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Abstract - Gaussian Process Regression (GPR) can be 
defined as a linear regression in high-dimensional space, 
where low-dimensional input vectors are projected by a non-
linear high-dimensional mapping. Same as other kernel based 
methods, kernel function is introduced instead of computing 
the mapping directly. This regression can be regarded as an 
example based regression by identifying the kernel function 
with the similarity measure of two vectors. Based on this 
interpretation, we show that GPR can be accelerated and its 
memory consumption can be reduced while keeping the 
accuracy by dynamically forming the active set depending on 
the given input vector, where active set is the set of examples 
used for the regression. We call this method Dynamic Active 
Set (DAS). Based on DAS, we can extend the standard GPR, 
which estimates a scalar output with variance, to a regression 
method to estimate multidimensional output with covariance 
matrix. We applied our method to anomaly detection on real 
power plant and confirmed that it can detect prefault 
phenomena four days before actual fault alarm. 

Keywords: Gaussian Process Regression, Example based 
non-linear regression, Dynamic Active Set, covariance matrix 
estimation 

 

1 Introduction 
Gaussian Process Regression (GPR)[1][2][3] is a well-

known non-linear regression method defined as a linear 
regression in high-dimensional space, where input vectors are 
projected by a non-linear high-dimensional mapping. Same as 
other kernel based methods, kernel function is introduced 
instead of computing the mapping directly.  

Unlike the interpretation above, this paper shows another 
interpretation that GPR can be taken as an example based 
regression method, where each example consists of two 
components: input vector and output value. That is, output 
component of each example is simply weighted by the 
similarity value between a given input and input vector 
component of the example, and by summing up them, the out-
put is estimated. Through this interpretation, kernel function is 
regarded as a similarity function between two vectors. For 
guaranteeing that input-output relationships in the examples 
are exactly kept in the regression, a normalization using in-
verse of gram-matrix is applied.  

Based on this notion, we can reduce the size of active set 
consisting of examples to be used for regression, because only 
the examples with similar input components with the given 
input are dominant for output estimation. One contribution of 

this paper is to form active set dynamically depending on the 
given input. We call this method Dynamic Active Set (DAS). 
DAS drastically reduces the computational complexity and the 
memory consumption of GPR while keeping the accuracy of 
output.  

DAS also breaks the limitation, shared by standard GPR, 
that only a scalar output and its variance can be estimated. 
According to the formulae, estimating the vector outputs in 
the framework of GPR is not a difficult problem. However, 
the covariance matrix estimation cannot be realized only by 
simple formula manipulation. Based on the notion above that 
output value is estimated as a weighted sum of the outputs 
examples, we propose a method to estimate covariant matrix 
from the output vectors in the active set with the same weight.  

In the following sections, we first show the related works 
and the interpretation that GPR can be taken as a similarity 
weighted example based regression. Next, we introduce 
dynamic active set formation. Then, multivariate extension of 
GPR is proposed. In the experiments, we applied the resulted 
method, i.e. DAS based multivariate GPR, to anomaly 
detection problems and confirmed its efficiency and 
effectiveness.  

2 Related Works 
In this section, we first introduce the framework of GPR, and 
briefly explain some works on improving the computational 
cost and the memory consumption. 

2.1 Gaussian Process Regression 

In many literatures, Gaussian Process Regression is explained 
as a linear regression in a high-dimensional space where input 
vectors are projected by a non-linear mapping (࢞)ݕ  .(࢞)࣐ =  (1) ,(࢞)்࣐࢝

where ࢝  represents the coefficient vector obeying mean ૙ 
isotropic covariance matrix ߪଶܫ Gaussian. That is, ࢝ ∝ ܰ(૙,  (2) .(ܫଶߪ

Providing ܰ projected inputs: Φ = (ଵ࢞)࣐) ⋯ ்((ே࢞)࣐ , 
and no information specifying the coefficient vector ࢝  is 
provided, the corresponding outputs:  ࢟ = ଵݕ) ⋯  ே)் canݕ
be represented as ࢟ = Φ(3)                                   .࢝ 

The distribution of	࢟  is also a Gaussian as shown below. [࢟]ܧ = Φ[࢝]ܧ = ૙, (4) 



[࢟]ݒ݋ܿ = [்࢟࢟]ܧ = Φ[்࢝࢝]ܧΦ் = ଶΦΦ்ߪ =  (5)    ,ܭ

 
where ܭ represents gram matrix consisting of kernel functions 
between input vectors. That is, a kernel function ݇(࢞௡,  (௠࢞
represents scalar product ߪଶ்࣐(࢞௡)࣐(࢞௠). That is,  ࢟ ∝ ܰ(૙,ܭ).                           (6) 

