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Abstract - Over the past decade ensemble selection has been 
proposed as an "overproduce and select" method for 
constructing ensemble classifiers from simpler individual 
classifiers. Many prior research papers suggest using the top 
performing 10%-20% of classifiers in an ensemble. In this 
paper, we simulate a duel between the top performing (strong) 
X% of classifiers and the bottom performing (100−X)% (e.g. 
the top 20% versus the bottom 80%). We propose an ensemble 
selection algorithm that can effectively use them to construct 
much stronger classifiers, and apply the algorithm to find the 
best ensemble (of top performing classifiers as well as of 
bottom performing classifiers). We also show that using the 
bottom performing classifiers can yield comparable and 
sometimes better performance. Furthermore the bottom 
classifiers can outperform top classifiers for many different 
values of X, and in some cases all values of X. Our algorithm 
is based on heuristic search algorithms for developing 
ensembles of diverse classifiers that optimize complementarity. 
These results are based on experiments made with 6 publicly 
available datasets and heterogeneous ensembles using 22 
kinds of classifiers. 
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1 Introduction 
  Ensemble methods have been shown both theoretically 
and empirically to outperform individual classification 
methods in a wide variety of settings and datasets [2][3]. For 
example, the winners [19][20] of the Netflix Challenge [18] 
used ensemble methods. Basically, in selecting an ensemble 
of classifiers, it is common practice to limit the candidates 
from classifiers with high performance under some evaluation 
metrics. This approach makes intuitive sense and generally 
delivers performance improvements. This paper was inspired 
specifically by experience with the strategy proposed in 
[3][4][5] of forming ensembles by selecting among only the 
top 10% of models yielding greatest accuracy. We began to 
wonder whether greater representation of models with lower 
accuracy scores might be beneficial. In our experience, strong 
classifiers can often make the same wrong classifications, 
particularly on minority examples and classes (because they 
often sacrifice minority examples/classes and embrace 
majority examples/classes). 

 As a result, ensembles built from strong classifiers often 
show limited improvement in classification accuracy. In order 

to improve this accuracy, ensembles must maintain a certain 
level of classifier diversity so as to avoid making the wrong 
classification altogether. That is, ensembles must have 
classifiers that can correctly classify minority 
examples/classes to offset the mistakes made by stronger 
classifiers. However, real improvement usually requires a 
high level of diversity – which we formalize as 
complementarity – that can be hard to produce in the first 
place. Thus, we need to understand the relationship between 
diversity, classification accuracy from individual classifiers, 
and the performance of ensembles. A premise behind this 
paper is that optimizing complementarity can benefit 
ensembles. In this paper we develop the idea of maximal 
complementary ensembles. “Complementary” here refers to 
the idea that in a teamwork environment, we usually do not 
put people with the same skills on the same team, but instead 
put together an ensemble using people with different skills as 
a way to diversify weaknesses. “Maximal complementary 
ensembles” mean that we search heuristically and explicitly 
for a minimal ensemble having maximally diverse classifiers.. 

2 Related Work 
 Data mining research usually considers only models that 
are optimal under some criterion. Choosing the top 
performing models has a history of success, but it has also 
introduces many serious problems, including overfitting and 
bias. A great deal of research in ensemble methods [1-6,13-
16] has been aimed at these problems. Throughout this 
research, diversity has been recognized to be important in 
improving ensemble performance. Many measures of 
diversity have been considered in the literature for ensemble 
methods; cf. [16]. For example [17] suggested that an ideal 
ensemble consists of highly correct classifiers that disagree as 
much as possible. The use of "maximum diversity" was 
considered in [14], as a kind of generalized diversity seeking 
to develop ensembles in which incorrect labeling by one 
classifier is countered by correct labeling by another. Krogh 
& Vedelsby’s prior work [15] showed that ensemble error is 
directly related to the average accuracy of the ensemble plus a 
term measuring diversity (called ambiguity in the original 
paper). This particular property will be used in our paper to 
justify our algorithm. 



