
Extending Local Similarity Indexes with KNN for Link Prediction

G. Speegle1, Y. Bai2 and Y.-R. Cho1

1Department of Computer Science, Baylor University, Waco, TX, USA
2Amazon, Seattle WA, USA

Abstract— One of the challenges in big data analytics
is discovering previously unknown relationships between
objects. Two common examples are suggesting friends in
social media networks and predicting interactions between
biological proteins. Both of these cases are examples of link
prediction. Link prediction algorithms accept a graph and
a pair of nodes and predict whether or not there should be
an edge between those nodes. Local similarity indices are
link prediction algorithms based on the assumption that if
two nodes are structurally similar, there should be an edge
between them. This concept can be extended by using the
machine learning notion of k-nearest neighbor so that an
edge from u to v is predicted if nodes similar to u have
an edge to v, or nodes similar to v have an edge to u. It
is straightforward to extend local similarity indices to k-
nn versions of the algorithms, and with suitable selection
of k accuracy is improved. Although there is additional
computational cost, it can be amortized such that operations
such as finding all predictions have similar computation
time.

Keywords: Link Prediction, k-nearest neighbor, Graphs

1. Introduction
Graphs are used to represent relationships between real

world objects. For example, graphs can represent the distance
between two cities, whether or not two people are friends
in a social media network, or the interaction between two
proteins. However, graphs do not always contain all the
information from the real world. If two people are not friends
on Facebook, it does not mean they are not friends in real
life. Two proteins may interact in a way that has not yet been
discovered. Thus, certain edges are “missing” in the graph.
Suggesting missing edges is called link prediction.

The literature contains many link prediction algorithms.
In [9], the algorithms are called indexes and are divided
into categories. We are interested in similarity indices, and
in particular, local similarity indices. Local similarity indices
make a prediction on an edge (u, v) by using the properties
of the nodes u and v. In theory, nodes with similar properties
are more likely to have an edge than nodes that do not.
Local similarity indices are computationally very efficient
and reasonably good at predicting edges.

This work focuses on extending the theory behind local
similarity indices in a natural way. The concept that two
nodes are similar implies an edge between them only uses
a portion of the information available. We consider a set of

Fig. 1
A SIMPLE GRAPH WITH EIGHT NODES. THE LINK (u, v) IS OF INTEREST.

NODES u AND v HAVE TWO COMMON NEIGHBORS, b AND e.

k nodes similar to u (and respectively, v). The more similar
nodes that have an edge to v (or u), the more likely (u, v)
is to exist. This technique is commonly known as k-nn.
However, in order to avoid confusion between the similar
nodes and the nodes adjacent in a graph, we use the term
k-similarity to refer to the former case.

To see the difference between local similarity indices and
k-similarity consider the simple graph in Figure 1. A key
measurement for local similarity is the number of common
neighbors between two nodes. Nodes u and v have two
neighbors in common, specifically, nodes b and e.

Finding the k-similarity nodes to u and v is more complex.
Table 1 shows how the similarity would be computed for the
graph using common neighbors as the similarity criterion.
Given a value for k, k-similarity can be computed from the
table. For example, with k = 1, the most similar node to u is
v and the most similar node to v is u. Since neither the edge
(v, v) nor (u, u) is in the graph, the score for k-similarity
using common neighbors and k=1 for (u, v) would be zero.
Note that k = 2 results in a tie, which is arbitrarily broken.
Assume a is selected as the second most similar node to u.
Since (a, v) is not in the graph, the number of similar nodes
to u that are neighbors of v is still zero. However, if a is



Table 1
THE k-SIMILARITY CALCULATIONS FOR FIGURE 1 USING COMMON

NEIGHBORS AS THE SIMILARITY CRITERION. U SHARED IS THE

NUMBER OF NEIGHBORS IN COMMON BETWEEN u AND THE NODE. V
SHARED IS SIMILAR FOR v.

Node Neighbors U Shared V Shared
u a,b,d,e,v 5 2
v b,c,e,f,u 2 5
a d,u 1 1
b u,v 1 1
c v,f 1 1
d a,u 1 1
e u,v 1 1
f c,v 1 1

selected as the second most similar node to v, since (a, u)
is in the graph, the number of similar nodes to v that are
neighbors of u is now one, and the reported score is one.

