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ABSTRACT 

Scientific simulations are a valuable discovery tool in a variety of 

sciences, especially is space physics where scientific observation 

and in situ measurements are not always possible.  Recent 

advances in kinetic simulations running on petascale computers 

have enabled 3D simulations of a variety of important scientific 

processes. However, knowledge extraction from massive and 

complex data sets generated from petascale simulations still 

poses a major obstacle to scientific progress. We propose a new 

approach to solving this problem by utilizing an innovative 

feature extraction technique in combination with a specialized 

classification algorithm which can be applied to 3D simulation 

datasets.  In our previous work [12] we showed how data from 2D 

simulations as well as many other real life examples can be 

represented in a form of multivariate time series.  In this work, we 

have adapted our multivariate time series analysis data mining 

technique to handle 3D simulation data.  The technique extracts 

global features and metafeatures in a 3D simulation dataset in 

order to capture the necessary time-lapse information. The 

features are then used to create a static, intermediate data set that 

is suitable for analysis using the standard supervised data mining 

techniques.    The viability of the new algorithm called MineTool-

3DM2 is demonstrated through its application to the problem of 

automatic detection of flux transfer events (FTE) in the 3D 

simulation data.   MineTool-3DM2 built model led to a high FTE 

classification model accuracy of 96.7% correctly classified 

instances  where the model produced one of three outputs of non-

FTE, across-cut-FTE, and tangent-cut-FTE.  For comparison, two 

other means of treating the time series data including a common 

summary statistics technique yielded much lower accuracies of 

47% and 63% correctly classified instances, and 95.56% accuracy 

in the 2D simulation case.  The low accuracy achieved using 

standard techniques (such as summary statistics) demonstrates the 

high level of complexity of this problem and the need for 

advanced techniques to handle such data.   
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1. INTRODUCTION 
Scientific simulations have been used to enable further scientific 

advances in a variety of fields.  Simulation can serve as a 

powerful tool to aid the understanding of a variety of scientific 

processes and enable scientific discovery. This is especially true 

in space sciences, where progress relies on use of computer 

simulations in close ties with in situ and remote spacecraft 

measurements.  The arrival of petascale computing has led to a 

significant increase in the size of the simulations. In computing, 

petascale refers to a computer system capable of reaching 

performance in excess of one petaflops, i.e. 1015 or one 

quadrillion floating point operations per second. As a comparison, 

the average consumer computer runs at anywhere from 0.25 

gigaflops to 7.5 gigaflops, or 109 floating point operations/sec.  

Our largest simulations include over 3.2 trillion particles, and 15 

billion cells, and are run for several days using 200 K cores on 

Jaguar, for example. Data analysis and data mining of these 

complex and massive data sets is a major holdup to progress in a 

variety of scientific fields today.  There is a prominent need for 

automated, intelligent methods to enable fast and accurate 

analysis and knowledge discovery in simulation data.   

Tracking an event in large simulation data repositories by human 

eye is time-consuming and error-prone.  An alternative would be 

to think of a simulation as a series of images, and analyze a ‘time 

series’ of image data.  This approach would require an image 

representation that would encompass the important areas of the 

image, and presenting it in a series.  Another approach would be 

to concentrate on the particular area of the simulation that is of 

interest and focus on the features being created and changed in 

time.  In our previous work on data mining of 2D simulation data 

[12] we adopted the later approach, as it decreases the complexity 

of the problem.  Our approach entailed collecting a certain spatial 

and temporal information, or features of the event in the 

simulation window (as in a series of point coordinate values 

(x,y)), in addition to the other variables available, that describe 

the (x,y) simulated measurements.  These features, or set of points 

being tracked over time, in effect add another dimension to the 

time series data at the input.   

     In this paper, we expand the 2D simulation data capabilities to 

3D simulation data.  In the sections below we describe how we 

devise and collect the 3D simulation features as a series of data 

points, or “cuts” in the example simulation domain, and utilize 

intelligent data mining classification tools to extract knowledge 

from them. The paper is organized as follows.  Section 2 discusses 

the simulations: 2D and 3D; Section 3 discusses the time series 

analysis and the underlying algorithm of MineTool-TS. Section 4 

describes the application to 3D simulation data.  Summary and 

discussion are presented in Section 5. 