3 Algorithms 
3.1 Background 
 The heart of our strategy is to select excellent ensembles 
of classifiers from a large and diverse pool. These teams are 
deliberately kept as complementary as possible. By 
complementary here we mean that classifiers are selected 
incrementally so as to cover any remaining incorrectly 
handled cases in the training set. This can be done by 
selecting minimal sets of team members that correctly classify 
as many cases in the training set as possible. We employ the 
simplest classifier combination method – majority voting – 
and choose individual classifiers based on their training 
accuracy and on their misclassifications on the training set. 

To communicate the basic idea let us limit our discussion to 
the simplest scenario: in majority voting during ensemble 
selection, if we have 1 incorrect vote (misclassification), we 
need 2 correct votes (correct classifications) to compensate. 
That is, if we have N bad votes, we need (N+1) correct votes 
to obtain the correct prediction outcome. Thus, a problem 
occurs when combining multiple classifiers together in which 
a majority cast incorrect votes. In order to offset them, we 
need to find enough classifiers to cast correct votes. In other 
words, the resulting ensemble will have at least N + (N+1) = 
2N+1 classifiers. We can see that if we can reduce the 
number of incorrect votes at a much earlier stage, then we can 
greatly reduce the number of classifiers N needed. Intuitively, 
our strategy will be to identify where these incorrect votes are 
distributed while we are in the early stage of finding 
classifiers to add to the ensemble. We can then fill in correct 
votes accordingly in these soft spots to improve performance 
of the ensemble. However, the question is: how do we 
discover the way these incorrect votes are distributed?  

3.2 Maximal Complementary Ensembles 
 Krogh & Vedelsby [15] proposed that ensemble error 
consist of the generalization errors of the individual classifiers 
plus a term measuring diversity (called ambiguity in the 
original paper). We will use representation from (Opitz and 
Shavlik, 1996) [17] below:  

DEE −=ˆ  
 Where ∑= i ii EwE is the weighted average of the 

individual classifier’s generalization error, and ∑= i iiDwD is 
the weighted average of the diversity among these classifiers. 
(Opitz and Shavlik, 1996) [17] suggested that an ideal 
ensemble consists of highly correct classifiers that disagree as 
much as possible. If we want to have a near-perfect ensemble, 
we will need to have the ensemble generalization error as 
close to zero as possible. That is, in order to achieve 

0ˆ =−= DEE  
we must have: 

DE =  

∑=∑ i iii ii DwEw  
In majority voting, if no individual classifier can predict 
everything correctly (that is, it has its own generalization 
error), then we need at least 3 classifiers (because 2 correct 
votes are needed for each incorrect vote). So we can divide 
Ê as 1Ê , 2Ê , and 3Ê where 1Ê is the weighted average of the 
generalization error of the first group of ensemble (called 

1ENS ), and 2Ê is the weighted average of the generalization 

error of the second group of ensemble (called 2ENS ). 3Ê  is 
simply an individual classifier’s generalization error and we 
can name it as 3ENS  because a single classifier can form an 
ensemble by itself, so  

333
ˆ DEE −=  

Then we seek to achieve 
0ˆˆˆˆ

321 =++= EEEE  

321
ˆˆˆ EEE −=+  

3321
ˆˆ EDEE −=+  

3321
ˆˆ DEEE =++  

This means that when we add the final individual 
classifier into the ensemble, we hope to have the combined 
averaged ensemble generalization error as close to the final 
individual classifier’s diversity (the difference between 

12ENS  and 3ENS ) as possible. We can discuss possible 
scenarios below. 
        Suppose we do a majority voting on the first and second 
groups of the ensemble to form a new ensemble (called 

12ENS ) having generalization error 12Ê .  

2112
ˆˆˆ EEE +=  

Then assuming majority voting, an ideal situation will be: 

3312
ˆ EDE −=  

        At this point, 3D  is the diversity between 12ENS  and 

3ENS . Figure 1 shows the ideal scenario when we select the 
final classifier in our ensemble. 

