therefore, to be able to generally represent multivariate time
series instances at either uniform or irregular time intervals,
we modify the above matrix D into the following format:

D =

(d11, t11) . . . (d1j , t1j) . . . (d1n1
, t1n1

)
(d21, t21) . . . (d2j , t2j) . . . (d2n2

, t2n2
)

...
. . .

...
. . .

...
(di1, ti1) . . . (dij , tij) . . . (dini

, tini
)

...
. . .

...
. . .

...
(dm1, tm1) . . . (dmj , tmj) . . . (dmnm , tmnm)

(2)

where m still denotes the number of input variables in
a multivariate time series. Since the time series data are
collected over uncertain intervals, the time series sequences
from different input variables may end up with different
number of data observations. To be more general, we use
n1, n2, ..., and nm to denote data observation numbers of
each variable in an m-variate time series. Each pair (dij , tij)
represents the data point of the ith input variable measured
at the jth time stamp.

Note that D represents only one multivariate time se-
ries instance. If multivariate time series data are collected
from multiple instances (e.g., data could be collected from
multiple ICU patients, and the data set for each patient
is a multivariate time series data set), we use Dall =
{D1, D2,, Dp} to represent a set of multivariate time
series of p instances, where each Di (1 ≤ i ≤ p) is an
m-dimensional vector of the above structure.

Now let’s introduce our problem definition: Given an
unlabeled multivariate time series Q, assign it to one
of the two pre-defined classes {0, 1} by learning from
a training set Dall of p multivariate time series in-
stances. Here, Dall = {(D1, c1), (D2, c2)...., (Dp, cp)} and
(c1, c2, ..., cp) ∈ {0, 1} denote the known class labels of p
training instances.

From the problem description, it is not hard to see that the
problem itself is a typical classification problem. However,
what makes this topic challenging is the needs of handling
time series among multiple input variables and multiple
instances. In other words, the number of available data
observations varies among different input variables regarding
each multivariate time series instance. Meanwhile, it also
varies among different instances regarding the same input
variable. Therefore, it is a non-trivial task to develop feasible
solutions for the above classification problem.

3. Methodologies
Among many existing classification algorithms, we plan to

use k-Nearest-Neighbor (kNN) approach because it is easy
to implement and it handles numerical values conveniently
and effectively. The key component of this research lies in
how to define the distance measures among multivariate time
series at various and irregular time intervals. The rest of this
section discusses three approaches we have proposed and
the basic idea of each approach is described as follows:

1) CaptureStatistics: This approach captures the statistics
of a time series using minimum, maximum, mean, and
moving average and use these values to represent the
time series.

2) DetectChanges: This approach detects the key change-
points in each time series, and uses these points to
represent the entire time series.

3) AggregateSegments: The main idea of this approach
is to break a multivariate time series instance into mul-
tiple univariate time series, then each univariate time
series is processed separately into disjoint segments
and the aggregated distance is generated.

3.1 Capture Statistics
As shown in Figure 2, the CaptureStatistics algorithm is

pretty straightforward. Step (1) is to normalize each time
series using z-score normalization [17]. After normalization
each time series has a mean of zero and a standard devi-
ation of one. Step (2) is to capture the statistics including
minimum, maximum, mean, and moving average for each
variable in a multivariate time series. Remember that Dall

denotes the entire training set of p time series data objects,
and each object in Dall is a multivariate time series repre-
sented by Equation (2). Since each time series has variable
number of observations at irregular time intervals, the mean
and the moving average are calculated based on the existing
observations in the time series. This process is repeatedly
applied to all m variables in an m-variate time series. In
Step (3), similar process is applied to the unlabeled test
case Q. Step (4) compares each instance in Dall with Q and
identifies the k-nearest neighbors using Euclidean distance
(k is a pre-defined odd number). Step (5) uses the class
label information from the k-nearest neighbors and applies
majority vote to assign a class label to Q.

The CaptureStatistics algorithm transforms each variable-
length time series into four numerical values. Thus, the
variable number of observations from different time series
instances is not a concern any more. We hope that these
four statistical data values still capture the key features of a
time series even though the temporal feature of the data is
ignored.