Using k-similarity with local similarity indices is very
straightforward. Once the framework is in place, creating
a k-similarity version of the index requires writing one
method with typically no more than a few lines of code.
As shown in Section 3, with appropriate selection of k,
the k-similarity version can perform better than the native
version for predicting links in biological graphs. However,
sometimes the k-similarity version performs significantly
worse, leading to speculation as to what properties of the
indices can be exploited by k-similarity.

The notation in this paper extends the typical graph
notation in order to simplify discussions. A graph G is
defined as G = (V,E) such that V is the set of vertices (or
nodes) in the graph, and E is the set of edges. Let U be the
set of all possible edges in G. The link prediction problem,
as defined in [9], is to find the edges in U−E that should be
in G. Let the neighbors of a vertex v ∈ V be denoted Γ(v).
The degree of a vertex v is dv . When needed, the k-similarity
vertices to v are denoted K(v). The graph used in this work
is modified from the BioGRID Interaction Database [14].
The graph consists of 6,186 nodes and 192,474 unique edges.
The graph has been modified from [14] to remove redundant
edges and self-loops.

This paper proceeds by providing background information
on models for link prediction in graphs. Next, the paper
describes the development of k-similarity algorithms and
the experiments showing the impact of k-nn versus native
applications of the local similarity indexes. Some surprising
issues are discussed in Section 4. The conclusion and future
work ends the paper.

2. Related Work
Link prediction is a popular research topic. In [9], the

link prediction techniques are divided into similarity based
algorithms, maximum likelihood methods and probabilistic
models. Similarity based algorithms assume that an edge
(u, v) is more likely if the nodes u and v are similar, based
on some criteria. Clearly, k-nn methods are similarity based.

Maximum likelihood methods assume the graph has an
underlying structure, so that edges which contribute towards
the structure are favored over edges that do not. Examples
include the dendrogram in [4] and block models [2]. The
probabilistic approaches attempt to model the underlying
graph structure and predict the missing edges based on the
probability of the link given the model. See [9] for more
about maximum likelihood and probabilistic methods.

More recently, matrix factorization has been used for link
prediction [10]. Matrix factorization is similar to k-similarity
in that it incorporates other prediction models. As with k-
similarity, matrix factorization does not ensure a better result
than using the native version of the similarity index. Also, as
with k-similarity, the matrix factorization model can be opti-
mized for AUC, and this is done in [10]. Fundamentally, the
matrix factorization model is a supervised learning technique
which combines the graph topology with side information.
It requires training linear in the number of possible edges,
or quadratic in the number of vertices, which is similar to
k-similarity for making all predictions.

The work by Lu and Zhou [9] further divides similarity
methods into local, global and quasi-local indices. A local
index uses structural information such as the number of
common neighbors. Global similarity are typically based on
properties of the entire graph, such as the number of moves
two random walkers starting at u and v make before they
meet. Quasi-local indexes perform trade-offs between the
high computational complexity of global indexes versus the
generally weaker predictive power of local similarity indices.
For example, one quasi-local method considers not only the
common neighbors, but also all common nodes within a
distance of 2 from each node [15].

Within the hierarchy in [9], the extension of local similar-
ity indexes to k-nn methods is best represented as a quasi-
local index, in that more than local information is used, but
with optimization it is possible to consider only information
in a small portion of the graph.

2.1 Local Similarity Indices
Ten similarity measures (called indices in [9]) are used to

test the application of k-similarity for link prediction. We
describe each of the algorithms in detail in this section. The
similarity measures are presented in alphabetical order for
easier reference.

2.1.1 Adamic-Adar
Abbreviated AA, this similarity measure originally pre-

sented in [1], is based on shared items on web pages. If two
students have many items in common, they are more likely
to be friends. Additionally, rare shared items, contribute
more to the similarity score. The similarity score is modified
slightly in [8] to consider common neighbors as the shared
items. The modified formula is

sAA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1
log dz



2.1.2 Common Neighbors
Abbreviated CN, this similarity measure is one of the most

basic, but performs very well. It is used in [11] to show
that the probability of scientists collaborating increases with
the number of collaborators they have in common. For nine
of the ten local similarity measures in [9], the absence of
common neighbors yields a similarity score of zero.

sCN(x, y) = |Γ(x) ∩ Γ(y)|

.