 

Figure 1. Ideal scenarios when measuring losses (incorrect 
predictions) in the training set. We intentionally display the 
losses as grouped together to simplify the presentation. 

Since 3D  is the diversity between 12ENS  and 3ENS , 

33 ED −  is a set that differs from the losses ( 12Ê ) in 12ENS . 



That means 33 ED −  is a set that can cast correct votes for 

the final ensemble.  Besides, ideally the losses 3E  should 
have no impact at all on the final ensemble because there 
should exist enough correct votes in 12ENS  such that the 

incorrect votes from 3E  will be corrected.  Figures 2, 3, and 4 
are examples that illustrate the ideal situation: 

 Figure 2. In this scenario, "correctly predicted examples" 
represent training examples for which there are sufficiently 
many correct votes, and 1 incorrect vote cannot change the 
outcome. "1" means currently we have one more correct vote 
than incorrect vote. "-1" means that we have one more 
incorrect vote than correct votes. 

 
Figure 3. After we perform majority voting on the first and 
second ensemble, we can see that 12ENS  has 2 places where 
0 exists (0 means indecision due to equal number of 1 and -1); 
these places have the same number of correct and incorrect 
votes. 

 
Figure 4. After we perform majority vote on 12ENS  and  

3ENS , we obtain a perfect ensemble. 

An interesting phenomenon arises when we are adding 
the last classifier into our ensemble as illustrated in Figure 5. 

 
Figure 5. Problematic scenario in constructing a perfect 
ensemble. 

If 3E  is quite large, then this means 3ENS  is an 
ensemble (classifier) having very poor performance (we call it 
weak).  However, this weak ensemble (classifier) can help our 
algorithm construct a perfect ensemble.  This finding differs 
from what (Caruana et al., 2006)   proposed, which was to set 
pruning levels only among the top 10-20% of models 
(classifiers).  

(Krogh & Vedelsby, 1995) showed that “the 
generalization error of the ensemble is always smaller than the 
(weighted) average of the ensemble errors : EE < .” In 
particular, for uniform weights: 

∑≤ α
αEN

E 1
 

 
Thus, if ∑=∑ α

α
α

α DE , then 0=E . 

3.3 Ensemble Selection Algorithm 
 We can construct an algorithm by extending the 
relationship between 12ENS  and 3ENS  such that 12ENS  can 
be an ensemble having only one classifier while 3ENS  is the 
next classifier we want to add into our ensemble.  The 
algorithm will continue to add in new classifier if it satisfies 
certain conditions (described later) until either we have a 
perfect ensemble or we cannot improve performance further 
(beyond some predefined threshold). The algorithm will use 
the training set to measure diversity by comparing the 
differences of how well 12ENS  and 3ENS  do on the training 
set.  (Please note that the algorithm uses selection with 
replacement.  That is, we allow a classifier to be added to the 
ensemble multiple times.)  

The cost function is similar to a 0-1 loss function.  If a 
classifier correctly predicts the true label for one example in 
training set, then we label it +1.  Otherwise, we assign a -1 to 
it.  Thus a classifier can be viewed as a set consisting of +1 
and -1, and majority voting adds up the values from different 
classifiers.  We can see that in an ensemble, a value of 0 
reflects indecision due to the same number of +1 and -1 
values.  

Since the performance optimization problem is hard, we 
will propose an approximation algorithm.  Rather than find 
exact matches of 12Ê  and 33 ED − . We can instead add a 

classifier to the ensemble with 33 ED −  as close to 12Ê  as 
possible.   



Notice however that if one classifier is the complete 
opposite of another, as illustrated in Figure 6, then it is useless 
to perform majority voting with these 2 classifiers. 
 

 
Figure 6.  Two classifiers that are complete opposites.   
 

Figure 7 shows that another condition needed is for 3E  
to minimize damage to )( 1212 ED − : 

 
Figure 7.  Relationship between 12ENS  and 3ENS . 