3.2 Detect Changes
The main idea of the DetectChanges algorithm is to detect

the key change-points in each time series and use these
change-points to represent the time series. In other words,
rather than focusing on the behavior of the entire time
series, the trend of variations in the time series could be
more informative than the time series itself. Even though
the original multivariate time series has various numbers of
data observations due to irregular measuring patterns, this
approach uses the fixed number of change-points to represent
each univariate time series. This makes the comparison
between different data instances feasible.

Algorithm: CaptureStatistics(Dall, Q, k)

1) Apply z-score normalization to Dall

and Q;
2) For each element in Dall =
{D1, D2,, Dp}, find min, max, mean,
and moving average;

3) Find min, max, mean, and moving
average for Q;

4) Use kNN to find k-nearest neighbors
of Q from Dall;

5) Apply majority vote among k-nearest
neighbors and assign a label to Q.

Fig. 2: CaptureStatistics Algorithm.

Figure 3 shows the DetectChanges algorithm. Comparing
with CaptureStatistics, DetectChanges introduces one more
parameter w which denotes the number of key points we
plan to capture. The key of DetectChanges lies in Step
(2) which detects w change-points in each time series by
top-down piecewise segmentation approach [18]. These w
representative data points are later used in Equation (3) to
calculate the aggregated distance between each data object
D ∈ Dall and the test object Q, as shown in Step (3) of the
algorithm. Here dij and qij denote the jth change-point in
the ith univariate time series in D and Q, respectively.

ChangeDist(D,Q) =

m∑
i=1

w∑
j=1

(dij − qij) (3)

The last two steps of ChangeDetection are similar to the
last two steps of CaptureStatistics, which find the k-nearest
neighbors of Q and assign a corresponding class label to it.

Algorithm: DetectChanges(Dall, Q, k, w)

1) Apply z-score normalization to Dall

and Q;
2) Detect w change-points in Dall and

Q;
3) Calculate the aggregated distance

between Q and each D ∈ Dall using
Equations (3);

4) Use kNN to find k-nearest neighbors
of Q from Dall.

5) Apply majority vote among k-nearest
neighbors and assign a label to Q.

Fig. 3: DetectChanges Algorithm.

3.3 Aggregate Segments
Figure 4 shows the AggregateSegments algorithm. The

main idea of this algorithm is to preprocess each individual
time series into a set of equal-width segments. This way,
the temporal feature of a time series is kept in the data set.
Meanwhile, the time series sequences with different number
of observations are transformed into the same number of
segments through dimensionality reduction.

Among many time series representation techniques in-
troduced in Section 1, one of the most commonly used
dimensionality reduction approach is Piecewise Aggregate
Approximation (PAA) [4], because PAA is intuitive and easy
to implement. At the same time, it provides competitive per-
formance comparing to other sophisticated dimensionality
reduction techniques [6]. In PAA, an n-dimensional time
series d = (d1, d2, ..., dn) is transformed into w disjoint
equal-width segments d̄ = (d̄1, d̄2, ..., d̄w) (w < n), where
the ith segment d̄i is represented by finding the mean value
of those data points falling into the ith segment [6].

Besides PAA, we employ another dimensionality reduc-
tion technique SAX (Symbolic Aggregate approXimation)
[6], which transforms a numeric time series into a symbolic
representation. The idea of SAX is to identify the break-
points from a highly Gaussian distributed time series, and
use ordinal symbols to represent the segments between each
pair of breakpoints. The authors in [6] have demonstrated
that SAX is an effective representation on the classic data
mining tasks of clustering, classification, anomaly detection,
etc.

Algorithm: AggregateSegments(Dall, Q, k,
w)

1) Apply z-score normalization to Dall

and Q;
2) Transform Dall and Q into w

equal-width segments using PAA and
SAX, respectively;

3) Apply linear interpolation to
fill in the segments without data
observations;

4) Calculate the aggregated distance
between Q and each D ∈ Dall using
Equations (4) and (5) separately;

5) Use kNN to find k-nearest neighbors
of Q from Dall.

6) Apply majority vote among k-nearest
neighbors and assign a label to Q.

Fig. 4: AggregateSegments Algorithm.

Unlike the original raw data set Dall where the multi-
variate time series instances have various number of data
observations recorded at various time intervals, both PAA

and SAX methods transform the instances in Dall into a
set of m× w fixed-size matrices. Here m is the number of
univariate time series and w denotes the number of segments
in each time series. Note that w is usually much smaller than
the number of original data observations in a time series.
Similarly, the unlabeled instance Q is also transformed into
an m×w matrix using PAA and SAX respectively, as shown
in Step (2) of the AggregateSegments algorithm.