2.1.3 Cosine Similarity
Abbreviated cos, it is labeled as the Salton Index in [9].

The cosine similarity is based on the cosine of the angle
between two vectors. By representing the neighbors as bit
vectors of nodes, the cosine can be computed. Alternatively,
the cosine similarity can be calculated directly from the
properties of the nodes as

scos(x, y) =
|Γ(x) ∩ Γ(y)|√

dx ∗ dy

2.1.4 Hub Depressed Index
Abbreviated HDI, this similarity measure is new in [9]. It

is analogous to HPI, except hubs are depressed due to their
large degree. The similarity formula is

sHDI(x, y) =
|Γ(x) ∩ Γ(y)|
max(dx, dy)

2.1.5 Hub Promoted Index
Abbreviated HPI, this similarity appears in [13] as the

topological overlap between two nodes. Collections of nodes
with high topological overlap tend to represent biologically
interesting modules. The similarity formula is

sHPI(x, y) =
|Γ(x) ∩ Γ(y)|
min(dx, dy)

2.1.6 Jaccard Index
Abbreviated J, this similarity measure was defined by Paul

Jaccard over 100 years ago. It is a statistic for comparing the
similarity of two sets, and it is applied here by comparing
the sets of neighbors between two nodes. The formula is

sJ(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

2.1.7 Leicht-Holme-Newman Index
Abbreviated LHN, this similarity measure in [7] can be

considered a near inverse of k-similarity. Vertices u and
v are similar if either has a neighbor w that is similar
to the other. Consider 1-NN, in which if the most similar
node to u is a neighbor of v, then u and v are similar.
The significant distinction is that LHN reports similarity if
any neighbor is similar, while k-similarity reports similarity

if any similar node is a neighbor. Since link prediction is
defined by similarity between two vertices, the simplified
formula in [7] is used in which the number of common
neighbors is divided by the expected number of neighbors.
It is proportional to the formula:

sLHN(x, y) =
|Γ(x) ∩ Γ(y)|

dx ∗ dy

2.1.8 Preferential Attachment
Abbreviated PA, this local similarity method does not use

common neighbors. Over ten years ago, the concept was
used to note that new edges tended to be incident on high
density nodes more often than low density nodes [3]. A
similarity measure based on this concept is used in several
applications (see [9] for a listing) and is defined as

sPA = dx ∗ dy

2.1.9 Resource Allocation
Abbreviated RA, this similarity measure is based on the

flow of resources in a graph [12]. Resources leaving one
node flow into all of its neighbors. The amount of the
resource that flows into the target represents the resource
allocation. Specifically, the similarity formula is [9]

sRA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1
dz

2.1.10 Sorensen
Abbreviated S, [9] states this similarity measure is pri-

marily used for ecological community data. The formula is

sS(x, y) =
2 ∗ |Γ(x) ∩ Γ(y)|

dx + dy

3. K-Similarity Extensions to Local Sim-
ilarity Indexes

Adapting a local similarity index to a k-similarity ap-
proach is straightforward. The prediction of an edge (x, y)
is the greater number of elements in the k-nn of each node
that are neighbors of the other node in G.

sK(x, y) = max(|{v|v ∈ K(x) ∧ (v, y) ∈ E}|,
|{v|v ∈ K(y) ∧ (v, x) ∈ E}|)

Making a single prediction with k-similarity is signif-
icantly slower than using the local index alone. Finding
the k-similarity of a node requires O(|V |) local similarity
calculations, while just using the index requires only one.
However, since the k-similarity of a node can be calculated
once and saved, making all of the predictions for a graph
requires O(|V |2) local similarity calculations, identical to
the number when using the index alone. Thus, for finding
the edges most likely to be missing from a graph, the k-
similarity approach is not prohibitively slow.