 
      Algorithm 1 (shown in Figure 8) always chooses to add a 
classifier that can maximally correct the incorrectly classified 
instances in the current ensemble, while minimizing the 
damage the new classifier brings to the ensemble.  Since the 
algorithm always corrects incorrect votes at the earliest 
possible stage, the total number of classifiers needed in an 
ensemble can be greatly reduced.  Besides, since it always 
chooses a new classifier that differs most from the ensemble, 
it eliminates redundancy in the classifiers it selects.  

      The search method employed here is best-first search. 
However, it is computationally costly when the search depth 
is large (e.g. more than 30). So we adopt an alternative that 
searches both leaf nodes (the last classifiers added to the 
ensemble) and also next-to-root nodes (individual classifiers 
that are added to our ensemble second, as shown in 
Algorithm 1 as the set C). One reason is that it is infeasible to 
perform complete depth-first search in leaf nodes, and the 
other reason is that a next-to-root node usually has greater 
impact on ensemble selection than a leaf node. In other words, 
when we are selecting the last individual classifier (leaf node) 
for our ensemble, most of the votes are established and the 
last vote often has little effect on the outcome of the final 
ensemble. But the second selection (next-to-root node) can 
sometimes greatly change the outcome and can lead to very 
different selections in later individual classifiers. 

3.4 Examples 
 Suppose we have a classification problem given training set 
T = [1, 2, 3, 1, 2, 3], which is a 3-class classification problem 
with the following 5 classifiers: 
 
C1 = [ 1, 2, 2, 1, 2, 2 ] Training Accuracy = 4/6  
C2 = [ 2, 2, 3, 2, 2, 3 ] Training Accuracy = 4/6 
C3 = [ 3, 3, 3, 1, 3, 3 ] Training Accuracy = 3/6 
C4 = [ 1, 1, 2, 1, 2, 1 ] Training Accuracy = 3/6 
C5 = [ 1, 1, 1, 1, 1, 1 ] Training Accuracy = 2/6  

We first transform the classifiers C1 to C5 (as G1 to G5) 
using the cost function we proposed as follows: 
 

G1 = [  1,  1, -1,  1,  1, -1 ] 
G2 = [ -1,  1,  1, -1,  1,  1 ] 
G3 = [ -1, -1,  1,  1, -1,  1 ] 
G4 = [  1, -1, -1,  1,  1, -1 ] 
G5 = [  1, -1, -1,  1, -1, -1 ] 

Algorithm 1  Maximal Complementary Ensemble 
 
1: Input: M classifiers 
2: For i = 1 to M     
3: Do; 
4:     Include the i-th classifier in initial ensemble set α . 

5.     For j = 1 to M 
6:     Do; 
7:         A = ))((maxarg EED jjj α∩−  

8:         B = ))((minarg EED jj ∩− αα  

9:         C = BA∩  
10:     End; 
 
11:     For j = 1 to the number of classifiers in C 
12:     Do; 
13:          Save α  in a temporary set. 

14:          add j-th classifier from C into α with majority vote. 

15:          Threshold = 1 
16:           Repeat 
18:               A2 = ))((maxarg EED jjj α∩−  

19:             B2 = ))((minarg EED jj ∩− αα  

20:             C2 = BA∩  
21:               Add the best classifier from C2 to α with  

majority vote 
22:               Record the performance of α (training/test) 

23:               If the performance of α is improved then 

24:                   Threshold = 0 
25:               Else 
26:                   Threshold = Threshold + 1 
27:           Until we have a perfect ensemble or  we cannot  

improve its performance after Threshold 
 exceeds 10. 

28:           Restore α  from the temporary set. 

29:      End; 
30: End; 



Suppose we include G1 in the initial ensemble set α , 

so that }1{G=α .  The set A  will choose classifiers 2 and 3 
as possible classifiers to add to the ensemble. 