Now all the time series sequences have the same number
of segments, but some segments may not have any valid
data due to the unavailability of data observations in the
corresponding segments. Therefore, in Step (3) of the algo-
rithm, linear interpolation is employed to fill in these missing
segments.

After Step (3), we are ready to use kNN classification to
evaluate the distance between Q and each element D ∈ Dall.
Since both D and Q have been transformed into m-variate
time series with w segments in each time series, the distance
between D and Q is calculated as the aggregated distance
between each pair of segments in each univariate time series
from D and Q. Equation (4) shows the distance function
when both D and Q are represented as PAA sequences. Here
dij and qij denote the piecewise aggregated average of the
jth segment in the ith univariate time series in D and Q,
respectively.

PAADist(D,Q) =

m∑
i=1

w∑
j=1

(dij − qij) (4)

Equation (5) shows the distance function when both D
and Q are represented as SAX symbolic sequences. Here
sym_dij and sym_qij denote the symbolic representations
of the jth segment in the ith univariate time series in D
and Q respectively, and dist(sym_dij , sym_qij) is the sub-
distance function between two ordinal symbols, as illustrated
in [6].

SAXDist(D,Q) =

m∑
i=1

w∑
j=1

dist(sym_dij , sym_qij) (5)

Again, the last two steps of AggregateSegments are similar
to the last two steps of DetectChanges, which find the k-
nearest neighbors of Q and assign a corresponding class
label to it.

4. Experimental Results
We use the data sets for Computing in Cardiology (CinC)

Challenge 2012 [11] to evaluate our algorithms. The focus of
the challenge is to develop classification methods for patient-
specific prediction of in-hospital mortality [11]. The training
set for the challenge is a multivariate time series data set
consisting of records from 4,000 ICU patients and there are
42 variables recorded at least once during the first 48 hours
of a patient’s ICU stay. However, not all 42 variables are

available all the times. Six of these variables are general
descriptors (e.g., ID, age, gender, etc.), and the remainder
are time series, for which variable number of observations
may be available [11].

4.1 Experiments with Imbalanced Data Set
In the original training set of 4,000 ICU records, there

are 554 positive cases. In other words, about 14% patients
did NOT survive their hospitalization. Our experiments are
initially designed using this imbalanced data set and 10-
cross validation with stratified sampling is use to evaluate
the algorithms. Tables 1-3 show the experimental results
from Algorithms CaptureStatistics, DetectChanges, and Ag-
gregateSegments with PAA5 (5 is the number of segments
in PAA).

The tables show both the precision and the recall on neg-
ative and positive classes separately, and the overall system
accuracy. We can see that the precision on negative class is
as high as 88% and the recall on negative class is as high as
96% when 3NN or 5NN is used. However, when we look
at the prediction for positive instances, the results are not
promising. In the best case, the precision on positive class
is only 38% (5NN with DetectChanges approach) while the
recall is only 12% in that case. This means the false negative
rate is very high. This is not surprising though, because for
such an imbalanced data set, the nearest-neighbor method is
hard to identify the instances with fewer number of samples
in the training set, i.e., positive instances in our case.

Table 1: Results from CaptureStatistics using Imbalanced Data.
Class 0 Class 1

Accuracyprecision recall precision recall
k=1 0.88 0.89 0.24 0.21 0.80
k=3 0.87 0.95 0.30 0.13 0.84
k=5 0.87 0.97 0.37 0.10 0.85

Table 2: Results from DetectChanges using Imbalanced Data.
Class 0 Class 1

Accuracyprecision recall precision recall
k=1 0.87 0.88 0.21 0.19 0.79
k=3 0.87 0.95 0.28 0.12 0.84
k=5 0.87 0.96 0.38 0.12 0.85

Table 3: Results from AggregateSegments with PAA5 using
Imbalanced Data.

Class 0 Class 1
Accuracyprecision recall precision recall

k=1 0.87 0.88 0.22 0.20 0.79
k=3 0.87 0.95 0.25 0.11 0.83
k=5 0.87 0.96 0.29 0.08 0.85

4.2 Varying Data Distributions
To deal with imbalanced data distribution and improve

the performance for positive instance prediction, we vary
the data distributions by undersampling negative instances
in the original data set. Figure 5 shows the performance of
Algorithm CaptureStatistics when the distributions between
negative and positive class instances are 1:1, 2:1, 3:1, and
7:1, respectively.

