Labeled Subgraph Matching Using Degree Filtering

Lixin Fu and Surya Prakash R Kommireddy
Department of Computer Science,
University of North Carolina at Greensboro,
167 Petty Building, Greensboro, NC 27412, USA.
phone: 336-256-1137; fax: 336-256-0439; e-mail@iuncg.edu

Abstract - Subgraph isomorphism (SGI) is the problem t& Related Work

determine whether there is a subgraph in the gilager

graph (called model graph) that is identical to i&en smaller . .
graph (called query graph). It is well known thagiroblem 2:1 Exact Matching Algorithms

for an unlabeled graph in general is NP Complettie T gypgraph isomorphism will come under the exact hiadc
famous Uliman’s algorithm is still used in populsubgraph aigorithms category. Exact graph matching is resguithe
matching software package such as POSSUM. Howdhisr, mappings between the nodes of the two graphs tedge-
algorithm handles unlabeled graphs. In this papee, design preserving. That is, if any two nodes in the figsaph are
and implement a new SGI algorithm that can hand&pls |inked by an edge then they are mapped to two nodése
with labeled edges. Such graphs have importantiegdns second graph that are linked by an edge as wethdrtase of
e.g. cheminformatics and pattern recognition. Ouajon |gpeled graphs, the corresponding node and edgéslafust
contribution is to integrate degree filtering whi®mparing match as well. There is a bi-directional one-to-one
the node labels, so that the performance is greatfyroved. correspondence between each node of the first giaghe
each node of subgraph of the second graph.

Keywords: graph algorithms, subgraph isomorphism, labeled Most of the algorithms for exact graph matching based
graphs, matching on some form of tree search with backtracking. Maiffgrent

. implementations have been employed. Among them the
1 Introduction recursive depth first search uses less memory.

Many real world problems can be represented in termL_JIIman"s algorithm was published as early as 1976, which

; ; till widely used today in the famous softevgrackage
of graphs. From late seventies, graph-based tecbsihave IS 1S S ; . .
been proposed as a powerful tool for pattern reitiogn POSSUM (Protein On-line Substructure Searching knah

Pattern recognition in chemistry or biological detses is Method) [4]. Uliman proposes so-called refinementicedure

modeled as graph matching problem. Graph matchirﬁgat works or'1v|a matr:x oftrr])ossible future madtcrkl)edmdpa_irs "
problems are of two types, they are exact grapteiveg and | re_?plove. any algorithms are proposed based @
approximate graph matching. In this paper, we mainﬁgor' m.

: : e Another similar algorithm is Corneil's breadth-firs
concentrate on sub-graph isomorphism which is iagmy of X L .
exact graph matching. algorithm, which is presently the core componenGeimini

The main use of the subgraph isomorphism in eherﬁnd ngbTGeTm":Nh'(t:_h IS SQ/”LETTJ[perIorm_':itganm@g today
Informatics is “the chemical similarity between amyo ((:)r sdu Ilcwcwsex rgc lonin lay_(irl: Ve][' tﬁ[1 b h
molecules, either at the sub or superstructurel,leard ordefia proposed a nhew algonthm for the subgrap

clustering of similar molecules are widely usedrieasure the |som_0rph_|sm called VF [5] aIgpnthm. In this a'g""T"’ a
diversity of chemical space and these methodsrapertant heuristic is based on the analysis of the setxdés adjacent

: : : : to the ones already considered in the partial nmgppihe
as they can be applied towards discovering any drexy like . .
moleca/les” In adpdpition to cheminformaticg, S>(/3I hagny author redesigned and proposes another algorittiedcdrF2

other applications in bioinformatics, scene analygattern [6] which is significant improvement over Uliniznand work
recognition , image processing, etc. Related wergiven in well for Iarge_graphs a_Iso.

the next section. In sec. 3, Uliman’s algorithndiscussed as S”bg“?‘ph isomorphism has been p_roposed by the daarro
the base for our algorithm (in sec. 4) to compaith.whe and Valiente [7], a_luthors_ char_lged slightly the &0 and
experiment section of 5 shows that our new algmithStated as _constraint saUsfagtlon problem (CSPY Et_ns
outperforms the traditional Ullman’s algorithm. ks the problem has been helpful in the framework of disre

conclusion and further work are given. optimization and operational research.
In this paper, we mainly modified Ullman’s methsad

that in the case of labeled graph, the performasiageatly
improved due to label matching and degree filterivg will

first present the simple enumeration algorithm &meh the 3 UJ|lman’s Algorithm
idea of Ullmann's method, and in coming section our
algorithm called SGI-DF (Subgraph Isomorphism with To reduce the amount of computation, Ullmann prepos