2. SIMULATION DATA 
Magnetopause reconnection is the primary mechanism for transfer 

of energy, momentum, and mass from the solar wind into the 

Earth’s magnetosphere and is the focus of many space physics 

studies. Early observations of the magnetopause indicated that 

reconnection can sometimes be quasi-steady [5] but at other times 

transient (resulting in so-called flux transfer events) [11]. Despite 

progress, many very basic questions regarding magnetopause 

reconnection remain not well understood: What is the relative 

importance of the two types of reconnection to magnetic flux 

transport (at the magnetopause)? What is the generation 

mechanism of flux transfer events (FTEs) and are there different 



mechanisms involved depending on the solar wind and 

magnetosheath conditions? Do FTEs interact? There are also open 

questions regarding the size, extent, internal structure, magnetic 

topology, evolution and orientation of FTEs. 

Research in this area has been stimulated by recent advances in 

the area of kinetic simulations (where all the particles are modeled 

as kinetic particles) running on petascale computers that have 

enabled 3D global hybrid simulations of the magnetosphere as 

well as 3D local fully kinetic simulations of the reconnection 

process. This new capability allows us to study and achieve 

closure on many aspects of magnetopause reconnection that have 

been out of reach up to now.  
The simulation data example that we consider here are the 3D 

global hybrid simulations (in which electrons are modeled as fluid 

particles, and ions as fully kinetic) of the Earth’s magnetosphere 

[8][9] where interaction of the solar wind plasma and magnetic 

fields impinging on the Earth’s dipole field is modeled. The 

simulations are 3D in a sense that the spatial variations of the 

parameters are given in three dimensions and all three 

components of the vectors such as the magnetic field are kept.   

One feature of particular interest in the simulations is the so-

called flux transfer events [5] which were first observed in 

spacecraft data and are thought to be magnetic flux ropes formed 

at the Earth’s magnetopause (Figure 1 illustrates the 3D full 

particle simulation of the primary and secondary flux rope 

formation). Many details regarding the FTEs remain poorly 

understood but peta-scale simulations are enabling us to finally 

settle many questions regarding their formation, structure, and 

evolution.  

 

 

 

Figure 1. Left - Primary and secondary flux rope formation. 3D 

full particle simulation with mass ratio of 100 and 1 trillion 

particles. At early time, the linear tearing leads to formation of 

flux ropes over a rather small range of angles. At later time, 

secondary islands lead to a turbulent structure whereas in 2D the 

layer remains laminar. Right - Plot of sum of electron energy 

bands covering 4-6 times the thermal energy. 

 

Figure 2 shows a simulation window of a 3D global simulation of 

magnetosphere, whereas Figure 3 illustrates several examples of 

FTEs in a 2D slice of a 3D global simulation.  The simulation box 

is 2000 x 2000 ion skin depths or about 20 earth radii in each 

direction.  The size of FTEs is small compared to the overall size 

of the magnetosphere and they appear as regions with density 

enhancements in this figure. FTEs also have complex structures in 

velocity and magnetic field variables. Simulations have one major 

advantage to spacecraft observations in that one has in effect a 

very good spatial coverage of FTE at any given time and can track 

its evolution in time. In contrast, a single spacecraft or even four-

spacecraft as in the case of Cluster mission, have limited spatial 

coverage.  Figure 3 shows three sample spacecraft trajectories.  

 

 

Figure 2.  3D global simulation of magnetosphere. 

 

  

 

Figure 3.  2D slice of the 3D simulation of the Earth’s 

magnetosphere showing three examples of FTEs, and the three 

sample spacecraft trajectories (A, B and C).   

 



Our goal in this particular study was to determine whether data 

mining algorithms can distinguish between these different cuts 

which include cuts scheming the surface of the FTE (cut-A), 

across an FTE (cut-B), or cuts away from FTEs (cut-C). We were 

able to accomplish this in the simplified 2D simulation study [12].  

In this paper, our goal is to determine if we can achieve this in the 

full 3D simulation. If successful, this would imply that data 

mining algorithms can equally be applied to spacecraft data to 

distinguish among these three cuts.  It would also imply that there 

are distinct features among the variables that, for example, would 

enable the algorithm to distinguish between cuts across and along 

an FTE. 

