
A Novel Ensemble Selection Technique For Weak
Classifiers

Kung-Hua Chang1, and D. Stott Parker1
1University of California Los Angeles

Los Angeles, CA, USA
{kunghua,stott}@cs.ucla.edu

Abstract - Over the past decade ensemble selection has been
proposed as an "overproduce and select" method for
constructing ensemble classifiers from simpler individual
classifiers. Many prior research papers suggest using the top
performing 10%-20% of classifiers in an ensemble. In this
paper, we simulate a duel between the top performing (strong)
X% of classifiers and the bottom performing (100−X)% (e.g.
the top 20% versus the bottom 80%). We propose an ensemble
selection algorithm that can effectively use them to construct
much stronger classifiers, and apply the algorithm to find the
best ensemble (of top performing classifiers as well as of
bottom performing classifiers). We also show that using the
bottom performing classifiers can yield comparable and
sometimes better performance. Furthermore the bottom
classifiers can outperform top classifiers for many different
values of X, and in some cases all values of X. Our algorithm
is based on heuristic search algorithms for developing
ensembles of diverse classifiers that optimize complementarity.
These results are based on experiments made with 6 publicly
available datasets and heterogeneous ensembles using 22
kinds of classifiers.

Keywords: Ensemble Selection

1 Introduction
 Ensemble methods have been shown both theoretically
and empirically to outperform individual classification
methods in a wide variety of settings and datasets [2][3]. For
example, the winners [19][20] of the Netflix Challenge [18]
used ensemble methods. Basically, in selecting an ensemble
of classifiers, it is common practice to limit the candidates
from classifiers with high performance under some evaluation
metrics. This approach makes intuitive sense and generally
delivers performance improvements. This paper was inspired
specifically by experience with the strategy proposed in
[3][4][5] of forming ensembles by selecting among only the
top 10% of models yielding greatest accuracy. We began to
wonder whether greater representation of models with lower
accuracy scores might be beneficial. In our experience, strong
classifiers can often make the same wrong classifications,
particularly on minority examples and classes (because they
often sacrifice minority examples/classes and embrace
majority examples/classes).

 As a result, ensembles built from strong classifiers often
show limited improvement in classification accuracy. In order

to improve this accuracy, ensembles must maintain a certain
level of classifier diversity so as to avoid making the wrong
classification altogether. That is, ensembles must have
classifiers that can correctly classify minority
examples/classes to offset the mistakes made by stronger
classifiers. However, real improvement usually requires a
high level of diversity – which we formalize as
complementarity – that can be hard to produce in the first
place. Thus, we need to understand the relationship between
diversity, classification accuracy from individual classifiers,
and the performance of ensembles. A premise behind this
paper is that optimizing complementarity can benefit
ensembles. In this paper we develop the idea of maximal
complementary ensembles. “Complementary” here refers to
the idea that in a teamwork environment, we usually do not
put people with the same skills on the same team, but instead
put together an ensemble using people with different skills as
a way to diversify weaknesses. “Maximal complementary
ensembles” mean that we search heuristically and explicitly
for a minimal ensemble having maximally diverse classifiers..

2 Related Work
 Data mining research usually considers only models that
are optimal under some criterion. Choosing the top
performing models has a history of success, but it has also
introduces many serious problems, including overfitting and
bias. A great deal of research in ensemble methods [1-6,13-
16] has been aimed at these problems. Throughout this
research, diversity has been recognized to be important in
improving ensemble performance. Many measures of
diversity have been considered in the literature for ensemble
methods; cf. [16]. For example [17] suggested that an ideal
ensemble consists of highly correct classifiers that disagree as
much as possible. The use of "maximum diversity" was
considered in [14], as a kind of generalized diversity seeking
to develop ensembles in which incorrect labeling by one
classifier is countered by correct labeling by another. Krogh
& Vedelsby’s prior work [15] showed that ensemble error is
directly related to the average accuracy of the ensemble plus a
term measuring diversity (called ambiguity in the original
paper). This particular property will be used in our paper to
justify our algorithm.