 When training samples, information on the coefficient vector ࢝ is provided, and the estimation will be biased. Providing 
input-output training data (࢞ଵ, ⋯,(ଵݐ , ,ࡺ࢞) (ேݐ  consisting of 
input vector ࢞௜ and corresponding output scalar value ݐ௜, the 
output mean and variance for input ࢞ are represented as below. ீߤ௉(࢞) = ௉ଶீߪ (7)                  ,࢚ଵିܭ(࢞)்࢑ (࢞) = ,࢞)݇ (࢞ −  (8)    ,(࢞)࢑ଵିܭ(࢞)்࢑

 
where ࢚ = ଵݐ) ⋯ ்(ேݐ (࢞)࢑ , = ,ଵ࢞)݇) ,(࢞ . . . , ,ே࢞)݇ ்((࢞ ܭ , = ,௡࢞)݇]  .[(௠࢞
In practice, training data may contain errors like ݐ௡ = ௡ݕ +  ௡.                           (9)ߝ

Here we assume that the error ߝ௡ is a mean 0 variance ߚଶ 
Gaussian, which is independent of ݕ௡. In this case, we need 
small modifications: redefine ܭ = ,௡࢞)݇] (௠࢞ + [ଶߚ , and 
replace Equation (8) by ீߪ௉ଶ (࢞) = ,࢞)݇ (࢞ + ଶߚ −  (10)      .(࢞)࢑ଵିܭ(࢞)்࢑

Same as other kernel based methods, kernel function can be 
selected from wide varieties of functions satisfying Mercer’s 
condition. One widely used example is the RBF kernel shown 
below. ݇(࢞௡, (௠࢞ = exp ൬ି∥࢞೙ି࢞೘∥మఙ೓మ ൰.                  (11) 

2.2 Fast and Memory Efficient GPRs 

The dominant computation for the estimation is to compute  ିܭଵ. Its computational complexity is ܱ(ܰଷ), and the spatial 
complexity to store the gram matrix ܭ  is ܱ(ܰଶ) . For the 
accuracy, the bigger ܰ  is the better, but smaller ܰ  is 
preferable for real-time applications. 
For solving this problem, the following methods have been 

proposed [3]. 

1. Subset of regressors[4][5]: Pick up ܯ examples out of 
active set consisting of ܰ  examples, and use the 
following approximations. ߤௌோ(࢞) = ெேܭேெܭ)(࢞)ெ்࢑ +  (12)   ,࢚ெேܭெெ)ିଵܭଶߚ

ௌோଶߪ         (࢞) = ெேܭேெܭ)(࢞)ெ்࢑ଶߚ +  (13) ,(࢞)ெ࢑ெெ)ିଵܭଶߚ

where ܭேெ ெேܭ , , and ܭெெ  represent ܯ ×ܰ , ܰ ܯ× , 
and ܯ ܯ×  gram matrices, respectively. ࢑ெ(࢞) 
represents a vector consisting of kernel functions 
between ࢞ and picked up ܯ input examples. 

2. The Nyström Method[6]: Pick up ܯ  examples, and 
approximate gram matrix by ܭ෩ = ெெିଵܭேெܭ  ெே. (14)ܭ

3. Subset of Datapoints: Pick up ܯ examples, and simply 
approximate the gram matrix by ܭெெ. 

 
4. Projected Process Approximation: Pick up ܯ examples, 

and approximate the mean by equation (12) and variance 
by ߪ௉஺ଶ (࢞) = ,࢞)݇ (࢞ − ெெିଵܭ(࢞)ெ்࢑ ேெܭெேܭ)(࢞)ெ்࢑ଶߚ+ (࢞)ெ࢑ +  (15)  . (࢞)ெ࢑ெெ)ିଵܭଶߚ

5. Bayesian Committee Machine[7]: Partition the dataset 
into ݌  subsets and estimate outputs and variances at 
multiple test points. 

6. Iterative Solution of Linear Systems[8] : An acceleration 
using iterative conjugate gradient method. 

 
Methods 1,2,3,4 requires the reduction of examples from ܰ 

to ܯ, which is done by random selection or greedy algorithm 
described in Algorithm1. 
 