 
))(( 11 EED α∩−  = [ 0, 0, 0, 0, 0, 0]   Gain: 0 
))(( 22 EED α∩−  = [ 0, 0, 1, 0, 0, 1]   Gain: 2 
))(( 33 EED α∩− = [ 0, 0, 1, 0, 0, 1]  Gain: 2 
))(( 44 EED α∩− = [ 0, 0, 0, 0, 0, 0]   Gain: 0 
))(( 55 EED α∩− = [ 0, 0, 0, 0, 0, 0]   Gain: 0 

 
The set B  will choose classifier 2 as possible classifiers 

to add to the ensemble. 
 

))(( 1EED ∩− αα  = [ 0, 0, -1, 0, 0, -1]   Damage: 2 
))(( 2EED ∩− αα  = [ -1, 0, 0, -1, 0, 0]   Damage: 2 
))(( 3EED ∩− αα  = [ -1, -1, 0, 0, -1, 0]   Damage: 3 
))(( 4EED ∩− αα  = [ 0, -1, -1, 0, 0, -1]   Damage: 3 
))(( 5EED ∩− αα  = [ 0, -1, -1, 0, -1, -1]   Damage: 4 

 
Since C  = BA∩ , classifier 2 will be the only 

classifier included in set C .  Thus, the algorithm will choose 
C2 to add to the ensemble set α and perform a majority vote, 

yielding  α = [  0,  1,  0,  0,  1, 0 ].  Here ‘0’ means 

indecision due to equal number of correct and incorrect votes. 
The algorithm continues this process until it hits the 

termination condition. The solution of this example is [ C1, 
C2, C3, C5, C1, C3] such that 

 
C1 = [ 1, 2, 2, 1, 2, 2 ] 
C2 = [ 2, 2, 3, 2, 2, 3 ] 
C3 = [ 3, 3, 3, 1, 3, 3 ] 
C5 = [ 1, 1, 1, 1, 1, 1 ] 
C1 = [ 1, 2, 2, 1, 2, 2 ] 
C3 = [ 3, 3, 3, 1, 3, 3 ]. 
 
       Here Majority_Vote of (C1, C2, C3, C5, C1, C3) = [1, 2, 
3, 1, 2, 3].  So the training accuracy for the ensemble of these 
6 classifiers is 100%, and test accuracy can simply be 
calculated accordingly. We can see that the weak classifier 
C5 does help bring the ensemble to 100% training accuracy. 

4 Experimental Setup & Results 
 Table 1 shows the UCI KDD datasets [8] used in the 
experiment. All attributes in the datasets contain numeric 
values.  
 
Dataset #Training #Test # Attributes #Class 
balance-
scale 

417 208 4 3 

bupa 230 115 6 2 

iono- 
sphere

234 117 34 2 

lung 
cancer 

22 10 56 3 

lymp 98 50 18 4 
pima 512 256 8 2 
 

Table 1. 6 UCI KDD datasets used in the experiment 

4.1 Classifiers 
      For each dataset, we generated 500 different bagging 
results and applied 22 different kinds of classifiers (18 from 
Weka [11] and 4 from LIBSVM [7]) to them to overproduce 
enough classifiers. The kinds of classifiers considered were:   
NaiveBayesMultinomial, ComplementNaiveBayes, 
NaiveBayes, SMO, Logistic, Multilayer Perceptron, 
AdaBoostM1, LogitBoost, VFI, J48, NBTree, REPTree, 
RandomForest, ConjunctiveRule, DecisionTable, JRip, PART, 
Ridor, SVM (Linear), SVM (Polynomial), SVM (RBF), SVM 
(Sigmoid). Thus we overproduced 11000 classifiers and 
selected the best ensemble from among these 11000 
classifiers for each dataset. 
      Since an ensemble-based method (e.g. AdaBoostM1 and 
RandomForest) usually yield better performance than 
individual learners using a single algorithm, we simply 
treated these methods as strong classifiers. This ensured 
having both strong and weak classifiers for our experiment. 