We can see that the precision and recall on negative class
and the overall accuracy increase steadily as the percent-
age of negative instances increases, but the performance
on positive class prediction decreases dramatically as the
percentage of positive instances decreases. This experimental
result indicates that the class distribution in the training set
is an important factor for system performance. We should
choose an appropriate distribution based on the goal of the
system. If the goal is to improve the overall prediction
accuracy, or to improve the prediction on negative cases, we
should keep more negative samples in the training set. If the
goal is targeted at true positive rate, then the undersampling
should be done on negative class samples. To balance
between positive and negative classes, we determine to use
the training set of 3:1 distribution rate between negative and
positive samples. The rest experimental results are based on
this setting.

Fig. 5: Varying Data Distribution for CaptureStatistics Al-
gorithm.

4.3 The Effect of k and the Comparison of All
Algorithms

Table 4 demonstrates the effect of k in kNN classification.
We can see that as k increases, the performance improves
gradually until a certain point where the performance gets
stable or slowly goes down. In particular, for Algorithms
CaptureStatistics and DetectChanges, the overall results are
best when k is set to 5. Under this setting, we have the
highest recall on negative class, the highest precision on

Table 4: The effect of k and the comparison of all algorithms.

Method k
Class 0 Class 1

Accuracyprecision recall precision recall

Statistics

k=1 0.778 0.84 0.46 0.38 0.71
k=3 0.78 0.88 0.52 0.34 0.74
k=5 0.77 0.97 0.63 0.24 0.76
k=7 0.78 0.92 0.59 0.31 0.75

Changes

k=1 0.77 0.82 0.42 0.35 0.70
k=3 0.79 0.90 0.56 0.34 0.75
k=5 0.76 0.96 0.64 0.20 0.76
k=7 0.77 0.94 0.62 0.27 0.76

PAA10

k=1 0.76 0.80 0.38 0.34 0.68
k=3 0.76 0.85 0.40 0.27 0.69
k=5 0.76 0.88 0.45 0.26 0.72
k=7 0.76 0.90 0.47 0.22 0.72

SAX10

k=1 0.77 0.80 0.39 0.35 0.68
k=3 0.77 0.84 0.41 0.30 0.69
k=5 0.76 0.87 0.42 0.25 0.70
k=7 0.76 0.89 0.43 0.23 0.71

positive class, and the highest overall accuracy. For Algo-
rithm AggregateSegments we test both PAA10 and SAX10
(10 denotes the number of segments), and the results show
that setting k to 7 issues the best performance for both
approaches while PAA slightly outperforms SAX.

Comparing all four approaches, the change-point detection
and statistical approach have similar performance and both
outperform PAA and SAX, the two piecewise segmentation
approaches. This indicates that the statistical information and
the change-points capture the key features of a time series
well and the temporal features maintained through PAA and
SAX segmentation approaches do not provide any additional
useful information about the time series. In addition, the
processing of segments in PAA and SAX could even cause
the loss of meaningful time series information. Even though
this finding is not encouraging, we have not found any
research articles discussing this potential issue.

5. Conclusions
Time series analysis is different from traditional data

mining tasks because of its high-dimensionality and multi-
granularity features. Even though there is a large amount
of research focusing on dimensionality reduction and rep-
resentation of time series, there are a limited number of
research papers discussing multivariate time series analysis,
especially the time series at irregular and uncertain intervals.

This paper discusses the representations of irregular mul-
tivariate time series data and introduces a non-trivial classi-
fication problem using multivariate time series. We develop
three kNN-based classification methods aiming at different
time series representation strategies. CaptureStatistics uses
minimum, maximum, mean, and moving average to capture
the key features of a time series. DetectChanges uses the
top-down segmentation approach to identify key change-
points of a time series, and use these change-points to
represent the entire time series. AggregateSegments is based

on the piecewise aggregation approach and transforms each
univariate time series into a fixed number of equal-width
segments. We adopt both Piecewise Aggregate Approxima-
tion (PAA) and Symbolic Aggregate approXimation (SAX)
approaches to segmenting the time series.