 

The big problem arose here is the computational cost of ∆௝, 
which represents the gain obtained by adding ௝࢞	  into the 
active set ࣞ . Foregoing researches propose differential 
entropy score[9], information gain criterion[10], as ∆௝. All of 
their computational costs are expensive, because the measure ∆௝ is evaluated over all potential inputs. 
Our idea is if the active set ࣞ  is dynamically formed 
depending on a specific input ࢞, the measure ∆௝(࢞) can be 
more simple and ࣞ(࢞) is easily obtained.  

3 GPR with Dynamic Active Set 
This section presents our method that reduces the 
computational cost while keeping the accuracy and extends 
scalar output to vector output with covariance matrix.  
 

Input: ܯ desired size of active set 
Initialization: ࣞ ∶= ∅, ܴ = {1,⋯ ,ܰ} 
for ݆ ≔ 1 to ܯ 

Create working set ܬ ⊆ ܴ 
Compute ∆௝ for all ݆ ∈ ݅ ܬ ≔ argmax௝∈௃ ∆௝	ࣞ ∶= ࣞ ∪ {݅}, ܴ ∶= ܴ\{݅} 

endfor 
return ࣞ
Algorithm1: Greedy algorithm to reduce the size 
of active set (extracted from [3] and modified.) 



3.1 GPR as a similarity weighted example 
based regression 

ଵିܭ(࢞)்࢑   in Equation (7) can be regarded as a weight 
vector to the output examples ࢚ = ଵݐ) ⋯   .ே)் (See Fig. 1)ݐ
From the viewpoint of similarity, the output for input ࢞ can 

be roughly estimated just by ࢚(࢞)்࢑ = ∑ ,࢞)݇ ௜ே௜ୀଵݐ(௜࢞ ,  
because of the following facts.  
 
If we regard ݇(࢞,  ,࢟ and ࢞ as a similarity measure between (࢟

we can assume ݇(࢞, (࢞ ൒ ,࢞)݇  (16) .(࢟

Then the weight ݇(࢞, ࢞ ௜) is maximized at࢞ = ௜࢞ , i.e., the 
weight of output example ݐ௜ is maximized at ࢞ =  .௜࢞
However, this formulation does not keep the input-output 

relationship in the examples. That is, ்࢑(࢞௜)࢚ ് ௜ݐ , (݅ =1,⋯ ,ܰ). 
 
For guaranteeing the input-output relationship, the weight 

vector for the input ࢞௜ should be ࢾ௜ = ቀ0 ⋯ 0ᇣᇧᇧᇤᇧᇧᇥ௜ିଵ 1 0 ⋯ 0ᇣᇧᇧᇤᇧᇧᇥேି௜ ቁ், (17) 

because ࢾ௜் ௜࢞ = ݅) ,௜ݐ = 1,⋯ ,ܰ). 
We can show that ்࢑(࢞௜)ିܭଵ = ௜்ࢾ  as follows. 
 
For full rank gram matrix ିܭܭ  ,ܭଵ =  (18)                          ܫ

always stands. By multiplying ࢾ௜்  with both sides of Equation 
(13), we get ࢾ௜் ଵିܭܭ = ଵିܭ(௜࢞)்࢑ = ௜்ࢾ .            (19) 

For preserving the input-output relationship, ିܭ(࢞)்࢑ଵ  is 
the ideal weight vector at least for ࢞௜.  

Almost the same mathematical formula can be found in the 
works by S.W. Wegerich[11][12][13]in the context of 
anomaly detection. This method is called similarity based 
modeling (SBM). This method is almost the same as GPR 
except the following properties.  

 

 

 SBM can estimate vector values, but standard GPR can’t. 
 GPR can estimate output variance, but SBM can’t. 
 SBM normalizes the weight vector so that the sum equals 

to 1, but GPR doesn’t. 

Our question is whether the kernel function ݇(࢞,  ௜) can be࢞
an importance measure of ࢞௜  for estimating the output and 
variance for ࢞  or not. For the input ࢞ = ௜࢞ , the i-th 
components of (࢞)࢑ and ିܭ(࢞)்࢑ଵ are the biggest as shown 
above. This implies that ݇(࢞, (௜࢞  can be an importance 
measure of ࢞௜ when ࢞ ∈ ൛࢞௝ൟ. 
The remaining question is: when an input example ࢞௜ is the 

nearest to the given input ࢞ , still the i-th component of ିܭ(࢞)்࢑ଵ is the biggest or not? For answering the question, 
we introduce the assumption that the kernel function satisfies ݇(࢞, (࢟ ൒ 0,                                   (20) 