 

3. TIME SERIES DATA ANALYSIS 

3.1 Multivariate Time Series Data 

In the recent years we introduced a technique called MineTool 

[10] with distinct advantages over standard data mining 

techniques.  Besides offering high accuracy of the resulting 

predictive models, a key advantage of MineTool-like approach is 

that it makes data mining more accessible, by offering a self-

contained step by step procedure for model building.  MineTool 

was created to handle static (non-time series) data and further 

expanded to a multivariate time series analysis technique which is 

naturally incorporated into the MineTool modeling process, 

suitable for time series data analysis. Some of the immediate 

applications of the resulting method, called MineTool-TS (for 

MineTool-TimeSeries), include multiple event detection and 

event classification [11].  

In time series forecasting, one is interested in deciphering and 

quantifying temporal patterns in the data.  In multi-variate time 

series data analysis, the relationship among the variables, each 

represented by a time series, can also be important.  Time series 

analysis has become one of the most important branches of 

mathematical statistics and data mining, and a variety of 

techniques have been developed.   The techniques range from a 

single time series forecasting (e.g., using the ARIMA method), to 

time series modification to allow certain patterns to be observed 

more easily (e.g., using FFT in signal processing), to multivariate 

time series classification.   The latter is the focus of our work 

presented here.  

3.2 Multivariate Time Series Classification 
A data mining technique called MineTool-TS was introduced 

which captures the time-lapse information in multivariate time 

series data through extraction of global features and metafeatures 

[11].  In this paper we expand MineTool to handle not only static 

and time series data, but image, and simulation data as well, and 

call it MineTool-M2 for MineTool-MultiMedia. 

 

Time series data containing multiple variables (i.e. multivariate 

time series data) commonly occurs in a wide variety of fields 

including biology, finance, science and engineering.  A time series 

(or more generally temporal data) is a sequence of measurements 

that follow non-random orders and can be generated either from a 

fixed point measurements at several time intervals or a convolved 

spatial-temporal variations as measured from a moving detector.  

Multivariate time series analysis is used when one wants to model 

and explain the interactions among a group of time series 

variables such as the field and plasma variables in the space 

physics domain.  Much of the scientific data is in form of 

multivariate time series.  Examples include ECG measurements, 

in situ field and plasma measurements of bow shock crossings, 

flux transfer events, turbulence in the solar wind, sign language 

hand movements, among others.   

Multivariate time series classification attempts at classification of 

a new time series based on past observations of time series 

examples, rather than providing an analysis of a single-variate 

time series.  Just like in any other classification problem, we are 

given examples of labeled data in order to build a predictive 

model.  Historically, Hidden Markov Models (HMMs), recurrent 

Artificial Neural Networks (recurrent ANNs) and Dynamic Time 

Warping (DTW) have been used to build predictive models of 

multivariate time series data for classification tasks [15][21][24].  

Even though these techniques are useful for certain tasks, they 

have several disadvantages which make them impractical for large 

datasets.  In case of HMMs, for example, the number of 

parameters that needs to be set and examined is very large, even 

for small HMMs, determining the number of states for a certain 

dataset is just an educated guess, leading to many iterations of 

examining and setting the parameters.  HHMs also do not handle 

continuous values very well, and make several major assumptions 

not readily available in a real-world scientific dataset. Recurrent 

ANNs suffer from several of the same problems as HMMs and 

require the user to experiment and choose many parameters and 

decide on the appropriate network architecture.  The result is also 

in the form of a black-box which makes it difficult to understand.   

If one could replace the time series by a static data consisting of 

variables that capture the relevant and interesting features (e.g., 

number of zero crossings, slope, and extreme values) of the time 

series, then the standard MineTool technique could be used.   Two 

ideas for reduction of time series data immediately come to mind.  

First, one can randomly select several time instances of the data 

and treat each instance as a static data.  The number of instances 

selected can be smaller than the total number of time instances 

available.  Second, one can create summary statistics data, i.e., the 

time series data is replaced by its statistical measures such as the 

mean, standard deviation, minimum and maximum values, etc.  As 

we will show shortly, even though these techniques are somewhat 

successful for a small number of simple datasets and problems, 

neither of these two approaches yields high accuracy results in 

modeling real life, complex time series data.   Instead we use a 

more sophisticated approach to extract features from multivariate 

time series data that yields much higher accuracy [7][11].    