3.1 K Selection
One of the challenges for using k-similarity is the se-

lection of k. The general wisdom is selecting k does not
significantly alter the effectiveness of the algorithm, so long
as k is not too small. In [6] optimal values for k can be
efficiently determined as long as the error can be incremen-
tally calculated. For link prediction, AUC is used as the
scoring factor, enabling a O(|V |2) algorithm to determine
the optimal k.

The maximum reasonable value for k is
√
|V | [6], [5].

Call this value maxK. The algorithm for calculating the best
k uses a maxK × maxK matrix M . Mij is the percentage
of edges with a predicted score of j or less when using
the i-nearest neighbors. Thus, it is a cumulative distribution
and when j ≥ i, Mij = 1.0. To efficiently generate M , the
algorithm iterates over the edges in the graph. The maxK
nodes are found for each node incident on the edge and the
appropriate Mij is incremented. In one pass over the matrix,
the cumulative values are computed and each cell is divided
by the total number of edges.

The error for a particular k can be computed by consider-
ing all of the non-edges ((u, v) ∈ U − E). The k-similarity
score j is calculated for each nearest neighbor set of size
1 ≤ i ≤ maxK. The error for (u, v) with i-nearest neighbors
is the number of actual edges with a lower score (Mi(j−1))
plus one-half the number of actual edges with the same score
(Mij). The results are in Figure 2. The indexes are split into
two charts for clarity.

From Figure 2, it is clear that the error improves with
increasing k. In fact, for nine of the ten indexes, the lowest
error occurs with k = 79. However, it is also clear that each
error improves only marginally after some point. We use
the least k such that the error improves by less than 1% as
worthy of investigation.

3.2 Area Under the Curve
Our next experiments show the impact of different values

of k within the k-similarity framework on AUC, a common
measurement of link prediction algorithms. Experiment 1
calculates the AUC using only the native local similarity
index. The second through fourth experiments use different
values of k. Experiment 2 uses an arbitrarily chosen value
of 10. Experiment 3 uses the first k such that the error never
improves by more than 1%. Experiment 4 uses the k with
the least error. Table 2 shows the results. It should be noted
that although increasing k increases the work done, it does
not incur any additional index computations, which are the
most expensive operations. Therefore, the runtime for each
index is similar for different values of k.

It is interesting to note that while using k-similarity is
generally helpful, it does not always improve the perfor-
mance of the index. In particular, HPI performs very badly
as a k-similarity index (see Section 4.1 for an explanation) .
Conversely, HDI is exceptionally powerful as a k-similarity
index, outperforming all other techniques. Also, note that
the improvement between Experiment 3 and Experiment 4

 100000

 1e+06

 1e+07

 0  10  20  30  40  50  60  70  80

T
ot

al
 E

rr
or

K Nearest Neighbors

AA Error
Cos Error
HPI Error

J Error
PA Error

(a) The k-nn error for five of the local indexes: AA, cos, HPI, J and PA.

 100000

 1e+06

 1e+07

 0  10  20  30  40  50  60  70  80

T
ot

al
 E

rr
or

K Nearest Neighbors

CN Error
HDI Error
LHN Error

RA Error
S Error

(b) The k-nn error for five of the local indexes: CN, HDI, LHN, RA
and S.

Fig. 2
THE ERROR FOR THE LOCAL SIMILARITY INDEXES IN [9].

Table 2
THE AUC FOR THE TEN LOCAL SIMILARITY INDEXES IN [9] UNDER

FOUR EXPERIMENTS. THE FIRST USES THE SIMILARITY INDEX ALONE.
THE NEXT THREE USE THE k-SIMILARITY APPROACH. IN EXPERIMENT

2, k = 10. IN EXPERIMENT 3, THE k IS INCLUDED IN THE RESULTS. IN

EXPERIMENT 4, THE k IS 79 EXCEPT FOR COMMON NEIGHBOR WHERE

THE BEST k VALUE IS 68. THE VALUES ARE THE AVERAGES OF 5
EXECUTIONS. THE BEST RESULTS FOR EACH EXECUTION IS IN BOLD.

