
Labeled Subgraph Matching Using Degree Filtering

Lixin Fu and Surya Prakash R Kommireddy
Department of Computer Science,

University of North Carolina at Greensboro,
167 Petty Building, Greensboro, NC 27412, USA.

phone: 336-256-1137; fax: 336-256-0439; e-mail: lfu@uncg.edu

Abstract - Subgraph isomorphism (SGI) is the problem to
determine whether there is a subgraph in the given larger
graph (called model graph) that is identical to a given smaller
graph (called query graph). It is well known that SGI problem
for an unlabeled graph in general is NP Complete. The
famous Ullman’s algorithm is still used in popular subgraph
matching software package such as POSSUM. However, this
algorithm handles unlabeled graphs. In this paper, we design
and implement a new SGI algorithm that can handle graphs
with labeled edges. Such graphs have important applications
e.g. cheminformatics and pattern recognition. Our major
contribution is to integrate degree filtering while comparing
the node labels, so that the performance is greatly improved.

Keywords: graph algorithms, subgraph isomorphism, labeled
graphs, matching

1 Introduction

 Many real world problems can be represented in term
of graphs. From late seventies, graph-based techniques have
been proposed as a powerful tool for pattern recognition.
Pattern recognition in chemistry or biological databases is
modeled as graph matching problem. Graph matching
problems are of two types, they are exact graph matching and
approximate graph matching. In this paper, we mainly
concentrate on sub-graph isomorphism which is in category of
exact graph matching.

 The main use of the subgraph isomorphism in chem-
Informatics is “the chemical similarity between any two
molecules, either at the sub or superstructure level, and
clustering of similar molecules are widely used to measure the
diversity of chemical space and these methods are important
as they can be applied towards discovering any new drug like
molecules” In addition to cheminformatics, SGI has many
other applications in bioinformatics, scene analysis, pattern
recognition , image processing, etc. Related work is given in
the next section. In sec. 3, Ullman’s algorithm is discussed as
the base for our algorithm (in sec. 4) to compare with. The
experiment section of 5 shows that our new algorithm
outperforms the traditional Ullman’s algorithm. Lastly, the
conclusion and further work are given.
.

2 Related Work

2.1 Exact Matching Algorithms

 Subgraph isomorphism will come under the exact matching
algorithms category. Exact graph matching is requires the
mappings between the nodes of the two graphs to be edge-
preserving. That is, if any two nodes in the first graph are
linked by an edge then they are mapped to two nodes in the
second graph that are linked by an edge as well. In the case of
labeled graphs, the corresponding node and edge labels must
match as well. There is a bi-directional one-to-one
correspondence between each node of the first graph to the
each node of subgraph of the second graph.

Most of the algorithms for exact graph matching are based
on some form of tree search with backtracking. Many different
implementations have been employed. Among them the
recursive depth first search uses less memory.

Ullman‟s algorithm was published as early as 1976, which
is is still widely used today in the famous software package
POSSUM (Protein On-line Substructure Searching – Ullman
Method) [4]. Ullman proposes so-called refinement procedure
that works on a matrix of possible future matched node pairs
to remove. Many algorithms are proposed based on this
algorithm.

Another similar algorithm is Corneil’s breadth-first
algorithm, which is presently the core component of Gemini
and Sub-Gemini, which is still best performing package today
for sub circuits extraction in VLSI layout verification. [2].
Cordella proposed a new algorithm for the subgraph
isomorphism called VF [5] algorithm. In this algorithm, a
heuristic is based on the analysis of the sets of nodes adjacent
to the ones already considered in the partial mapping. The
author redesigned and proposes another algorithm called VF2
[6] which is significant improvement over Ullman‟s and work
well for large graphs also.

Subgraph isomorphism has been proposed by the Larrosa
and Valiente [7], authors changed slightly the problem and
stated as constraint satisfaction problem (CSP), and this
problem has been helpful in the framework of discrete
optimization and operational research.
 In this paper, we mainly modified Ullman’s method so
that in the case of labeled graph, the performance is greatly
improved due to label matching and degree filtering. We will

first present the simple enumeration algorithm and then the
idea of Ullmann’s method, and in coming section our
algorithm called SGI-DF (Subgraph Isomorphism with
Degree Filtering).

