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Abstract - Subgraph isomorphism (SGI) is the problem to 
determine whether there is a subgraph in the given larger 
graph (called model graph) that is identical to a given smaller 
graph (called query graph). It is well known that SGI problem 
for an unlabeled graph in general is NP Complete. The 
famous Ullman’s algorithm is still used in popular subgraph 
matching software package such as POSSUM. However, this 
algorithm handles unlabeled graphs. In this paper, we design 
and implement a new SGI algorithm that can handle graphs 
with labeled edges. Such graphs have important applications 
e.g. cheminformatics and pattern recognition. Our major 
contribution is to integrate degree filtering while comparing 
the node labels, so that the performance is greatly improved. 

Keywords: graph algorithms, subgraph isomorphism, labeled 
graphs, matching 

1 Introduction 

    Many real world problems can be represented in term 
of graphs. From late seventies, graph-based techniques have 
been proposed as a powerful tool for pattern recognition. 
Pattern recognition in chemistry or biological databases is 
modeled as graph matching problem. Graph matching 
problems are of two types, they are exact graph matching and 
approximate graph matching. In this paper, we mainly 
concentrate on sub-graph isomorphism which is in category of 
exact graph matching.  

   The main use of the subgraph isomorphism in chem-
Informatics is “the chemical similarity between any two 
molecules, either at the sub or superstructure level, and 
clustering of similar molecules are widely used to measure the 
diversity of chemical space and these methods are important 
as they can be applied towards discovering any new drug like 
molecules” In addition to cheminformatics, SGI has many 
other applications in bioinformatics, scene analysis, pattern 
recognition , image processing, etc. Related work is given in 
the next section. In sec. 3, Ullman’s algorithm is discussed as 
the base for our algorithm (in sec. 4) to compare with. The 
experiment section of 5 shows that our new algorithm 
outperforms the traditional Ullman’s algorithm. Lastly, the 
conclusion and further work are given. 
.  

2 Related Work 
  

2.1 Exact Matching Algorithms 

 Subgraph isomorphism will come under the exact matching 
algorithms category. Exact graph matching is requires the 
mappings between the nodes of the two graphs to be edge-
preserving. That is, if any two nodes in the first graph are 
linked by an edge then they are mapped to two nodes in the 
second graph that are linked by an edge as well. In the case of 
labeled graphs, the corresponding node and edge labels must 
match as well. There is a bi-directional one-to-one 
correspondence between each node of the first graph to the 
each node of subgraph of the second graph.  

Most of the algorithms for exact graph matching are based 
on some form of tree search with backtracking. Many different 
implementations have been employed. Among them the 
recursive depth first search uses less memory.  

Ullman‟s algorithm was published as early as 1976, which 
is is still widely used today in the famous software package 
POSSUM (Protein On-line Substructure Searching – Ullman 
Method) [4]. Ullman proposes so-called refinement procedure 
that works on a matrix of possible future matched node pairs 
to remove. Many algorithms are proposed based on this 
algorithm.  

Another similar algorithm is Corneil’s breadth-first 
algorithm, which is presently the core component of Gemini 
and Sub-Gemini, which is still best performing package today 
for sub circuits extraction in VLSI layout verification. [2].  
Cordella proposed a new algorithm for the subgraph 
isomorphism called VF [5] algorithm. In this algorithm, a 
heuristic is based on the analysis of the sets of nodes adjacent 
to the ones already considered in the partial mapping. The 
author redesigned and proposes another algorithm called VF2 
[6] which is significant improvement over Ullman‟s and work 
well for large graphs also.  

Subgraph isomorphism has been proposed by the Larrosa 
and Valiente [7], authors changed slightly the problem and 
stated as constraint satisfaction problem (CSP), and this 
problem has been helpful in the framework of discrete 
optimization and operational research.  
 In this paper, we mainly modified Ullman’s method so 
that in the case of labeled graph, the performance is greatly 
improved due to label matching and degree filtering. We will 



first present the simple enumeration algorithm and then the 
idea of Ullmann’s method, and in coming section our 
algorithm called SGI-DF (Subgraph Isomorphism with 
Degree Filtering). 

2.2 Simple Enumeration Algorithm for 
Finding Subgraph Isomorphism 

 This algorithm describes a brute-force enumeration 
procedure that is actually a depth-first tree-search algorithm. 
This algorithm is designed to find all the isomorphisms 
between given graphs G1 and the subgraphs of G2. The 
adjacency matrices for graphs G1 and G2 are A= [αij] and B= 
[βij].  

These methods will use the representation of adjacency 
matrices. In this algorithm, we introduce the very important 
concept of permutation matrix, which is a key concept in 
Ullman’s algorithm. We call the permutation matrix as M’. of 
size (rows of matrix A) X (rows of matrix B), such that the 
permutation matrix whose elements are 1’s and 0’s and such 
that each row contains exactly one 1 and no column contains 
more than one 1.  
 The permutation matrix is used to find the matrix C, 
where C= [cij] = M'(M'B)T, and T represents transpose. 
Subgraph isomorphism exists if for all i and j’s of α and β, 
(αij=1) = (cij=1). 