3 Algorithms
3.1 Background
 The heart of our strategy is to select excellent ensembles
of classifiers from a large and diverse pool. These teams are
deliberately kept as complementary as possible. By
complementary here we mean that classifiers are selected
incrementally so as to cover any remaining incorrectly
handled cases in the training set. This can be done by
selecting minimal sets of team members that correctly classify
as many cases in the training set as possible. We employ the
simplest classifier combination method – majority voting –
and choose individual classifiers based on their training
accuracy and on their misclassifications on the training set.

To communicate the basic idea let us limit our discussion to
the simplest scenario: in majority voting during ensemble
selection, if we have 1 incorrect vote (misclassification), we
need 2 correct votes (correct classifications) to compensate.
That is, if we have N bad votes, we need (N+1) correct votes
to obtain the correct prediction outcome. Thus, a problem
occurs when combining multiple classifiers together in which
a majority cast incorrect votes. In order to offset them, we
need to find enough classifiers to cast correct votes. In other
words, the resulting ensemble will have at least N + (N+1) =
2N+1 classifiers. We can see that if we can reduce the
number of incorrect votes at a much earlier stage, then we can
greatly reduce the number of classifiers N needed. Intuitively,
our strategy will be to identify where these incorrect votes are
distributed while we are in the early stage of finding
classifiers to add to the ensemble. We can then fill in correct
votes accordingly in these soft spots to improve performance
of the ensemble. However, the question is: how do we
discover the way these incorrect votes are distributed?

3.2 Maximal Complementary Ensembles
 Krogh & Vedelsby [15] proposed that ensemble error
consist of the generalization errors of the individual classifiers
plus a term measuring diversity (called ambiguity in the
original paper). We will use representation from (Opitz and
Shavlik, 1996) [17] below:

DEE −=ˆ
 Where ∑= i ii EwE is the weighted average of the

individual classifier’s generalization error, and ∑= i iiDwD is
the weighted average of the diversity among these classifiers.
(Opitz and Shavlik, 1996) [17] suggested that an ideal
ensemble consists of highly correct classifiers that disagree as
much as possible. If we want to have a near-perfect ensemble,
we will need to have the ensemble generalization error as
close to zero as possible. That is, in order to achieve

0ˆ =−= DEE
we must have:

DE =

∑=∑ i iii ii DwEw
In majority voting, if no individual classifier can predict
everything correctly (that is, it has its own generalization
error), then we need at least 3 classifiers (because 2 correct
votes are needed for each incorrect vote). So we can divide
Ê as 1Ê , 2Ê , and 3Ê where 1Ê is the weighted average of the
generalization error of the first group of ensemble (called

1ENS), and 2Ê is the weighted average of the generalization

error of the second group of ensemble (called 2ENS). 3Ê is
simply an individual classifier’s generalization error and we
can name it as 3ENS because a single classifier can form an
ensemble by itself, so

333
ˆ DEE −=

Then we seek to achieve
0ˆˆˆˆ

321 =++= EEEE

321
ˆˆˆ EEE −=+

3321
ˆˆ EDEE −=+

3321
ˆˆ DEEE =++

This means that when we add the final individual
classifier into the ensemble, we hope to have the combined
averaged ensemble generalization error as close to the final
individual classifier’s diversity (the difference between

12ENS and 3ENS) as possible. We can discuss possible
scenarios below.
 Suppose we do a majority voting on the first and second
groups of the ensemble to form a new ensemble (called

12ENS) having generalization error 12Ê .

2112
ˆˆˆ EEE +=

Then assuming majority voting, an ideal situation will be:

3312
ˆ EDE −=

 At this point, 3D is the diversity between 12ENS and

3ENS . Figure 1 shows the ideal scenario when we select the
final classifier in our ensemble.

Figure 1. Ideal scenarios when measuring losses (incorrect
predictions) in the training set. We intentionally display the
losses as grouped together to simplify the presentation.

Since 3D is the diversity between 12ENS and 3ENS ,

33 ED − is a set that differs from the losses (12Ê) in 12ENS .

That means 33 ED − is a set that can cast correct votes for

the final ensemble. Besides, ideally the losses 3E should
have no impact at all on the final ensemble because there
should exist enough correct votes in 12ENS such that the

incorrect votes from 3E will be corrected. Figures 2, 3, and 4
are examples that illustrate the ideal situation:

 Figure 2. In this scenario, "correctly predicted examples"
represent training examples for which there are sufficiently
many correct votes, and 1 incorrect vote cannot change the
outcome. "1" means currently we have one more correct vote
than incorrect vote. "-1" means that we have one more
incorrect vote than correct votes.