3.2.1 MineTool for Static Data 
The core data mining algorithm that underlies MineTool-TS is 

MineTool [10]. The advantages of MineTool over traditional 

algorithms such as support vector machine and artificial neural net 

(ANN) are its automated steps that make it more accessible and 

applicable in a variety of domains, accuracy, robustness and the 

analytical form of the model at the output. 

   An important algorithmic issue in data mining is how to find the 

optimal complexity of the model or the fitting function. Too much 

complexity in the model can result in overfit, whereas not enough 

complexity can result in underfit. The mathematical foundations 

of MineTool are based on considerations to balance the 

competing dangers of underfit and overfit to identify the level of 

model complexity that guarantees the best out-of-sample 

prediction performance without ad hoc modifications to the fitting 

algorithms themselves [14][17][18][26]. MineTool creates a 



predictive model architecture that is linear in the parameters. The 

algorithm searches for a model M that best relates rows of the 

input variable values Xij to the appropriate target value yi (yi = 

M(Xij)), where i = 1,…,N and j = 1,…,K.  The model parameters 

are either linear combinations of the input (Xi’α, where prime 

indicates transpose of the vector, index i refers to the ith 

observation), linear transformations of the input variables (ζ(Xi)), 

or highly non-linear transformations of the input (Ψ(Xi,γ)). 

Equation 1 describes the general form of a MineTool model:  
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   (1) 
In its simplest form, the model would be a linear combination of 

the input parameters (i.e. a linear regression model). MineTool 

goes beyond a simple linear model by introducing the linear (such 

as level-1 and level-2 transformations producing cross-products, 

ratios, squares, cubes etc.) and non-linear transformation of the 

input variables, if their addition increases the model accuracy. The 

non-linear transforms Ψ are single hidden layer feed forward 

Artificial Neural Net (ANN)-like transforms, just like the ANNs 

of the same architecture, with the difference that the non-linear 

transformed inputs are combined into a linear model. 

3.2.2 Metafeature and Global Feature Detection 
To be able to process a (time) series dataset (represented with 

multiple rows of data describing one instance or observation) 

using MineTool, the data needs to be “flattened,” or made static.  

Nevertheless, this needs to be accomplished without losing the 

important information incorporated in sequential measurements 

varying with time.  Historically, this has been done either by 

summarizing the data and writing only the mean of the different 

row values of one observation, or recording the difference 

between the pairs of rows and then treating them as single 

instance entries.  These techniques work somewhat well on just a 

limited set of time series problems.  For real life, complex 

scientific datasets, these approaches are most often too weak to 

incorporate the important time changes in the data.  The 

MineTool-TS solution to this problem is to collect the important 

time-changing information that can occur in one of the time series 

variables.  While a value varies with time, it most often increases, 

decreases or stagnates.  There are other, more complex features 

one can record, that consist of the three basic changes, such as 

bipolar signature (relevant in case of flux transfer events), where a 

value goes up, then goes down crossing the axis, and goes up 

again (the sinusoid function has a demonstrates the bipolar 

behavior, for example).  Global features, just like the 

metafeatures, are used to extract the information from all the rows 

representing one observation.  Global features describe one 

instance rows using one measurement, such as: the maximum 

value, minimum values, mean, mode or the number of zero 

crossings.  Some of the metafeatures and global features included 

in the MineTool-TS algorithm are following: 

• Increasing Metafeature— An increasing metafeature is 

recorded for all the consecutive rising time-series 

measurements.  For each increasing event, we record its 

start point, duration, gradient and average value, so that the 

increasing events can be used for analysis and comparison.   

• Decreasing Metafeature— A decreasing metafeature is 

recorded for all the consecutive reducing time-series 

measurements.  For each decreasing event, similarly to the 

increasing events, we record starting point, duration, 

gradient (which is negative in this case) and average value.   

• Plateau Metafeature— A plateau metafeature is recorded 

for all the consecutive non-changing time-series 

measurements.  MineTool-TS allows for a small amount of 

noise to be ignored, so that the true plateaus are captured.     