Index Exp 1 Exp 2 Exp 3 Exp 4
AA 0.906 0.912 0.934 (22) 0.937
CN 0.903 0.917 0.928 (20) 0.933
Cos 0.839 0.895 0.934 (31) 0.944
HDI 0.824 0.907 0.951 (38) 0.958
HPI 0.819 0.520 0.512 (10) 0.646
J 0.833 0.911 0.952 (38) 0.957
LHN 0.669 0.569 0.565 (10) 0.745
PA 0.895 0.720 0.772 (23) 0.797
RA 0.910 0.908 0.941 (30) 0.953
S 0.836 0.913 0.948 (38) 0.958



is typically small, especially under the better performing
techniques – HDI, J, RA and S.

3.3 LOOCV
Cross validation is a commonly used technique to measure

the effectiveness of machine learning algorithms. In general,
the data is divided into two sets; one containing the training
data and one containing the test data. The algorithm is
trained on the training data and then attempts to predict
the test data. The experiment is repeated such that every
data item is used in a test set exactly once. In leave-one-out
cross-validation, the test set consists of exactly one element.
For link prediction, the elements are the edges in the graph.
Thus, we execute each of the local similarity indexes on
a graph with an edge removed and see if it predicts the
existence of the edge.

Natively, nine of the local indexes found 184,357 of
the 192,474 edges (95.8%) from the BioGrid yeast PPI
network version 3.1.84. The lone exception is Preferential
Attachment, which found 192,110 (99.8%). This is to be
expected since all of the local indexes (except Preferential
Attachment) will return a score of 0 exactly when two nodes
do not have any common neighbors. Preferential Attachment
will return a score of 0 exactly when at least one node does
not have any neighbors. This occurs when a node of degree
one is part of the edge removed for the cross validation.
There are 364 nodes in the graph with degree 1. Likewise,
each local similarity index performed the LOOCV in well
under a minute, typically in a few seconds.

For k-similarity the runtime is significantly worse with
indexes requiring 24-48 hours. Since the graph changes for
each edge removed, the optimization of computing the k-
similarity of each node once and saving it for later use is
not possible. As a simple example, consider again the graph
in Figure 1. Removing the edge (u, v) changes the common
neighbors. The three most similar nodes to u are now v, a
and d. None of these nodes have an edge to v. Similarly,
the three most similar nodes to v are u, c and f . None of
these nodes have an edge to u. Therefore, under LOOCV,
the score for the k-similarity using common neighbors would
be zero, indicating the node is not found. Recall the score
for the node with (u, v) included is likely to be above zero,
depending on the tie breaking process.

Using the k-similarity version of the local similarity index
resulted in better LOOCV performance for three of the
indexes (AA, RA and CN), slightly worse performance for
four of the indexes (Cosine, HDI, Jaccard, PA and Sorensen)
and terrible performance for HPI and LHN. Table 3 has the
results of the LOOCV experiments.

3.4 Testing Predictions
The genome information is constantly evolving, creating

the need for new link predictions. We can exploit this to
provide another mechanism for testing the local similar-
ity indexes and the impact of using k-similarity. For this
experiment, we use version 3.1.73 of the yeast PPI data

Table 3
THE NUMBER OF EDGES FOUND DURING LEAVE ONE OUT

CROSS-VALIDATION FOR BOTH LOCAL SIMILARITY INDEXES AND THE

k-SIMILARITY VERSION OF THE INDEX. NINE OF THE INDEXES FOUND

184,357 (95.8%) OF THE EDGES IN THE BIOGRID YEAST PPI
NETWORK VERSION 3.1.84.

Index LOOCV LOOCV with KNN
AA 184357 191539 (99.5%)
CN 184357 191815 (99.7%)
Cosine 184357 168267 (87.4%)
HDI 184357 173017 (89.9%)
HPI 184357 19401 (10.1%)
Jaccard 184357 173226 (90.0%)
LHN 184357 5579 (2.9%)
PA 192110 (99.8%) 191969 (99.7%)
RA 184357 191815 (99.7%)
Sorensen 184357 173226 (90.0%)

from BioGRID (last modified 2011-01-31). Between version
3.1.73 and version 3.1.84, 28,974 edges were added to the
yeast protein interaction graph.