4.2 Experimental Results 
       We set up the experiments by applying the same 
ensemble selection algorithm to the top X% of classifiers and 
compared the result to the remaining (100-X)%. For example, 
we started the experiment by comparing ensembles from the 
top 1% and the bottom 99%, then the top 2% versus the 
bottom 98%, until we reached the top 34% versus the bottom 
66%. Below are graphs of test accuracy for all 6 datasets. The 
experimental results show consistently that bottom classifiers 
can yield comparable and sometimes better performance than 
top classifiers.  
      In the Balance-scale dataset, the bottom classifiers 
outperformed top classifiers for X values up to 79%. That is, 
we can discard the top 21% of classifiers and can still make 
an ensemble from the bottom 79% with better performance. In 
the Bupa dataset, the outperformance of bottom classifiers 
continued for the the entire range of X values, from 1% to 
34%. 
       In the Ionosphere, and Lung cancer datasets, ensembles 
using only bottom classifiers consistently had comparable 
performance to ensembles using top classifiers. In the 
Lymphography dataset, bottom classifiers outperformed top 
classifiers up to 76%.  



 

 That is, we could omit the top 24% and still build 
ensembles with better performance. In the Pima 
Indian/diabetes dataset, we could reach 90% i.e., ensembles 
from the bottom 90% outperformed ensembles using the top 
10% of classifiers. 

 It helps to study this phenomenon in detail to appreciate 
the way in which top performing classifiers can lower 
performance.  For example, in the Balance-Scale dataset, if 
we use the top 1%-20% of all models, we just cannot achieve 
the highest possible test accuracy. It seems that the pruned 
bottom (weaker) classifiers can complement strong classifiers 
in a way that improves performance.  This might seem to be 
an unusual situation, but in fact the same situation arises in 
the Bupa, Lymphography, and Pima Indian/Diabetes datasets.  
This suggests that as long as weaker/strong classifiers are 
included in the right places, then they are helpful. However, 
the top X% of classifiers are sometimes sufficient as long as 
they are complementary. Our experimental results suggest 
however that bottom (weaker) classifiers can help improve 
performance in terms of classification accuracy. The full 
experimental results can be found in our website in [12]. 

5 Conclusions 
 In this paper we have explored an ensemble selection 

strategy that finds complementary ensembles in the 
construction of ensembles of classifiers, comparing the test 
accuracy of the top performing X% of classifiers versus the 
bottom performing (100-X%), and emphasizing diversity in 
the kinds of classifier considered.  The surprising 



successfulness of this approach has been explored in the 
experimental results.  

A key aspect of our approach, and a primary contribution 
of this work, has been in the idea of maximizing diversity 
while minimizing ensemble size. BBBFS, our heuristic search 
algorithm, works precisely to limit redundancy among 
classifiers in an ensemble in this way. The result is a small 
ensemble of diverse classifiers whose complementarity has 
been optimized. Caruana et al noted in [3] that “While further 
work is needed to develop good heuristics for automatically 
choosing an appropriate pruning level for a data set, simply 
using the top 10-20% models seems to be a good rule of 
thumb. An open problem is finding a better pruning method." 
For example, taking model diversity [1] into account might 
find better pruned sets.  Our algorithm, BBBFS, is a heuristic 
algorithm for maximizing diversity over the training set, and 
this approach has given interesting results for Caruana’s open 
problem in the experiments. 

Another key aspect of our approach is to highlight the 
cost of blindly cutting the bottom (weaker) classifiers. Our 
experiments contradict the validity of using only top 
classifiers,. We believe that further research is needed to 
consider factors such as complementarity structure among 
classifiers and the number of classifiers used in ensembles.  
 Future work should investigate further why an ensemble 
of bottom classifiers can sometimes outperform ensembles of 
top classifiers. We conjecture that overfitting could play a 
role here, as an ensemble of top classifiers could easily be 
misled in this way.  
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