for any ࢞ and ࢟. Under this assumption, the components in the 
vector  (࢞)࢑ = ,࢞)݇) (ଵ࢞ ⋯ ,࢞)݇  ࢞  ே))் dissimilar with࢞
will be close to zero. For such dissimilar input examples ࢞௜, 
the corresponding weight ݓ௜  will be closer to zero, where ିܭ(࢞)்࢑ଵ = ଵݓ) ⋯  .(ேݓ
As a consequence of above discussion, for kernel functions 

satisfying Inequalities (16) and (20), it is clear that kernel 
function can be used as  ∆௝. That is,  ∆௝(࢞) = ,࢞)݇  ௝).                            (21)࢞

Note that the most distinguishing point from other ∆௝ s, 
Equation (21) has an argument. This implies that the 
importance of an example cannot be defined apart from the 
given input	࢞. 

3.2 Dynamic Active Set 

 By using Equation (21), we can dynamically select an active 
set depending on the input ࢞  by gathering the examples ࢞௜ 
having bigger ݇(࢞,  are the sizes of ܯ ௜). Suppose that ܰ and࢞
all examples and reduced active set, we have to compute ܰ 
kernel functions before the reduction and the computational 
complexity for computing inverse of gram matrix is ܱ(ܯଷ). 
The advantage of this method is the computational cost of 
kernel function is much cheaper than differential entropy 

 

Fig. 1.  An interpretation of GPR mean estimation 

Fig. 2.   Example pool and active set formation: (a) Excluding 
similar examples from the pool (b) Dynamic active set 
formation



score or information gain criterion. Further, since ܰ ≪  ଷܯ
stands in many practical problems, the total computational 
complexity including active set formation can be 
approximated by ܱ(ܯଷ). 
One thing we have to avoid is to include almost the same 

examples in the active set. If ࢞௜ = ௝࢞ , ݇൫࢞௞, ௝൯࢞ = ,௞࢞)݇  (௜࢞
stands for all ࢞௞ in the active set. This means i-th and j-th row 
and columns in the gram matrix are the same, hence the gram 
matrix is singular and its inverse cannot be obtained. For 
avoiding this case, we introduce example pool that excludes 
almost the similar example.  
For time series data, new examples are sequentially injected 

to the pool. When the kernel function between the injected 
data and an example in the pool exceeds the given threshold, 
the example in the pool is dropped and the injected data is 
stored in the pool as shown in Fig. 2. This pooling mechanism 
is intended to refer newer examples for representing recent 
trend. 
The above pooling mechanism is an example design, but the 
most important function of the example pool is to exclude the 
similar data for stable computation of the gram matrix inverse.  

3.3 Multivariate GPR 

The extension of GPR to estimate vector output is very simple. 
By replacing the output example vector ࢚ = ଵݐ) ⋯  ே)்inݐ
Equation (7) or (12) by matrix consisting of vector output 
examples ܶ = ଵ࢚) ⋯  ே)், the expected vector output can࢚
be estimated. However, in this case, we have to estimate the 
covariance matrix. Unfortunately, Equation (8), (10), (13), or 
(15) cannot simply be extended to estimate covariance matrix. 
The essential difficulty lies in estimating the covariance 
among the outputs. 
The advantage of our method DAS is that we can reduce the 
input-output examples depending on the given input ࢞  and 
their weight vectors are computed as ିܭ(࢞)்࢑ଵ ଵݓ)= ⋯  ெ). These fact implies a simple covariance matrixݓ
estimation: Suppose that (࢞ଵ ⋯ (ெ࢞ ଵ࢚)  , ⋯ (ெ࢚ ଵݓ) , ⋯ (ெݓ are the reduced input examples, output 
examples, and weight values for given input ࢞ .  Then the 
output ࣆ and its covariance matrix ߑ can be estimated as ࣆ = ଵ∑ ௪೔ಾ೔సభ ∑ ௜ெ௜ୀଵ࢚௜ݓ ߑ (22)                            , = ଵ∑ ௪೔ಾ೔సభ ∑ ௜࢚)௜ݓ − ௜࢚)(ࣆ − ெ௜ୀଵ்(ࣆ	 .               (23) 

For those inputs same with one of the stored input 
components ௜࢞	 , ( ݅ = 1,⋯ ܯ, ),  	∑ ௜ெ௜ୀଵݓ = 1  automatically 
stands, because the weight vector will be	ࢾ௜. This means that 
the Equation (22) is essentially equivalent to Equation (7). 
This implies that the above equations are not far from the 
principle of GPR. 