Degree Filtering). refinement procedure to eliminate some of the fdsnfthe
matrices M, thus reducing the number of the polisibi

2.2 Simple Enumeration Algorithm for Matrices. . . e
-) Ullman’s algorithm mainly depends on permutatiortninas
Finding Subgraph Isomorphism to find all the isomorphism for given two graphssit

This algorithm describes a brute-force enumeratio.y,;ﬁermutation matrices, we find the matrix C and tbempare

procedure that is actually a depth-first tree-deaigorithm. it With a query graph. Ullmann's method is based on
This algorithm is designed to find all the isomdsphs Packtracking and a refinement procedure.
between given graphs G1 and the subgraphs of Gg. Thhe inputs are the model graph and query graph, taed
adjacency matrices for graphs G1 and G2 aredifdnd B= output will be a permutation matrix.
[Bij]. Query graph G= (V, E, |, Lg)
These methods will use the representation of adigce Model graph G1=(V1, E1,\ Le)
matrices. In this algorithm, we introduce the vémportant Ullmann’s algorithm:
concept of permutation matrix, which is a key cqicmn ULLMANN (G=(V, E, Ly, Lg), G1= (V1, E1, | Lg)
Ullman’s algorithm. We call the permutation mataig M’. of ~ 1.Let P = (g) be a nxn permutation matrix, n = |V/,

size (rows of matrix A) X (rows of matrix B), suthat the m = |V1|,and M=adjacency matrix of G,
permutation matrix whose elements are 1's and 0& such M1=adjacency matrix of G1

that each row contains exactly one 1 and no coloomiains

more than one 1. 2. Call Backtrack(M; M1;P;1)

The permutation matrix is used to find the ma®@ix 3. Procedure Backtrack (adjacency matrix M, adjagen
where C= [cij] = M'(M'BY, and T represents transpose.matrix M1, Permutation matrix P, counter k)

Subgraph isomorphism exists if for all i and j's ofand 3, (@) if k > m then P represents a subgraph isomsnphi
(0;=1) = (g=1). from Gl to G. Output P and return.
(b) Foralli=1ton
2.3 Permutation Matrix I. sety>= 1 and for all j = i setp= 0
ii. if Rk(M1) = Sn(P) M (Sn(P)T then
A permutation matrix, of NxM, has exactly ondrgri in call Backtrack(M1, P, k +1)

each row and each column and Os elsewhere. Forda 4x
permutation matrix, 4! (Factorial of 4) permutatioratrices ylimann followed the backtracking procedure withe th
are pos§|ble. _ . refinement steps. The refinement procedure is dmnehe
In the simple brute force enumeration procedureedéds all jdea of forward checking. The backtrack procedure i
the permutation matrices to be tried until the sapf ulimann's algorithm recursively builds permutationatrix
isomorphism exists. Here are just 3 of the matriceall 24 element by element, checking for a match with ingraph at
matrices. each step.

The backtracking procedure stops whenever the match

found or until all the possible matrices are over.
1000 0100 1000 In comparison with the simple enumeration procedure
0010 1000 0100 Ullmann’s refinement method will reduce the numbsr
0100 0010 0010 permutation matrices. We will use the following ewsde to
0001 0001 0001 explain.
2
N

Example is given below for one of the permutaticatnnes [3

2 1 0], how it will be computed
3
1
0 \
0
0

Table 1: permutation matrix showing each row androo

3210

3r column and B row- 1
2" column and ¥ row-1
1% column and % row-1
0™ column and 8 row-1
(remaining all are 0’s)

W N P O
» O O o o
O P O Ok
o © r» O N

(o)

graph: G2

In the above figure, circles represent the nodeeltab
squares represent indexes and remaining are tleelaiog)s.
For the simple enumeration procedure, the pernautatiatrix
would contain of all 1's.