Figure 3. After we perform majority voting on the first and
second ensemble, we can see that 12ENS has 2 places where
0 exists (0 means indecision due to equal number of 1 and -1);
these places have the same number of correct and incorrect
votes.

Figure 4. After we perform majority vote on 12ENS and

3ENS , we obtain a perfect ensemble.

An interesting phenomenon arises when we are adding
the last classifier into our ensemble as illustrated in Figure 5.

Figure 5. Problematic scenario in constructing a perfect
ensemble.

If 3E is quite large, then this means 3ENS is an
ensemble (classifier) having very poor performance (we call it
weak). However, this weak ensemble (classifier) can help our
algorithm construct a perfect ensemble. This finding differs
from what (Caruana et al., 2006) proposed, which was to set
pruning levels only among the top 10-20% of models
(classifiers).

(Krogh & Vedelsby, 1995) showed that “the
generalization error of the ensemble is always smaller than the
(weighted) average of the ensemble errors : EE < .” In
particular, for uniform weights:

∑≤ α
αEN

E 1

Thus, if ∑=∑ α

α
α

α DE , then 0=E .

3.3 Ensemble Selection Algorithm
 We can construct an algorithm by extending the
relationship between 12ENS and 3ENS such that 12ENS can
be an ensemble having only one classifier while 3ENS is the
next classifier we want to add into our ensemble. The
algorithm will continue to add in new classifier if it satisfies
certain conditions (described later) until either we have a
perfect ensemble or we cannot improve performance further
(beyond some predefined threshold). The algorithm will use
the training set to measure diversity by comparing the
differences of how well 12ENS and 3ENS do on the training
set. (Please note that the algorithm uses selection with
replacement. That is, we allow a classifier to be added to the
ensemble multiple times.)

The cost function is similar to a 0-1 loss function. If a
classifier correctly predicts the true label for one example in
training set, then we label it +1. Otherwise, we assign a -1 to
it. Thus a classifier can be viewed as a set consisting of +1
and -1, and majority voting adds up the values from different
classifiers. We can see that in an ensemble, a value of 0
reflects indecision due to the same number of +1 and -1
values.

Since the performance optimization problem is hard, we
will propose an approximation algorithm. Rather than find
exact matches of 12Ê and 33 ED − . We can instead add a

classifier to the ensemble with 33 ED − as close to 12Ê as
possible.

Notice however that if one classifier is the complete
opposite of another, as illustrated in Figure 6, then it is useless
to perform majority voting with these 2 classifiers.

Figure 6. Two classifiers that are complete opposites.

Figure 7 shows that another condition needed is for 3E
to minimize damage to)(1212 ED − :

Figure 7. Relationship between 12ENS and 3ENS .

 Algorithm 1 (shown in Figure 8) always chooses to add a
classifier that can maximally correct the incorrectly classified
instances in the current ensemble, while minimizing the
damage the new classifier brings to the ensemble. Since the
algorithm always corrects incorrect votes at the earliest
possible stage, the total number of classifiers needed in an
ensemble can be greatly reduced. Besides, since it always
chooses a new classifier that differs most from the ensemble,
it eliminates redundancy in the classifiers it selects.

 The search method employed here is best-first search.
However, it is computationally costly when the search depth
is large (e.g. more than 30). So we adopt an alternative that
searches both leaf nodes (the last classifiers added to the
ensemble) and also next-to-root nodes (individual classifiers
that are added to our ensemble second, as shown in
Algorithm 1 as the set C). One reason is that it is infeasible to
perform complete depth-first search in leaf nodes, and the
other reason is that a next-to-root node usually has greater
impact on ensemble selection than a leaf node. In other words,
when we are selecting the last individual classifier (leaf node)
for our ensemble, most of the votes are established and the
last vote often has little effect on the outcome of the final
ensemble. But the second selection (next-to-root node) can
sometimes greatly change the outcome and can lead to very
different selections in later individual classifiers.