The best predictions for each index, both used natively
and with k-similarity are generated. Since the k-similarity
approach does not differentiate between ties, all of the
perfect scores are included in the experiment. For most
indexes, relatively few links received a perfect score, so the
top 100 predictions are used. However, Common Neighbors
produced 271 ”perfect” scores, while Adamic-Adar yielded
157. We then count the number of predicted links that are
present in the newer data. The results are in Table 4. It
is interesting to note that the local similarity indexes by
themselves tend to be extremely successful or fail miserably
with this experiment. Six of the native implementations did
not predict any found links, while four predicted a number
of links extremely unlikely to be found by chance. Only
three of indexes did not make a successful prediction when
combined with k-similarity but for many of the indexes,
random chance could find the same number of links. It
is interesting to note that the native Adamic-Adar index
performs the best.

4. Issues with Extending Local Similar-
ity Indexes with KNN

The results from Section 3 indicate using local similarity
indexes within a k-similarity approach can be beneficial.
However, there are some obvious issues. First, the surpris-
ingly bad performance of the HPI index must be examined.
Second, optimization of the running time of the approaches
must be considered. Finally, the ease and power of creating
new k-similarity approaches is demonstrated.

4.1 Hub Promoted Index Performance
The Hub Promoted Index (HPI) [13] is an effective local

similarity index. Under our experiments in Section 3, HPI
scored 0.819 on the AUC experiment (see Table 2). Although
that is not particularly strong compared to the other local



Table 4
THE NUMBER OF PREDICTIONS FROM BIOGRID VERSION 3.1.73 THAT WERE DISCOVERED AS OF BIOGRID VERSION 3.1.84. THE NATIVE CHANCE

AND KNN CHANCE COLUMNS REPRESENT THE PROBABILITY THE NUMBER OF EDGES COULD BE GUESSED RANDOMLY.

Index Predictions Native Found Native Chance KNN Found KNN Chance
AA 157 14 7.8× 10−15 5 2.5× 10−7

CN 271 18 1.3× 10−14 6 1.3× 10−7

Cosine 100 0 1 3 8.5× 10−5

HDI 100 0 1 3 8.5× 10−5

HPI 100 0 1 0 1
Jaccard 100 0 1 1 0.08
LHN 100 0 1 1 0.08
PA 100 6 3.5× 10−10 0 1
RA 100 8 4.1× 10−14 0 1
Sorensen 100 0 1 1 0.08

similarity indexes, it is well above random chance and the
index performed much better on the data in [9].

However, using HPI within our k-similarity framework
performed exceptionally poorly. Using a k of 10, HPI
scored 0.520 for AUC, barely better than random chance.
Increasing k to the maximum (78) yields a score of 0.646,
which is better, but still below any of the local similarity
indexes by themselves. Likewise, the error score for HPI
(Figure 2) improves very slowly. In fact, the first time the
error improves by less than 1% is at k = 3.

Comparing HPI to the basic common neighbors approach
sheds light on the reason it does not work well within a
k-similarity framework. Recall the formula for HPI as

sHPI(x, y) =
|Γ(x) ∩ Γ(y)|
min(kx, ky)

where kx is the degree of node x. Therefore, the best possible
score for HPI is 1, and is achieved when either Γ(x) ⊆ Γ(y)
or Γ(y) ⊆ Γ(x).

Now consider the score for the edge (u, v) within the k-
similarity framework. We consider only u, as the case for
v is identical. The most similar nodes to u would be those
nodes x such that Γ(x) ⊆ Γ(u). This is much more likely in
cases where the degree of x is very low. In particular, if the
degree of x is 1, then if the neighbor of x is also a neighbor
of u, then the HPI score of (u, x) is 1. Given the existence
of hubs within the yeast PPI network, it is very likely for a
sufficiently large set of such nodes to exist. Note that since
these nodes have a degree of 1, and their only neighbor is
the hub, these nodes cannot have an edge to v, and thus fail
to add to the score.