From these equations, since we can estimate the output 
vector and its covariance matrix, we can measure the 
Mahalanobis distance of the observed output from the 
expected output. This can be an anomaly measure of a system. 

 

4 Experiments 
In this section, we first show how DAS improves 

computational time while keeping the accuracy. Next, we 
examine the validity of the vector output and covariance 
estimation property by using 2D swiss roll data. Finally, our 
method is applied to an anomaly detection problem of a power 
plant, which is practically used in real world and stopped 
because of a fault. Among the sensor values attached to this 
plant, we picked up two sensor values and compared the 
sensitivities of the Mahalanobis distances for independent 
sensors and simultaneous analysis as 2D sensor values. 

 

 

 

Fig. 3. Training and test intervals assigned on the artificial data
[14] 

 

Fig. 4. Input-output assignment and anomaly measure. 

 

Fig. 5. Actual value, estimated value, estimated value ±σ, and 
anomaly value in test interval (Active set size = 2). 



 
4.1 Computational Time and Accuracy 

In this experiment, we apply DAS based GPR to anomaly 
detection problem of a temporal sequence ݂(ݐ). The purpose 
is to evaluate the relationship between the estimation error and 
estimation time. 
 The input vector is  (ݐ)࢞ = ݐ)݂) − 2) ݐ)݂ − 1)  ்((ݐ)݂
and the output is ݂(ݐ). By dividing the absolute difference  
between the estimated mean ீߤ௉((ݐ)࢞)  and ݂(ݐ)  by the 
estimated standard deviation ீߪ௉((ݐ)࢞) , we obtain the 
anomaly measure. 
The sequence data is an artificially generated that was used 

in waveform retrieval research[14]. The original data consists 
of 10000 data points. In this experiment, we resample the data 
to 1000 points and first 800 points are used for training data 
and last 200 points are used for test. In this experiment, we 
used RBF kernel with ߪ௛ଶ = 0.1 and noise ߚଶ = 0.01, and we 
didn’t use example pool. The computer is Core2 Duo 1.86 
GHz, and the GPR is implemented as a single thread program 
by C language. 

Fig.5 shows an example of estimation in test interval at 
active set size is only 2. Even at this poor setting, actual value 
is within the estimated value ±σ.  The mean absolute error in 
this interval is 0.0268, which is already small. 
Finally, we applied our multivariate GPR to a real power plant 
data. In this experiment, we used two sensor data. Both are 
sampled every 30 seconds. We take these sensor data as a 
temporal sequence of 2D vector. The power plant is activated 
every morning and stopped every evening. Because of this 
human intervention, the sensor data behaves nonlinearly. As 
shown in Figure 3, we confine ourselves to use sensor data 
sampled at ݐ − ݐ ,2 − 1, and ݐ for estimating the sensor value 
at ݐ . So, if we use 2 sensor data, the estimation will be a 
regression from 6D vector to 2D vector as shown in Figure 8.  
Also, we can perform 3D to 1D and 6D to 1D regressions.  
We performed all these regressions and measured the 
Mahalanobis distance from the estimated mean, providing one 
month data (October) as training data and the test interval is 
November 1-10, where embedded alarm system detected the 
fault during November 8-10.  
 

 
The results are shown in Figures 9-11. According to these 

results, prefault phenomenon seems occured from November 
Fig. 7 shows the results of ellipses whose Mahalanobis 
distances are all 9, which means  . The active set size is 
changed 50, 100, and 200. From these plots, we can confirm 
that the ellipses fit the local point distributions representing 
local covariance, and the ellipses are almost insensitive to the 
active set size. 
4 to 7, four days earlier than the actual alarm. Compared 

with the 3D→1D and 6D→1D results, 6D→2D regression 
provides us the clearest result. 
 
One may think that Figure 9 (b) captures the prefault 

phenomenon like Figure 11. However, other 3D→1D and 
6D→1D regressions are not congruent with each other. This 
means that only by Figure 9 (b), one cannot conclude that 
prefault is detected during November 4-7. On the other hand, 
Figure 11 is an integrated result of two sequences, and the 
Mahalanobis distance becomes bigger from November 4. 
Then one can notice something unusual phenomenon 
happening. These facts supports the superiority of our 
multivariate regression and anomaly detection. 
By increasing the active set size, the computational time may 

increase but the mean absolute error will decrease. Fig. 6 
shows the result.  