3.4 Examples
 Suppose we have a classification problem given training set
T = [1, 2, 3, 1, 2, 3], which is a 3-class classification problem
with the following 5 classifiers:

C1 = [1, 2, 2, 1, 2, 2] Training Accuracy = 4/6
C2 = [2, 2, 3, 2, 2, 3] Training Accuracy = 4/6
C3 = [3, 3, 3, 1, 3, 3] Training Accuracy = 3/6
C4 = [1, 1, 2, 1, 2, 1] Training Accuracy = 3/6
C5 = [1, 1, 1, 1, 1, 1] Training Accuracy = 2/6

We first transform the classifiers C1 to C5 (as G1 to G5)
using the cost function we proposed as follows:

G1 = [1, 1, -1, 1, 1, -1]
G2 = [-1, 1, 1, -1, 1, 1]
G3 = [-1, -1, 1, 1, -1, 1]
G4 = [1, -1, -1, 1, 1, -1]
G5 = [1, -1, -1, 1, -1, -1]

Algorithm 1 Maximal Complementary Ensemble

1: Input: M classifiers
2: For i = 1 to M
3: Do;
4: Include the i-th classifier in initial ensemble set α .

5. For j = 1 to M
6: Do;
7: A =))((maxarg EED jjj α∩−

8: B =))((minarg EED jj ∩− αα

9: C = BA∩
10: End;

11: For j = 1 to the number of classifiers in C
12: Do;
13: Save α in a temporary set.

14: add j-th classifier from C into α with majority vote.

15: Threshold = 1
16: Repeat
18: A2 =))((maxarg EED jjj α∩−

19: B2 =))((minarg EED jj ∩− αα

20: C2 = BA∩
21: Add the best classifier from C2 to α with

majority vote
22: Record the performance of α (training/test)

23: If the performance of α is improved then

24: Threshold = 0
25: Else
26: Threshold = Threshold + 1
27: Until we have a perfect ensemble or we cannot

improve its performance after Threshold
 exceeds 10.

28: Restore α from the temporary set.

29: End;
30: End;

Suppose we include G1 in the initial ensemble set α ,

so that }1{G=α . The set A will choose classifiers 2 and 3
as possible classifiers to add to the ensemble.

))((11 EED α∩− = [0, 0, 0, 0, 0, 0] Gain: 0
))((22 EED α∩− = [0, 0, 1, 0, 0, 1] Gain: 2
))((33 EED α∩− = [0, 0, 1, 0, 0, 1] Gain: 2
))((44 EED α∩− = [0, 0, 0, 0, 0, 0] Gain: 0
))((55 EED α∩− = [0, 0, 0, 0, 0, 0] Gain: 0

The set B will choose classifier 2 as possible classifiers

to add to the ensemble.

))((1EED ∩− αα = [0, 0, -1, 0, 0, -1] Damage: 2
))((2EED ∩− αα = [-1, 0, 0, -1, 0, 0] Damage: 2
))((3EED ∩− αα = [-1, -1, 0, 0, -1, 0] Damage: 3
))((4EED ∩− αα = [0, -1, -1, 0, 0, -1] Damage: 3
))((5EED ∩− αα = [0, -1, -1, 0, -1, -1] Damage: 4

Since C = BA∩ , classifier 2 will be the only

classifier included in set C . Thus, the algorithm will choose
C2 to add to the ensemble set α and perform a majority vote,

yielding α = [0, 1, 0, 0, 1, 0]. Here ‘0’ means

indecision due to equal number of correct and incorrect votes.
The algorithm continues this process until it hits the

termination condition. The solution of this example is [C1,
C2, C3, C5, C1, C3] such that

C1 = [1, 2, 2, 1, 2, 2]
C2 = [2, 2, 3, 2, 2, 3]
C3 = [3, 3, 3, 1, 3, 3]
C5 = [1, 1, 1, 1, 1, 1]
C1 = [1, 2, 2, 1, 2, 2]
C3 = [3, 3, 3, 1, 3, 3].