2.2 Simple Enumeration Algorithm for
Finding Subgraph Isomorphism

 This algorithm describes a brute-force enumeration
procedure that is actually a depth-first tree-search algorithm.
This algorithm is designed to find all the isomorphisms
between given graphs G1 and the subgraphs of G2. The
adjacency matrices for graphs G1 and G2 are A= [αij] and B=
[βij].

These methods will use the representation of adjacency
matrices. In this algorithm, we introduce the very important
concept of permutation matrix, which is a key concept in
Ullman’s algorithm. We call the permutation matrix as M’. of
size (rows of matrix A) X (rows of matrix B), such that the
permutation matrix whose elements are 1’s and 0’s and such
that each row contains exactly one 1 and no column contains
more than one 1.
 The permutation matrix is used to find the matrix C,
where C= [cij] = M'(M'B)T, and T represents transpose.
Subgraph isomorphism exists if for all i and j’s of α and β,
(αij=1) = (cij=1).

2.3 Permutation Matrix

 A permutation matrix, of N×M, has exactly one entry 1 in
each row and each column and 0s elsewhere. For a 4×4
permutation matrix, 4! (Factorial of 4) permutation matrices
are possible.
In the simple brute force enumeration procedure, it needs all
the permutation matrices to be tried until the subgraph
isomorphism exists. Here are just 3 of the matrices in all 24
matrices.

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Example is given below for one of the permutation matrices [3
2 1 0], how it will be computed

3 2 1 0
3r column and 0th row- 1
2nd column and 1st row-1
1st column and 2rd row-1
0th column and 3rd row-1
(remaining all are 0’s)

 0 1 2 3

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 1 0 0 0

Table 1: permutation matrix showing each row and column

3 Ullman’s Algorithm
 To reduce the amount of computation, Ullmann proposed a
refinement procedure to eliminate some of the 1’s from the
matrices M, thus reducing the number of the possibility
matrices.

Ullman’s algorithm mainly depends on permutation matrices
to find all the isomorphism for given two graphs. Using
permutation matrices, we find the matrix C and then compare
it with a query graph. Ullmann’s method is based on
backtracking and a refinement procedure.
The inputs are the model graph and query graph, and the
output will be a permutation matrix.
Query graph G= (V, E, LV, LE)
Model graph G1= (V1, E1, LV, LE)
Ullmann’s algorithm:
ULLMANN (G= (V, E, LV, LE), G1= (V1, E1, LV, LE))
1. Let P = (pij) be a n×n permutation matrix, n = |V|,
 m = |V1|,and M=adjacency matrix of G,
 M1=adjacency matrix of G1

2. Call Backtrack(M; M1;P;1)
3. Procedure Backtrack (adjacency matrix M, adjacency
matrix M1, Permutation matrix P, counter k)

(a) if k > m then P represents a subgraph isomorphism
from GI to G. Output P and return.

 (b) For all i = 1 to n
 i. set Pki = 1 and for all j = i set Pkj = 0
 ii. if Sk,k(M1) = Sk,n(P) M (Sk,n(P))T then
 call Backtrack(M, M1, P, k +1)

Ullmann followed the backtracking procedure with the

refinement steps. The refinement procedure is done by the
idea of forward checking. The backtrack procedure in
Ullmann’s algorithm recursively builds permutation matrix
element by element, checking for a match with input graph at
each step.

The backtracking procedure stops whenever the match
found or until all the possible matrices are over.
In comparison with the simple enumeration procedure,
Ullmann’s refinement method will reduce the number of
permutation matrices. We will use the following example to
explain.

 a

 b

 a

 graph: G1

C

N

C

2

1

3

graph: G2

In the above figure, circles represent the node labels,
squares represent indexes and remaining are the edge labels.
For the simple enumeration procedure, the permutation matrix
would contain of all 1’s.