2.3 Permutation Matrix 

   A permutation matrix, of N×M, has exactly one entry 1 in 
each row and each column and 0s elsewhere. For a 4×4 
permutation matrix, 4! (Factorial of 4) permutation matrices 
are possible.  
In the simple brute force enumeration procedure, it needs all 
the permutation matrices to be tried until the subgraph 
isomorphism exists. Here are just 3 of the matrices in all 24 
matrices. 

 
 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

 

0 1 0 0 
1 0 0 0 
0 0 1 0 
0 0 0 1 

 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

 

 
Example is given below for one of the permutation matrices [3 
2 1 0], how it will be computed 

3 2 1 0 
3r column and 0th row- 1  
2nd column and 1st row-1   
1st column and 2rd row-1 
0th column and 3rd row-1 
(remaining all are 0’s) 

 

 0 1 2 3 

0 0 0 0 1 

1 0 0 1 0 

2 0 1 0 0 

3 1 0 0 0 

Table 1: permutation matrix showing each row and column 

3 Ullman’s Algorithm 
 To reduce the amount of computation, Ullmann proposed a 
refinement procedure to eliminate some of the 1’s from the 
matrices M, thus reducing the number of the possibility 
matrices.  

Ullman’s algorithm mainly depends on permutation matrices 
to find all the isomorphism for given two graphs. Using 
permutation matrices, we find the matrix C and then compare 
it with a query graph. Ullmann’s method is based on 
backtracking and a refinement procedure.  
The inputs are the model graph and query graph, and the 
output will be a permutation matrix.  
Query graph G= (V, E, LV, LE)  
Model graph G1= (V1, E1, LV, LE)  
Ullmann’s algorithm: 
ULLMANN (G= (V, E, LV, LE), G1= (V1, E1, LV, LE)) 
1. Let P = (pij) be a n×n permutation matrix, n = |V|, 
     m = |V1|,and M=adjacency matrix of G,  
      M1=adjacency   matrix of G1 

2.  Call Backtrack(M; M1;P;1) 
3. Procedure Backtrack (adjacency matrix M, adjacency 
matrix M1, Permutation matrix P, counter k) 

(a) if k > m then P represents a subgraph isomorphism 
from GI to G. Output P and return. 

       (b) For all i = 1 to n 
                 i. set Pki = 1 and for all j = i set Pkj = 0 
                 ii. if Sk,k(M1) = Sk,n(P) M (Sk,n(P ))T then 
                                 call Backtrack(M, M1, P, k +1) 

 
Ullmann followed the backtracking procedure with the 

refinement steps. The refinement procedure is done by the 
idea of forward checking. The backtrack procedure in 
Ullmann’s algorithm recursively builds permutation matrix 
element by element, checking for a match with input graph at 
each step. 

The backtracking procedure stops whenever the match 
found or until all the possible matrices are over. 
In comparison with the simple enumeration procedure, 
Ullmann’s refinement method will reduce the number of 
permutation matrices. We will use the following example to 
explain. 
 
 
 
 
 a 
 
  b  
 
 a 
  
 
 graph: G1        
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C 
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graph: G2 

In the above figure, circles represent the node labels, 
squares represent indexes and remaining are the edge labels. 
For the simple enumeration procedure, the permutation matrix 
would contain of all 1’s. 
 

Indexes(labels) 1(C) 2(C) 3(N)  4(C) 5(N) 

1(C) 1 1 1 1 1 

2(N)  1 1 1 1 1 

3(C) 1 1 1 1 1 

 
In the above matrix, the total combinations would be 

5*4*3=60 possibilities of permutation matrices. Because of its 
brute force approach it should have to try every possibility in 
worst case. For Ullmann’s procedure, the permutation matrix 
would contain fewer 1’s compared to the simple enumeration 
procedure. 
 

Indexes(labels) 1(C) 2(C) 3(N)  4(C) 5(N) 

1(C) 1 1 0 1 0 

2(N)  0 0 1 0 1 

3(C) 1 1 0 1 0 

 
In this case, there are only 12 different possibilities in worst 
case. 

4 Label Matching with Degree Filtering 
 To further improve Ullmann’s method, we have to decrease 
the number of 1’s in the permutation matrix, so that we get 
smaller number of combinations to check for the subgraph 

isomorphism. Our idea is to add degree filtering and label 
matching features for labeled graphs. 

Using our algorithm we can reduce a lot of 1’s in the 
permutation matrix than the 1’s in the Ullmann’s algorithm, 
thus reducing many unnecessary comparisons from query 
graph to the main graph. 