 Here Majority_Vote of (C1, C2, C3, C5, C1, C3) = [1, 2,
3, 1, 2, 3]. So the training accuracy for the ensemble of these
6 classifiers is 100%, and test accuracy can simply be
calculated accordingly. We can see that the weak classifier
C5 does help bring the ensemble to 100% training accuracy.

4 Experimental Setup & Results
 Table 1 shows the UCI KDD datasets [8] used in the
experiment. All attributes in the datasets contain numeric
values.

Dataset #Training #Test # Attributes #Class
balance-
scale

417 208 4 3

bupa 230 115 6 2

iono-
sphere

234 117 34 2

lung
cancer

22 10 56 3

lymp 98 50 18 4
pima 512 256 8 2

Table 1. 6 UCI KDD datasets used in the experiment

4.1 Classifiers
 For each dataset, we generated 500 different bagging
results and applied 22 different kinds of classifiers (18 from
Weka [11] and 4 from LIBSVM [7]) to them to overproduce
enough classifiers. The kinds of classifiers considered were:
NaiveBayesMultinomial, ComplementNaiveBayes,
NaiveBayes, SMO, Logistic, Multilayer Perceptron,
AdaBoostM1, LogitBoost, VFI, J48, NBTree, REPTree,
RandomForest, ConjunctiveRule, DecisionTable, JRip, PART,
Ridor, SVM (Linear), SVM (Polynomial), SVM (RBF), SVM
(Sigmoid). Thus we overproduced 11000 classifiers and
selected the best ensemble from among these 11000
classifiers for each dataset.
 Since an ensemble-based method (e.g. AdaBoostM1 and
RandomForest) usually yield better performance than
individual learners using a single algorithm, we simply
treated these methods as strong classifiers. This ensured
having both strong and weak classifiers for our experiment.

4.2 Experimental Results
 We set up the experiments by applying the same
ensemble selection algorithm to the top X% of classifiers and
compared the result to the remaining (100-X)%. For example,
we started the experiment by comparing ensembles from the
top 1% and the bottom 99%, then the top 2% versus the
bottom 98%, until we reached the top 34% versus the bottom
66%. Below are graphs of test accuracy for all 6 datasets. The
experimental results show consistently that bottom classifiers
can yield comparable and sometimes better performance than
top classifiers.
 In the Balance-scale dataset, the bottom classifiers
outperformed top classifiers for X values up to 79%. That is,
we can discard the top 21% of classifiers and can still make
an ensemble from the bottom 79% with better performance. In
the Bupa dataset, the outperformance of bottom classifiers
continued for the the entire range of X values, from 1% to
34%.
 In the Ionosphere, and Lung cancer datasets, ensembles
using only bottom classifiers consistently had comparable
performance to ensembles using top classifiers. In the
Lymphography dataset, bottom classifiers outperformed top
classifiers up to 76%.

 That is, we could omit the top 24% and still build
ensembles with better performance. In the Pima
Indian/diabetes dataset, we could reach 90% i.e., ensembles
from the bottom 90% outperformed ensembles using the top
10% of classifiers.

 It helps to study this phenomenon in detail to appreciate
the way in which top performing classifiers can lower
performance. For example, in the Balance-Scale dataset, if
we use the top 1%-20% of all models, we just cannot achieve
the highest possible test accuracy. It seems that the pruned
bottom (weaker) classifiers can complement strong classifiers
in a way that improves performance. This might seem to be
an unusual situation, but in fact the same situation arises in
the Bupa, Lymphography, and Pima Indian/Diabetes datasets.
This suggests that as long as weaker/strong classifiers are
included in the right places, then they are helpful. However,
the top X% of classifiers are sometimes sufficient as long as
they are complementary. Our experimental results suggest
however that bottom (weaker) classifiers can help improve
performance in terms of classification accuracy. The full
experimental results can be found in our website in [12].

5 Conclusions
 In this paper we have explored an ensemble selection

strategy that finds complementary ensembles in the
construction of ensembles of classifiers, comparing the test
accuracy of the top performing X% of classifiers versus the
bottom performing (100-X%), and emphasizing diversity in
the kinds of classifier considered. The surprising

successfulness of this approach has been explored in the
experimental results.