Indexes(labels) 1(C) 2(C) 3(N) 4(C) 5(N)

1(C) 1 1 1 1 1

2(N) 1 1 1 1 1

3(C) 1 1 1 1 1

In the above matrix, the total combinations would be

5*4*3=60 possibilities of permutation matrices. Because of its
brute force approach it should have to try every possibility in
worst case. For Ullmann’s procedure, the permutation matrix
would contain fewer 1’s compared to the simple enumeration
procedure.

Indexes(labels) 1(C) 2(C) 3(N) 4(C) 5(N)

1(C) 1 1 0 1 0

2(N) 0 0 1 0 1

3(C) 1 1 0 1 0

In this case, there are only 12 different possibilities in worst
case.

4 Label Matching with Degree Filtering
 To further improve Ullmann’s method, we have to decrease
the number of 1’s in the permutation matrix, so that we get
smaller number of combinations to check for the subgraph

isomorphism. Our idea is to add degree filtering and label
matching features for labeled graphs.

Using our algorithm we can reduce a lot of 1’s in the
permutation matrix than the 1’s in the Ullmann’s algorithm,
thus reducing many unnecessary comparisons from query
graph to the main graph.

The degree of a node is the total number of neighboring
nodes connected to the node. For example, in Graph G2, the
degrees of the nodes 1 through 5 are 1, 3, 3, 2, and 1
respectively.

4.1 Design of the algorithm

As we mentioned before, the aim of algorithm is to reduce
the non-zero entries of matrix M to zeros. Suppose
α_1,α_2,………..α_n are in query graph and β_1, β_2,……….
Β_m are in model graph. A and B are adjacency matrices of
query and model graphs.

Step 1: Fast elimination

Before this step, we will find degree for each node in query
graph and input graphs.
In this step, we will check the maximum degree of query graph
and compare to that of the model graph, if there is no node
having same label and not having higher degree than the
maximum degree of query graph, then it’s going to be
terminated and say there is no subgraph form G1 to G2.

Step 2: Preprocessing

In this step, we preprocess the matrix and reduce as many
entries of M to zero as possible by allowing only vertices with
the same or greater degree to be mapped to each other as well
as checking the label names.

We construct mapping matrix M as follows.
M(i,j) = 1, if Degree(α_i) ≤ Degree(β_j) and Label(
α_i)=Label(β_j)
M(i,j) = 0, Otherwise

The above 2 steps are not in the Ullmann’s method and so
we improve the performance, and the remaining steps are very
much similar.

Step 3: Changing Mapping matrix to the different arrays, and
then using that arrays we will generate distinct arrays, each
array for each possible matrix.

Step 4: Computing C according to this formula,

C=M(M*B)T, where M is the each possible matrix,

 B is the input matrix
 T is the transpose
 C is the final matrix to check each time to the query matrix
for every possible matrix.

Step 5:

If C=A, then the possible matrix matches the structure of
query and main graphs, then it will check all the edges in
query and main graph ,if they are same then print the result, If
not then go to step 3 and get other possible matrices.

C

C

N

C
N

3

5

4

2 1

a

a

a
b

b

4.2 Flow chart of our algorithm:

 false

 True

Finding C, C=M(M*B)T

Max_deg(query
graph)>degree(node
with same label in
maingraph)

Termination,No
isomorphism

Check whether
C=A,if yes then go to
next step,

Check edges are
equal?

Successful
isomorphism

If every
possible
matrix is
over

Get all the distinct arrays from the above matrix .and
change that into possible matrices, sending each one
to next step.