The degree of a node is the total number of neighboring 
nodes connected to the node. For example, in Graph G2, the 
degrees of the nodes 1 through 5 are 1, 3, 3, 2, and 1 
respectively.  
 

4.1 Design of the algorithm 

As we mentioned before, the aim of algorithm is to reduce 
the non-zero entries of matrix M to zeros. Suppose 
α_1,α_2,………..α_n are in query graph and β_1, β_2,………. 
Β_m are in model graph. A and B are adjacency matrices of 
query and model graphs. 
 
Step 1: Fast elimination 

Before this step, we will find degree for each node in query 
graph and input graphs. 
In this step, we will check the maximum degree of query graph 
and compare to that of the model graph, if there is no node 
having same label and not having higher degree than the 
maximum degree of query graph, then it’s going to be 
terminated and say there is no subgraph form G1 to G2. 
 
Step 2: Preprocessing 

In this step, we preprocess the matrix and reduce as many 
entries of M to zero as possible by allowing only vertices with 
the same or greater degree to be mapped to each other as well 
as checking the label names. 

We construct mapping matrix M as follows. 
M(i,j) = 1, if Degree(α_i) ≤ Degree(β_j) and Label( 
α_i)=Label(β_j) 
M(i,j) = 0, Otherwise 

The above 2 steps are not in the Ullmann’s method and so 
we improve the performance, and the remaining steps are very 
much similar. 
 
Step 3: Changing Mapping matrix to the different arrays, and 
then using that arrays we will generate distinct arrays, each 
array for each possible matrix. 
 
Step 4: Computing C according to this formula, 

C=M(M*B)T, where M is the each possible matrix, 

 B is the input matrix 
 T is the transpose 
 C is the final matrix to check each time to the query matrix 
for every possible matrix. 
 
Step 5: 

If C=A, then the possible matrix matches the structure of 
query and main graphs, then it will check all the edges in 
query and main graph ,if they are same then print the result, If 
not then go to step 3 and get other possible matrices. 
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4.2 Flow chart of our algorithm: 
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         In the example of section III, we know that there are 12 
possible combination matrices in Ullmann’s algorithm. 
Now for our algorithm: 
First find degrees for query and main graph. 
For query graph: 
Deg(1)=2    
Deg(2)=2 
Deg(3)=2 
For the main graph: 
Deg(1)=1 
Deg(2)=3 
Deg(3)=3 
Deg(4)=2 
Deg(5)=1 
 
Now, Max_degree(query graph)=2 < Deg(2)  
The entries are in the form of: Indexes (labels) [Degree] 
 

 1(C)[1] 2(C)[3] 3(N)[3]  4(C)[2] 5(N)[1] 

1(C) 
[2] 

0 1 0 1 0 

2(N) 
[2] 

0 0 1 0 0 

3(C) 
[2] 

0 1 0 1 0 

 
 Now the combinations in above matrices without 
repetition are 2, much smaller than Ullman’s 12. If we take 
large graphs, then we can clearly see that using degree 
filtering and label matching may greatly improve the 
performance. 

5     Experiments 
      We used the data sets in a standard graph library from 
(http://www.cs.ucsb.edu/~xyan/software.htm/). The graph 
library consists of datasets with the query and model graphs. 
We used java on a windows 7 machine for the whole 
implementation of Ullmann’s algorithm as well as our 
algorithm. We tested our algorithm on datasets taken in the 
form of adjacency lists. When the query size grows the 
running time is also increasing as well. We tested the same 
datasets for the Ullmann’s algorithm as well. 
We compare the runtimes of our algorithm and those of 
Ullmanns algorithm when the query size and number of nodes 
in the main graphs increase. 
 
Results: 
       In all the diagrams, x-axis represents the number of model 
graph nodes and y-axis is the runtime in mili-seconds. From 
these figures, we can see that our algorithm beats Ullman’s 
algorithm for different query sizes. Furthermore, the larger the 
sizes, the more number of nodes, our performance advantage 
is also larger. 
 

      
Figure 1: for query size of 3. 

 

 
 

Figure 2: for query size of 5. 
 

 
Figure 3: for Query size 7. 

 



 
 

Figure 4: for query size 9. 

6   Conclusion 
We proposed a new algorithm called SGI-DF, which works 

for labeled graph subgraph isomorphism. Our conclusion from 
the experiments and results is that when the query size is 
smaller there would be no great difference but when the query 
size becomes bigger the runtime difference between Ullman’s 
algorithm and SGI-DF becomes much larger. The reason is 
that our degree filtering feature added can eliminate many 
unnecessary computations. When the query sizes grow both 
algorithms run longer. In addition, our algorithm works for the 
labeled edges also which is very helpful in applications such 
as chem-informatics.  

The scalability of this algorithm remains to be verified due 
to limited computing resources. One area is to extend the work 
here to accommodate large graphs stored in external disks. 
Further work on SGI computing on cloud environment is also 
desired.  
 
 

 
Figure 5: for query size 11. 
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