A key aspect of our approach, and a primary contribution
of this work, has been in the idea of maximizing diversity
while minimizing ensemble size. BBBFS, our heuristic search
algorithm, works precisely to limit redundancy among
classifiers in an ensemble in this way. The result is a small
ensemble of diverse classifiers whose complementarity has
been optimized. Caruana et al noted in [3] that “While further
work is needed to develop good heuristics for automatically
choosing an appropriate pruning level for a data set, simply
using the top 10-20% models seems to be a good rule of
thumb. An open problem is finding a better pruning method."
For example, taking model diversity [1] into account might
find better pruned sets. Our algorithm, BBBFS, is a heuristic
algorithm for maximizing diversity over the training set, and
this approach has given interesting results for Caruana’s open
problem in the experiments.

Another key aspect of our approach is to highlight the
cost of blindly cutting the bottom (weaker) classifiers. Our
experiments contradict the validity of using only top
classifiers,. We believe that further research is needed to
consider factors such as complementarity structure among
classifiers and the number of classifiers used in ensembles.
 Future work should investigate further why an ensemble
of bottom classifiers can sometimes outperform ensembles of
top classifiers. We conjecture that overfitting could play a
role here, as an ensemble of top classifiers could easily be
misled in this way.

6 References

[1] L.I. Kuncheva and C.J. Whitaker, “Measures of
diversity in classifier ensembles”, Machine Learning 51: 181-
207, 2003.

[2] T.G. Dietterich, “Ensemble Methods in Machine
Learning”, Proc. 1st Intl Workshop on Multiple Classifier
Systems, Springer Verlag, LNCS #1857, 1-15, 2000.

[3] R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes,
“Ensemble Selection from Libraries of Models”, Proc. Intnl.
Conf on Machine Learning, 2004.

[4] R. Caruana, A. Niculescu-Mizil, “An Empirical
Comparison of Supervised Learning Algorithms Using
Different Performance Metrics”, ICML 2005.

[5] R. Caruana, A. Mnson, A. Niculescu-Mizil, “Getting the
Most Out of Ensemble Selection”, Technical Report 2006-
2045, Dept. of Computer Science, Cornell University, 2006.

[6] L. Breiman, “Bagging Predictors”, Machine Learning
24(2): 123-140, 1996.

[7] C-C. Chang, C-J. Lin, "LIBSVM : A Library for
Support Vector Machines", 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[8] Bache, K. & Lichman, M. (2013). UCI Machine
Learning Repository [http://archive.ics.uci.edu/ml]. Irvine,
CA: University of California, School of Information and
Computer Science.

[9] lymphography dataset: M. Zwitter, M. Soklic,
University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia.
http://www.ics.uci.edu/~mlearn/databases/lymphography/lym
phography.names

[10] primary-tumor dataset: M. Zwitter, M. Soklic,
University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia.
http://www.ics.uci.edu/~mlearn/databases/primary-
tumor/primarytumor.names

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, Ian H. Witten (2009); The
WEKA Data Mining Software: An Update; SIGKDD
Explorations, Volume 11, Issue 1.

[12] http://www.cs.ucla.edu/~kunghua/DMIN2013/

[13] L.K. Hansen, P. Salamon, Neural network ensembles.
IEEE Trans. Patt. Anal. Mach. Intell. 12(10): 993-1001, 1990.

[14] D. Partridge, W.J. Krzanowski, Software diversity:
Practical statistics for its measurement and exploitation.
Information & Software Technology, 39, 707–717, 1997.

[15] A. Krogh, J. Vedelsby, Neural Network Ensembles,
Cross Validation, and Active Learning, Advances in Neural
Information Processing Systems, 231- 238, 1995.

[16] L.I. Kuncheva, Combining Pattern Classifiers: Methods
and Algorithms, 2004.

[17] Opitz, D., and Shavlik, J. Actively searching for an
effective neural network ensemble. Connection Science,
8(3/4):337–353, 1996.

[18] J. Bennet and S. Lanning (2007), "The Netflix Prize",
www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-
description.pdf.

[19] Y. Koren, "The BellKor Solution to the Netflix Grand
Prize", (2009).

[20] A. Töscher, M. Jahrer, R. Bell, "The BigChaos Solution
to the Netflix Grand Prize", (2009).