Indexes(labels) 1(C) 2(C) 3(N) 4(C) 5(N)
1(C) 1 1 1 11
2(N) 1 1 1 1 1
3(C) 1 1 1 11

In the above matrix, the total combinations would
5*4*3=60 possibilities of permutation matrices. Base of its
brute force approach it should have to try evergsgality in
worst case. For Ullmann’s procedure, the permutatiatrix
would contain fewer 1's compared to the simple egnation
procedure.

Indexes(labels) 1(C) 2(C) 3(N) 4(C) 5(N)
1(C) 1 1 o0 1 o0
2(N) o o 1 0 1
3(C) 1 1 0 1 0

In this case, there are only 12 different possibgiin worst
case.

4 Label Matching with Degree Filtering

To further improve Ullmann’s method, we have tcréase
the number of 1's in the permutation matrix, sottiva get
smaller number of combinations to check for thegsaph

isomorphism. Our idea is to add degree filteringl dabel
matching features for labeled graphs.

Using our algorithm we can reduce a lot of 1's het
permutation matrix than the 1's in the Ullmann'gaithm,
thus reducing many unnecessary comparisons fronryque
graph to the main graph.

The degree of a node is the total number of neighfo
nodes connected to the node. For example, in G&hhthe
degrees of the nodes 1 through 5 are 1, 3, 3, &, Jan
respectively.

4.1 Design of the algorithm

As we mentioned before, the aim of algorithm igéduce
the non-zero entries of matrix M to zeros. Suppose
a_lo 2,.......... o_n are in query graph afid1,p_2,..........
B_m are in model graph. A and B are adjacency nestraf
guery and model graphs.

Step 1 Fast elimination

Before this step, we will find degree for each nadguery
graph and input graphs.
In this step, we will check the maximum degree wény graph
and compare to that of the model graph, if theradsnode
having same label and not having higher degree than
maximum degree of query graph, then it's going ® b
terminated and say there is no subgraph form Ga2to

Step 2 Preprocessing
In this step, we preprocess the matrix and redsceany
entries of M to zero as possible by allowing ordytices with

bihe same or greater degree to be mapped to eaehasthwell

as checking the label names.

We construct mapping matrix M as follows.
M(i,j) = 1, if Degreef i) < Degreef_j) and Label(
o_i)=Label@_j)
M(i,j) = 0, Otherwise

The above 2 steps are not in the Ullmann’s methat so
we improve the performance, and the remaining stepvery
much similar.

Step 3 Changing Mapping matrix to the different arragagd
then using that arrays we will generate distinctys, each
array for each possible matrix.

Step 4 Computing C according to this formula,
C=M(M*B)T, where M is the each possible matrix,
B is the input matrix
T is the transpose
C is the final matrix to check each time to themyumatrix
for every possible matrix.

Step 5

If C=A, then the possible matrix matches the stmectof
query and main graphs, then it will check all trdges in
qguery and main graph ,if they are same then phmtrésult, If
not then go to step 3 and get other possible nestric

4.2 Flow chart of our algorithm:

Find degree for eac
node in the Maingraph

Max_deg(query
graph)>degree(node
with same label in

Find degree for eack

node in the querygraph

maingraph)

False l

Form a matrix checking the True
conditions of degree and node label

"2

True

Get all the distinct arrays from the above mataixd
change that into possible matrices, sending eaeh|on
to next step.

x l

Finding C, C=M(M*B)

Check whether
C=A,if yes then go to
next step,

If every
possible

matrix is
over

False

Check edges are

Termination,No
equal?

isomorphism
False

Successful
isomorphism

True

In the example of section I, we knowtthizere are 12
possible combination matrices in Ulimann’s algarith
Now for our algorithm:
First find degrees for query and main graph.

For query graph:
Deg(1)=2
Deg(2)=2
Deg(3)=2

For the main graph:
Deg(1)=1
Deg(2)=3

Deg(3)=3
Deg(4)=2
Deg(5)=1

Now, Max_degree(query graph)=2 < Deg(2)
The entries are in the form of: Indexes (labelg}dize]

1O 2(©C)[BE] 3(N)EB] 4C)2] 5(N)1]
1(C) 0 1 0 1 0
(2]
2(N) 0 0 1 0 0
(2]
3(C) 0 1 0 1 0
2]

Now the combinations in above matrices without
repetition are 2, much smaller than Ullman’s 12w# take
large graphs, then we can clearly see that usirgyede
fitering and label matching may greatly improvee th
performance.