• Bipolar Signature Metafeature— A bipolar signature 

metafeature is recorded for all the consecutive time-series 

measurements that increase, decrease and cross the zero, 

and increase again.    

• Global Minimum—For each single variable, the global 

minimum feature extracts the minimum value of all of the 

time observations belonging to one time series instance for 

the variable, and records it as the global minimum feature 

for that input channel. 

• Global Maximum—The maximum value of all of the time 

observations belonging to one time series instance for the 

variable, and is recorded as the global maximum feature for 

that variable. 

• Mean —The average value of all of the time observations 

belonging to one time series instance for the variable, and is 

recorded as the global mean feature for that specific 

variable. 

• Mode —The mode value of all of the time observations 

belonging to one time series instance for the variable, and is 

recorded as the global mode feature for that specific input 

variable. 

• Number of Zero Crossings —Lastly, the number of zero 

crossings occurring during the time observation recorded 

measurements is written down as the number of zero 

crossings global feature. 
Next, once all the requested features are collected, the MineTool-

TS algorithm performs the feature space segmentation to group 

similar features and make them have a higher predictive value for 

data mining.  More details on the algorithm can be found in [11]. 

3.3 MineTool-3DM
2
 Extension for 

Multimedia Data Mining 
The time series classification algorithm needed to be adapted to 

handle simulation (and other multimedia) data.  This is 

accomplished by a tailored data preparation of multimedia (3D 

simulation) data and then feeding such prepared data to the basic 

time series analysis algorithm described in [11] and the different 

length time series addition described in [12]. 

3.3.1 Simulation Data Preparation 
The simulation data needs to be converted into a series dataset as 

the algorithm is designed for time series data.  To prepare 

simulation data for being entered in MineTool-3DM2 we perform 

a preprocessing step that converts the multimedia data into a 

series data set.  Section 4.2 details our feature extraction step that 

converts the simulation data into a series “cuts” data and enables 

further analysis.   

In the following section we illustrate the application of MineTool-

M2 to the Flux Transfer Event (FTE) simulation data. 

 

4. APPLICATION TO SIMULATION DATA 
To demonstrate the effectiveness of MineTool-3DM2 to mining 

time series multimedia data, we looked at the problem of 

automatic detection of Flux Transfer Events (FTE) in 3D 

simulation data of the Earth’s magnetosphere.   



FTEs are typically identified on the basis of clear isolated bipolar 

signatures in the Bn component of the magnetic field (in the LMN 

coordinate system).  The Cluster spacecraft magnetic field 

observations of 4-s resolution from the Fluxgate Magnetometer 

(FGM) [1] and plasma observations of 4-s resolution from the 

Cluster Ion Spectrometry (CIS) instrument [22] are commonly 

used for Cluster magnetopause crossings and FTE identifications. 

The measurements include a total of 11 input variables: Bx, By, Bz, 

|B|, Np, Vx, Vy, Vz, T||, T ,Tt   However, simulation is used to 

enable visualization of what the collected measurements mean, 

how these events occur in magnetosphere, and assist the scientist 

in evaluating novel algorithms and attaining better understanding 

of these events.  

4.1 Description of the Test Problem 
The goal of the data analysis and modeling was to build a model 

that will be able to distinguish the cuts across the FTEs from the 

cuts tangent to FTEs (two classes), as well as differentiate non 

FTEs.  This is a challenging three-class, multivariate data series 

classification problem.   In FTE observations, scientists can 

identify FTEs only by looking at signatures tangent to FTEs and 

our goal is to, using simulation and the presented MineTool-

3DM2 approach to data mining of multimedia time series data, 

improve this approach. 

4.2 Data Collection and Preparation: “3D 

Cuts” Feature Extraction 
To analyze simulation data in tracking an event, we chose to 

select and concentrate on a particular area of the 3D simulations 

that is of interest.  We wanted to focus on the features being 

created and changing in time.  In this manner, we are able to 

emphasize the FTE events in order to describe them, model and 

classify them.  We introduced the “cut” feature [12], a novel 

computer vision feature extraction method that enables us to 

collect the important characteristic of the area of interest within 

simulation data window, while decreasing the complexity of the 

data selected for further analysis.  In this paper, we extend this 

feature to the “3d cut’ feature that “slices” the data in the 3D 

simulation window.  A “3D cut” or a “3D slice feature” is a line 

drawn at the site of the feature of interest, or at the site of the 

feature non-existence.  “Cuts” are modeled based on the 

spacecraft trajectories and, in effect, simulate what a spacecraft 

would observe while on a trajectory near an event or non-event. 