As a comparison, consider the common neighbors similar-
ity index under k-similarity. A node of degree 1 is less likely
to be the most similar because a node of high degree would
be more likely to have two or more common neighbors. Of
course, a node of high degree would also have many non-
common neighbors, but in the basic approach, there is no
penalty for uncommon neighbors.

4.2 Common Neighbor Optimization
Nine of the ten local similarity indexes (all but Preferential

Attachment) use the number of common neighbors as a
significant portion of the score calculation. In seven of these
approaches (all but Adamic-Adar and Resource Allocation),
the number of common neighbors serves as the numerator of
the score function. In AA and RA, each common neighbor
contributes to the score.

For the k-similarity framework, finding the k most similar
nodes is a significant consumption of resources. In the naı̈ve
case, all other vertices must be checked. However, for the
common neighbor based indexes, given a node u, only nodes
with a distance of 2 or less may have a common node with
u. Thus, only those nodes need to be considered. Given
an adjacency matrix A, A ∪ A2 (where aij ∈ A ∪ B is
true if the entry is true in A or B) can be precomputed
to hold the possible common neighbors. Thus, we can find
the k-similarity of a node without considering all possible
nodes, potentially saving significant time. Table 5 shows the
speedup to be 25-75%.

4.3 Extension from Native to KNN
The framework established allows very rapid development

of both native and k-similarity local similarity indexes.
For example, consider an unusual local similarity index
developed for this paper called Asymmetric. This index is
designed to work in both directed and undirected graphs,
so the similarity for edge (u, v) is allowed to be different
from the similarity for edge (v, u). Specifically, the score for
(u, v) is defined as

1.0− |Γ(u)− Γ(v)|
|Γ(u)|

.
For undirected graphs, the score of (u, v) is the maximum
of the directed scores for (u, v) and (v, u).

To implement the AUC test for Asymmetric requires
creating the class and implementing the prediction method.
In this case, five new lines of code have to be added to



Table 5
COMPARISON OF THE TIME REQUIRED TO PERFORM k-SIMILARITY

PREDICTIONS WHEN THE GRAPH IS PRE-PROCESSED SUCH THAT ONLY

POSSIBLE NODES ARE SEARCHED AS OPPOSED TO THE ENTIRE GRAPH.
PREFERENTIAL ATTACHMENT IS NOT INCLUDED SINCE THE

OPTIMIZATION IS NOT APPLICABLE. THE k FROM EXPERIMENT 3 IN

TABLE 2 IS USED. THE TIME IS IN MILLISECONDS.

KNN Optimized
Index Score Time Score Time Speedup
AA 0.934 1208440 0.934 970389 1.25
CN 0.928 166743 0.928 105703 1.58
cos 0.934 760410 0.934 430137 1.77
HDI 0.951 766940 0.951 434552 1.77
HPI 0.512 786422 0.513 444833 1.77
J 0.952 1326770 0.951 824168 1.61
LHN 0.565 766476 0.566 428172 1.79
RA 0.941 1200200 0.939 973598 1.23
S 0.948 763862 0.950 429719 1.78

implement Asymmetric (most of the local similarity indexes
from [9] only needed one additional line of code). The test
suite can then be executed on a given graph by simply
passing parameters to the class. For example, the parameter
-m indicates finding the best K, while -e finds the AUC for
both the native and k-similarity implementation. It took less
time to create the class than to run the experiments.

For the curious, the Asymmetric index has an AUC of
0.829 run natively, 0.952 with k = 38 and 0.960 with
k = 78. After k = 38, the error improves by less than
1%, which is the cut-off used in Experiment 3 reported
in Table 2. The Asymmetric index using k-similarity with
k = 78 outperformed all of the other local similarity indexes
under any conditions, even though the native implementation
was unimpressive.. Thus, using the k-similarity framework
can lead to new and improved algorithms for link prediction.

5. Conclusion
Local similarity indexes (see [9]) are quick tools for

predicting links in graphs. Typically, these tools look at only
the portion of the graph immediately connected to a node
or to properties of the node. This allows large graphs to be
processed efficiently and predictions to be made when more
robust techniques would be too computationally expensive.