5 Experiments

We used the data sets in a standard grapanflidrom
(http://www.cs.ucsb.edu/~xyan/software.htm/ The graph
library consists of datasets with the query and ehguaphs.

D

70
60
40 // our
algorithm
30 = ullmann
algorithm
20 8
10 /
0 T T T T T 1
10 20 30 40 50
Figure 1: for query size of 3.
80
70 /
60 /
20 / our
40 algorithm
30 / " =——ullmann
// algorithm
20 -4
10
0 T T T T 1
10 20 30 40

Figure 2: for query size of 5.

We used java on a windows 7 machine for the who
implementation of Ullmann’s algorithm as well asrou
algorithm. We tested our algorithm on datasetsrtakethe
form of adjacency lists. When the query size graws
running time is also increasing as well. We tedtes same
datasets for the Ullmann’s algorithm as well.

We compare the runtimes of our algorithm and thoe
Ulimanns algorithm when the query size and numiferodes
in the main graphs increase.

Results

In all the diagrams, x-axis represents tialmer of model
graph nodes and y-axis is the runtime in mili-s@sorFrom
these figures, we can see that our algorithm biddisan’s
algorithm for different query sizes. Furthermotes targer the
sizes, the more number of nodes, our performancansage
is also larger.

60

50

40

30

20

10

our
algorithm

= |lmann

algorithm

10 20 30 40

Figure 3: for Query size 7.

160
140

120 /
our

100 /
80 algorithm
60 / = llmann

/ algorithm
40 /
20 -

10 20 25 30

Figure 4: for query size 9.

6 Conclusion

We proposed a new algorithm called SGI-DF, whichikso

for labeled graph subgraph isomorphism. Our coimmtusom
the experiments and results is that when the gsey is

smaller there would be no great difference but wihenquery

size becomes bigger the runtime difference betvi#lenan’s

300
250 /
200
/ our
150 algorithm
/ = ullmann
100 algorithm

50 =

10 20 25 30

Figure 5: for query size 11.

References

[1] Taming verification hardness: an efficient aigfam for
testing subgraph isomorphism, H Shang, Y Zhang,ixX L
proceedings of the VLDB Endowment, (2008)

[2] An Effective Approach for Solving Subgraph Isomphism

algorithm and SGI-DF becomes much larger. The reaso Problem- Zong Ling, Department of Electrical Engineg,

that our degree filtering feature added can eliteinaany
unnecessary computations. When the query sizes fuoilv
algorithms run longer. In addition, our algorithronks for the
labeled edges also which is very helpful in appie such
as chem-informatics.

The scalability of this algorithm remains to beified due
to limited computing resources. One area is torektae work
here to accommodate large graphs stored in extelisks.
Further work on SGI computing on cloud environmisrdlso
desired.

University of Hawaii (1996)

[3] Parallel Subgraph Isomorphism, Aaron Blankstein
Matthew Goldstein, MIT Computer Science and Ariific
Intelligence Laboratory (2010)

[4] J. R. Ullman, An algorithm for subgraph isomiigm,
Journal of the association of computing machin2B(1976)
31-42.

[5] Performance evaluation of VF graph matchingoatgm,
LP Cordella, P Foggia, C Sansone, Image Analysid an
processing, (1999) pp.1172-1177.

[6] A (Sub)Graph Isomorphism Algorithm for Matchiteyge
graphs- Luigi P. Cordella, Pasquale Foggia, Cados8ne,
and Mario Vento, Proc. 3rd IAPR-TC15 Workshop Graph
Based Representations in Pattern Recognition, (2004.
149-159.

[7] Liu and D. J. Klein. The graph isomorphism peh.
Journal of Computational Chemistry, 12(10): 124312
1991.
[8]http://en.wikipedia.org/wiki/Subgraph_isomorpimsprobl
em

[9] Subgraph Isomorphism in Polynomial Time - B.T.
Messmer and H. Bunke, University of Bern, Neubrticks0,
Bern, Switzerland, Recent Developments in Comp\ision,
(1996).