Our goal here was to determine whether data mining algorithms 

can distinguish between these different cuts. We have devised a 

cutting routine for making “cuts” or “slices” in the simulation data 

and creating a data file to be used in analysis and modeling.  

Figures 4a, 4b and 4c show three sample spacecraft trajectories-

guided cuts or slices in the 3D simulation data which include cuts 

scheming the surface of the FTE (cut-A), across an FTE (cut-B), 

or cuts away from FTEs (cut-C).  The variables that were 

observed in the cuts included:  

 

X, Y, Z, BX_slice, BY_slice, BZ_slice, Density_slice, 

TPAR_slice, TPERP_slice, TTOTAL_slice,  

VIX_slice, VIY_slice, VIZ_slice, BTOTAL, event 
 

The simulation FTE data has been labeled with three labels: a) 

cuts tangent the FTE, b) cuts across to the FTE, and c) non-

events.   The dataset consists of series data and does not have to 

have the same length.  In this phase of the project, we collected 30 

of each of the types of FTE events, giving 90 total events, or 

streams of data.  Each of our events had up to 1000 data points 

representing one cut, however the length was varying.  We have 

prepared the data and converted in the form suitable for mining 

using our MineTool-3DM2 method for multivariate classification 

of multimedia time series data. 

 

 

 

Figure 4a.  A 3D Cut in the Simulation Data Tangent to the FTE. 

 

 

 

 

Figure 4b.  A 3D Cut in the Simulation Data Across the FTE. 

 

 



 

Figure 4c.  A 3D Cut in the Simulation Data Away From the FTE. 

 

4.3 Modeling Results 
Our approach started with first converting the 3D simulation data 

into series data, by the means of 3D cuts, followed by the 

collection of metafeature information, such as increases, decreases 

and plateaus in each of the series.  Then, using this information 

each of the series was “flattened” into a static row of data and fed 

into the intermediate dataset.  This was completed for each of the 

90 event examples.  The flattened, static dataset was then fed into 

our MineTool algorithm, to discover the correlations among the 

input variables to the output variables. 

We contrast the modeling results of the flux transfer event (FTE) 

classification in simulation data performed in three different ways 

(as listed in Table 1): as a static dataset (where each row is treated 

as an independent instance, and not as a part of a series), as a 

series data, using the summary statistics representation, where a 

series is converted into a single instance of data  using 

measurements such as mean, standard deviation, minimum, 

maximum, range, number of zero crossings, interquartile range 

(or, the spread) and the median value, for each of the variables in 

the data), and as the true series data, using MineTool-3DM2.  

Table 1 describes the results obtained in our study using standard 

data mining evaluation statistics (percentage of correctly classified 

instances, correlation coefficient, mean absolute error (MAE) and 

root mean squared error (RMSE)). 

The modeling results are producing a model with 96.7% accuracy 

tested on a third of the data, set aside as holdout (test) data, and 

built on the 66% of the data as the training set, with each of the 

classes being equally represented in the training and test data.  

The model picks up on the most important metafeatures in the 

classification of an event as an across FTE, tangent FTE or non-

event, and is given in Figure 5. 

The predictive model created by the MineTool data mining 

method is in an analytical form, enabling insight into the most 

important metafeatures and global features detected by the 

algorithm in appropriately classifying a time series instance of 

data.  The model in Figure 5 shows that the specific total magnetic 

field (BTOTAL) together with the specific decrement in Y (which is 

a level-1 cross product linear transformation ζ(Xi)) from the Eq. 

1)  negatively correlates to a series cut variable being classified as 

an FTE, while if the Density_avg * Vx_avg (a simple linear 

combination of the input variable Xi’α) is detected, it positively 

correlates with an FTE event (there were no highly non-linear 

transformations Ψ(Xi,γ) in the model chosen by the method).  The 

model is also able to very accurately distinguish between an event 

label 1 and 2 (across and tangent FTE).    