Find degree for each
node in the querygraph

Find degree for each
node in the Maingraph

Form a matrix checking the
conditions of degree and node labels

True

False

True

True

False

False

False

 In the example of section III, we know that there are 12
possible combination matrices in Ullmann’s algorithm.
Now for our algorithm:
First find degrees for query and main graph.
For query graph:
Deg(1)=2
Deg(2)=2
Deg(3)=2
For the main graph:
Deg(1)=1
Deg(2)=3
Deg(3)=3
Deg(4)=2
Deg(5)=1

Now, Max_degree(query graph)=2 < Deg(2)
The entries are in the form of: Indexes (labels) [Degree]

 1(C)[1] 2(C)[3] 3(N)[3] 4(C)[2] 5(N)[1]

1(C)
[2]

0 1 0 1 0

2(N)
[2]

0 0 1 0 0

3(C)
[2]

0 1 0 1 0

 Now the combinations in above matrices without
repetition are 2, much smaller than Ullman’s 12. If we take
large graphs, then we can clearly see that using degree
filtering and label matching may greatly improve the
performance.

5 Experiments
 We used the data sets in a standard graph library from
(http://www.cs.ucsb.edu/~xyan/software.htm/). The graph
library consists of datasets with the query and model graphs.
We used java on a windows 7 machine for the whole
implementation of Ullmann’s algorithm as well as our
algorithm. We tested our algorithm on datasets taken in the
form of adjacency lists. When the query size grows the
running time is also increasing as well. We tested the same
datasets for the Ullmann’s algorithm as well.
We compare the runtimes of our algorithm and those of
Ullmanns algorithm when the query size and number of nodes
in the main graphs increase.

Results:
 In all the diagrams, x-axis represents the number of model
graph nodes and y-axis is the runtime in mili-seconds. From
these figures, we can see that our algorithm beats Ullman’s
algorithm for different query sizes. Furthermore, the larger the
sizes, the more number of nodes, our performance advantage
is also larger.

Figure 1: for query size of 3.

Figure 2: for query size of 5.

Figure 3: for Query size 7.

Figure 4: for query size 9.

6 Conclusion
We proposed a new algorithm called SGI-DF, which works

for labeled graph subgraph isomorphism. Our conclusion from
the experiments and results is that when the query size is
smaller there would be no great difference but when the query
size becomes bigger the runtime difference between Ullman’s
algorithm and SGI-DF becomes much larger. The reason is
that our degree filtering feature added can eliminate many
unnecessary computations. When the query sizes grow both
algorithms run longer. In addition, our algorithm works for the
labeled edges also which is very helpful in applications such
as chem-informatics.

The scalability of this algorithm remains to be verified due
to limited computing resources. One area is to extend the work
here to accommodate large graphs stored in external disks.
Further work on SGI computing on cloud environment is also
desired.

Figure 5: for query size 11.

References

[1] Taming verification hardness: an efficient algorithm for
testing subgraph isomorphism, H Shang, Y Zhang, X Lin –
proceedings of the VLDB Endowment, (2008)
[2] An Effective Approach for Solving Subgraph Isomorphism
Problem- Zong Ling, Department of Electrical Engineering,
University of Hawaii (1996)
[3] Parallel Subgraph Isomorphism, Aaron Blankstein,
Matthew Goldstein, MIT Computer Science and Artificial
Intelligence Laboratory (2010)
[4] J. R. Ullman, An algorithm for subgraph isomorphism,
Journal of the association of computing machinery, 23(1976)
31-42.
[5] Performance evaluation of VF graph matching algorithm,
LP Cordella, P Foggia, C Sansone, Image Analysis and
processing, (1999) pp.1172-1177.
[6] A (Sub)Graph Isomorphism Algorithm for Matching large
graphs- Luigi P. Cordella, Pasquale Foggia, Carlo Sansone,
and Mario Vento, Proc. 3rd IAPR-TC15 Workshop Graph-
Based Representations in Pattern Recognition, (2001), pp.
149-159.
[7] Liu and D. J. Klein. The graph isomorphism problem.
Journal of Computational Chemistry, 12(10): 1243-1251,
1991.
[8]http://en.wikipedia.org/wiki/Subgraph_isomorphism_probl
em
[9] Subgraph Isomorphism in Polynomial Time – B.T.
Messmer and H. Bunke, University of Bern, Neubruckstr. 10,
Bern, Switzerland, Recent Developments in Computer Vision,
(1996).