The machine learning technique k-nn can be applied by
assuming that if the k most similar nodes to v have a link to
u, then v should have a link to u. The challenge is to find the
k most similar nodes. However, local similarity indexes are
exactly intended to find similar nodes, leading to a natural
integration between the local similarity indexes and k-nn.

We propose a framework in which given a local similarity
index s, a prediction for edge (x, y) in graph G can be made.
Based on s, the k most similar neighbors to x and y are
found. The score of the link is

sK(x, y) = max(|{v|v ∈ K(x) ∧ (v, y) ∈ E}|,
|{v|v ∈ K(y) ∧ (v, x) ∈ E}|)

For each index, the best k is found by following the
techniques in [6].

Using an index in a k-similarity framework as opposed to
native application produces unpredictable results. In some
cases, the k-similarity version of the index performs con-
siderably better than the native application, but in some
cases the k-similarity version is far worse (see Table 2). For
testing purposes, the k-similarity versions are significantly
slower under AUC and unreasonable under LOOCV. How-
ever, when finding all possible predictions, the k-similarity
versions required only twice as much time, indicating rea-
sonable performance for some applications.

This work needs to be extended in several ways. There are
additional graphs to be considered, such as co-authorship
or social media. Social media applications with hundreds
of millions of nodes would require the optimizations in
Section 4.2 to run efficiently. Also, the use of k-similarity
as a framework with reasonable performance opens the
opportunity for similarly indexes which may perform poorly
when applied natively. Thus, new similarity indexes can be
developed. In particular, semantic similarity can be consid-
ered, as well as structural similarity.

References
[1] Lada Adamic and Eytan Adar. Friends and neighbors on the web.

Social Networks, 25(3):211–230, 2003.
[2] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P.

Xing. Mixed membership stochastic blockmodels. J. Mach. Learn.
Res., 9:1981–2014, June 2008.

[3] A.-L. Barabasi and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[4] Aaron Clauset, Christopher Moore, and M.E.J. Newman. Hierarchical
structure and the prediction of missing links in networks. Nature,
453:98–101, 2008.

[5] Anil K. Ghosh. On nearest neighbor classification using adaptive
choice of k. Journal of Computational and Graphical Statistics,
16(2):482–502, 2007.

[6] G. Hamerly and G. Speegle. Best k for knn. In Proceedings of the
27th British National Conference on Databases, BNCOD 27, pages
37–54, June 2010.

[7] E. A. Leicht, Petter Holme, and M. E. J. Newman. Vertex similarity
in networks. Phys. Rev. E, 73:026120, Feb 2006.

[8] David Liben-Nowell and Jon Kleinberg. The link prediction problem
for social networks. In Proceedings of the twelfth international
conference on Information and knowledge management, pages 556–
559, 2003.

[9] L. Lu and T. Zhou. Link prediction in complex networks: A survey.
Physcia A: Statistical Mechanics and it Applications, 390(6):1150–
1170, 2011.

[10] A. Menon and C. Elkan. Link prediction via matrix factorization.
Machine Learning and Knowledge Discovery in Databases, pages
437–452, 2011.

[11] M. E. J. Newman. Clustering and preferential attachment in growing
networks. Phys. Rev. E, 64:025102, Jul 2001.

[12] Qing Ou, Ying-Di Jin, Tao Zhou, Bing-Hong Wang, and Bao-Qun
Yin. Power-law strength-degree correlation from resource-allocation
dynamics on weighted networks. Phys. Rev. E, 75:021102, Feb 2007.

[13] E. Ravasz, A. Somera, L. D. A. Mongru, Z. N. Oltvai, and A.-
L. Barabasi. Hierarchical organization of modularity in metabolic
networks. Science, 297:1551–1555, August 2002.

[14] C. Stark, B.J. Breitkreutz, A. Chatr-Aryamontri, and et al. The biogrid
interaction database: 2011 update. Nucleic Acids Research, 39:D698–
D704, 2011.

[15] T. Zhou, L. Linyuan, and Y.-C. Zhang. Predicting missing links via
local information. The European Physical Jounral B, 71:623–630,
2009.