 

 

 

 

event = 0.352845  

-0.000164373*ttotal_avg*y_Dec_7  

-0.0667911*viy_avg*bz_avg  

-0.0133856*den_avg*y_Dec_7  

+0.196831*den_avg*vix_avg  

-0.00154025*Btotal_Inc_5*y_Dec_7 

-0.0627191*viy_avg*tperp_avg  

+0.00893886*by_avg*vix_avg  

-0.0429279*by_avg*den_avg  

. . . 
  
  Where :  
 y_Dec_7 represents a time series feature   

 with the following average description:  

 average value of -> 462.253   

mid time value of -> 499.073  

gradient value of -> -0.103184  

duration of -> 942.273 

  

  Btotal_Inc_5 represents a time series  

  feature with the following average 

  description:  

  average value of -> 5.93243 

  mid time value of -> 451.282   

gradient value of -> 0.0343282   

duration of -> 16.2183 

 

  etc. 

 

Figure 5.  The Predictive Model of FTEs. 

 

 

 

 

Table1. Comparative analysis of MineTool-M2 vs. other methods. 

 

 

 

 

 

Type of  

Analysis 

Correctly 
Classified 

Correlation 
coefficient 

 MAE RMSE 

Static Data 

Analysis 

 

47.1% 

 

0.3621 

 

0.5732 

 

0.6911 

Summary 
Statistics 
Analysis 

 

62.7% 

 

0.5534 

 

0.4912 

 

0.6351 

 

MineTool- 
3DM2 

 

96.7% 

 

0.935961 

 

0.24502 

 

0.29506 



Table 2 compares the accuracy of different models built using a 

subset of variables, and illustrates their predictive ability.  This 

type of analysis can be very revealing to the expert in the field, as 

it pinpoints which individual variables and/or combinations of 

variables lead to more or less accurate models of FTEs. 

 

 

Table2. Comparative analysis of different variable models. 

 

 

Variables used in the model CC %correctly 
classified 

BxByBzDensTparTperTtotVxVyVzBtot 0.935961 96.7742% 

BxByBz 0.885411 86.6667% 

Bx 0.399886 43.3333% 

By 0.688911 76.6667% 

Bz 0.737009 70% 

VxVyVz 0.807528 90% 

TparTperTtot 0.854785 86.6667% 

dens 0.575214 56.6667% 

Btot 0.671588 66.6667% 

 

 

5. SUMMARY AND DISCUSSION 
In this paper we aim to contribute to the urgent need to 

understand and learn from the often massive, constantly 

increasing, complex, multimedia data, often collected or created 

in the form of simulation data, in an automated fashion.   

We adapt our multivariate time series analysis data mining 

technique to handle simulation data.  We extract the important 

information from the simulation data by introducing a novel 

computer vision feature extraction operator named “cuts” that 

collect the cuts-type of data in the simulation window.  The cuts-

data are then converted into a series data and input into 

MineTool-3DM2 for analysis and modeling.  We also expand the 

method to allow for uneven lengths of the series data at the input.  

The technique extracts global features and metafeatures in the 3D 

simulation dataset in order to capture the necessary time-lapse 

information. The features are then used to create a static, 

intermediate data set that is suitable for analysis using the 

standard supervised data mining techniques.    

The capability of the new algorithm called MineTool-3DM2 is 

demonstrated through its application to the problem of automatic 

detection of flux transfer events (FTE) in the simulation data.   

MineTool-3DM2 built model led to a high FTE classification 

model accuracy of 96.7% correctly classified instances where the 

model produced one of three outputs of across cut FTE, tangent 

cut FTE, and non-FTE.  For comparison, two other means of 

treating the series data including a common summary statistics 

technique yielded much lower accuracies of 47% and 63% 

correctly classified instances, illustrating the imminent need for 

advanced techniques, such as MineTool-3DM2, to handle such 

data.   

Our future work will encompass the expansion of MineTool-

3DM2 to other multimedia data as well. By applying and 

extending ideas from data mining, image and video processing, 

statistics, and pattern recognition, we are developing a new 

generation of computational tools and techniques that are being 

used to improve the way in which scientists extract useful 

information from data. 
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