This “L” shaped plot shows that the mean error is saturated 
at active set size greater than 200. It means we can accelerate 
the estimation speed almost 65 times faster in this case while 
keeping the accuracy. This is the effectiveness of DAS. 
 
In this plot, we can also find that the mean absolute error 
increases at active set size bigger than 795. This is because 
the singularity of gram matrix caused by similar example 
inclusion.  

Fig. 6. Computational time V.S. mean absolute error 

 

(a) Active set size = 50       (b) Active set size = 100 

 

(c) Active set size = 200 

Fig. 7. From 2D to 2D regression results on swiss roll data 
with Mahalanobis distance = 9 ellipses. Red brown points 

represent active sets 



4.2 Multivariate Regression 

 For testing the validity of our multivariate regression 
method defined in Equation (22) and (23), here we show some 
simple regression result. 
In this experiment, we use 2D swiss-roll data and the input 

and the output examples are assigned to the same 2D data. We 
used RBF kernel with ߪ௛ଶ = 0.1  and noise ߚଶ = 0.01 . The 
data points are sequentially added to the example pool and 
those data points in the pool having kernel function greater 
than the threshold 0.998 are excluded from the pool.  
The purpose of this experiment is to draw equi-Mahalanobis 
distance ellipses while changing the size of active set to 
verify 1) the ellipses represent the local distribution, 2) the 
shape and position of the ellipse are insensitive to the active 
set size.  

4.3 Anomaly Detection on a Power Plant Data 

 Finally, we applied our multivariate GPR to a real power 
plant data. In this experiment, we used two sensor data. Both 
are sampled every 30 seconds. We take these sensor data as a 
temporal sequence of 2D vector. The power plant is activated 
every morning and stopped every evening. Because of this 
human intervention, the sensor data behaves nonlinearly. As 
shown in Figure 3, we confine ourselves to use sensor data 
sampled at ݐ − ݐ ,2 − 1, and ݐ for estimating the sensor value 
at ݐ . So, if we use 2 sensor data, the estimation will be a 
regression from 6D vector to 2D vector as shown in Figure 8.  
Also, we can perform 3D to 1D and 6D to 1D regressions.  
We performed all these regressions and measured the 

Mahalanobis distance from the estimated mean, providing one 
month data (October) as training data and the test interval is 
November 1-10, where embedded alarm system detected the 
fault during November 8-10.  
The results are shown in Figures 9-11. According to these 

results, prefault phenomenon seems occured from November 
4 to 7, four days earlier than the actual alarm. Compared with 
the 3D→1D and 6D→1D results, 6D→2D regression provides 
us the clearest result. 
One may think that Figure 9 (b) captures the prefault 
phenomenon like Figure 11. However, other 3D→1D and 
6D→1D regressions are not congruent with each other. This 
means that only by Figure 9 (b), one cannot conclude that 
prefault is detected during November 4-7. On the other hand, 
Figure 11 is an integrated result of two sequences, and the 
Mahalanobis distance becomes bigger from November 4. 
Then one can notice something unusual phenomenon 
happening. These facts supports the superiority of our 
multivariate regression and anomaly detection. 

5 Conclusions 
 In this paper, we first show an interpretation that GPR is a 
similarity-weighted example based regression. Based on this 
interpretation, we next propose a computationally effective 
GPR with dynamic active set (DAS), which forms the active 
set depending on given input. 

DAS is useful not only for the computational effectiveness 
but also for covariance estimation when estimating vector 
output. In the experiments, we have shown the following 
facts. 
 DAS accelerates the GPR and reduces the memory use 

drastically while keeping the accuracy. 
 DAS based multivariate GPR can estimate the local 

distributions around the estimated mean. 
 DAS based multivariate GPR drastically improves the 

sensitivity of the anomaly measure, i.e., Mahalanobis 
distance from the estimated mean value. 

 

 

 

Fig. 8. Anomaly detection scheme for multiple sensor 
sequences. 

 
(a) 

 
(b) 

Fig. 9. Mahalanobis distance for sensor 1 obtained 
by(a)3D→1D regression (b) 6D→1D regression 



 

  

Since current implementation of GPR employs example 
pool that excludes similar examples, our system ignores the 
example density. This means that our system cannot take 
account of a priori distribution of the input-output examples. 
This should be improved in the future works. 
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Fig. 10. Mahalanobis distance for sensor 2 obtained 
by(a)3D→1D regression (b) 6D→1D regression 

 
Fig. 11. Mahalanobis distance obtained by 6D→2D regression 

for both sensors. 