The experiments are conducted using ICU multivariate
time series data for patient’s mortality prediction. The
original ICU data set is an imbalanced data set because
most training instances have negative outcomes, i.e., most
patients survive their ICU stays. This imbalanced data set has
strong impact on the performance because kNN approach
heavily depends on the class distribution of the data. With a
small number of positive instances, the false negative rate
would be inevitably high because kNN could not easily
identify nearest neighbors with positive outcomes for a test
case unless they present very strong common features of
positive behavior. To deal with imbalanced data, undersam-
pling method is used to change the distributions of positive
and negative samples. The experiments show that as the
distribution varies, the performance on positive and negative
classes varies as well. The class with more samples usually
has higher precision and higher recall than the class with
fewer samples.

In addition, we conduct extensive experiments in different
settings using our three time series handling algorithms.
The experiments show the effect of k in kNN classification
for each algorithm. Based on the results, we conclude that
CaptureStatistics and DetectChanges outperform Aggregate-
Segments in general. This indicates that the statistics and the
change-points provide sufficient information to represent the
time series and additional processing of time series could
even downgrade the performance.

In future, we plan to develop weighted kNN approaches to
handle imbalanced data distribution. We also plan to further
investigate other sophisticated segmentation approaches and
evaluate their effects on multivariate time series analysis.

References
[1] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,

“Querying and mining of time series data: experimental comparison
of representations and distance measures,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1542–1552, 2008.

[2] J. W. Cooley and J. W. Tukey, “An algorithm for the macine
calculation of complex fourier series,” Mathematics of Computation,
vol. 19, pp. 297–301, 1965.

[3] K. Chan and A. W. Fu, “Efficient time series matcing by wavelets,”
in Proceedings of the 15th International Conference on Data Engi-
neering [ICDE’99], March 1999, pp. 126–133.

[4] C. Guo, H. Li, and D. Pan, “An improved piecewise aggregate
approximation based on statistical features for time series mining,”
in Proceedings of the 4th international conference on Knowledge
science, engineering and management [KSEM’10], Northern Ireland,
UK, September 2010, pp. 234–244.

[5] I. D. Var, “Multivariate data analysis,” vectors, vol. 8, p. 6, 1998.
[6] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representa-

tion of time series, with implications for streaming algorithms,” in
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery [DMKD’03], San Diego,
CA, June 2003, pp. 2–11.

[7] J. A. Cadzow, B. Baseghi, and T. Hsu, “Singular-value decomposition
approach to time series modelling,” Communications, Radar and
Signal Processing, IEE Proceedings F, vol. 130, no. 3, pp. 202–210,
1983.

[8] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping,” Knowledge and Information Systems, vol. 7, no. 3, pp.
358–386, 2005.

[9] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” in Proceedings of the 7th International

Symposium on String Processing and Information Retrieval, 2000,
pp. 39–48.

[10] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and
X. S. Wang, “A glossary of time granularity concepts,” Temporal
Databases: Research and Practice. Lecture Notes in Computer Sci-
ence, vol. 1399, pp. 406–413, 1998.

[11] CinC2012, “Predicting mortality of icu patients: the
physionet/computing in cardiology challenge 2012,” [Online]
http://physionet.org/challenge/2012/.

[12] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM Computing
Surveys, vol. 42, no. 4, pp. 14:1–14:53, June 2010.

[13] M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Palpanas, “Uncertain
time-series similarity: Return to the basics,” Proceedings of the VLDB
Endowment, vol. 5, no. 11, pp. 1662–1673, 2012.

[14] D. Suciu, A. Connolly, and B. Howe, “Embracing uncertainty in large-
scale computational astrophysics,” in MUD Workshop, 2009.

[15] T. T. Tran, L. Peng, B. Li, Y. Diao, and A. Liu, “Pods: a new model
and processing algorithms for uncertain data streams,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management
of data, ser. SIGMOD’10, Indianapolis, Indiana, 2010, pp. 159–170.

[16] M.-Y. Yeh, K.-L. Wu, P. S. Yu, and M.-S. Chen, “Proud: a probabilistic
approach to processing similarity queries over uncertain data streams,”
in Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, ser. EDBT
’09, Saint Petersburg, Russia, 2009, pp. 684–695.

[17] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2006, ch. 6.

[18] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series:
A survey and novel approach,” an Edited Volume, Data mining in
Time Series Databases, vol. 57, pp. 1–22, 2004.

