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Abstract - We present the results of a thorough evaluation of 
the subspace clustering algorithm SEPC using the 
OpenSubspace framework. We show that SEPC outperforms 
competing projected and subspace clustering algorithms on 
synthetic and some real world data sets. We also show that 
SEPC can be used to effectively discover clusters with 
overlapping objects (i.e., subspace clustering). 
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1 Introduction 
  Clustering algorithms attempt to divide objects in a data 
set into groups such that objects in a group are more similar 
to one another than to other objects in the data set. Similarity 
is usually based on distance. For data sets with few attributes, 
approaches such as k-means can be used to perform clustering 
in the full feature space. However, in many applications, data 
sets contain large numbers of attributes per object. For 
example, in some text processing applications each object is a 
term frequency vector whose length is equal to the number of 
terms under analysis. Such frequency vectors can have 
thousands of attributes depending on the size of the 
dictionary. As the dimensionality of data sets increases, 
traditional approaches that look for clusters in the full feature 
space start to fail. In part, the difficulty is that the longest and 
shortest distances in a data set will approach one another as 
the number of dimensions increases [1]. Thus, increasing 
dimensionality erodes the usefulness of distance metrics in 
determining the relative similarity of objects in a data set. A 
common solution is to use dimensionality reduction tools like 
principal component analysis (PCA) [2] to project the data set 
onto fewer dimensions. The resulting data set can then be 
clustered using traditional techniques. However, applying 
PCA produces a single subspace and in many applications, 
clusters exist in different subspaces of the full feature space. 
Thus, applying PCA may mask clusters and hide interesting 
results. One solution to these problems is subspace clustering. 
Subspace clustering aims to identify clusters of objects and 
their associated subspaces.  

The most general aim of subspace clustering is to find all 
clusters in arbitrarily aligned subspaces. Unfortunately, this 
form of the problem has an infinite search space and finding 
clusters under these conditions is difficult. Instead, most 
approaches rely on heuristics to reduce the search space to 
something more practical. For example, in many applications, 

it is reasonable to assume that the attributes of the data are not 
correlated with one another. This enables one to restrict the 
search for clusters to only those that are axis-aligned—
reducing the number of possible subspaces from infinite to 2𝑑, 
where 𝑑 is the number of dimensions in the data set. 
 In this paper we evaluate an algorithm for performing 
projective clustering called Simple and Efficient Projective 
Clustering (SEPC) [3] using the OpenSubspace framework 
[4]. We present the results of a thorough evaluation of SEPC 
with both synthetic and real-world data sets including 
comparisons with competing approaches. We will also show 
that SEPC can be used to effectively discover clusters with 
overlapping objects (i.e., subspace clustering). 

2 Related Work 
 For a thorough review of the current state of subspace 
and projected clustering, see [7]. We provide a brief overview 
of some historical and closely related algorithms to the 
current work. 
 CLIQUE [8] is often cited as the earliest subspace-
clustering algorithm. In CLIQUE, the data set is discretized 
into ξ intervals of equal length. Units containing a sufficient 
number of points are considered dense. Adjacent dense cells 
are joined together to create clusters. The algorithm first 
discovers all one-dimensional dense units and then in a priori 
fashion searches for subspace clusters. The algorithm is made 
more efficient by leveraging the downward closure property 
of subspace clusters to prune the search space. 
 PROCLUS [9] is another approach to the problem of 
subspace clustering. Where CLIQUE is a bottom-up 
approach, PROCLUS builds clusters in a top-down fashion. 
PROCLUS is a 𝑘-medoid-like clustering algorithm. It 
partitions the data into 𝑘 clusters with an average number of 
dimensions equal to 𝑙. In the first stage of the algorithm, a set 
of candidate medoids (𝑀) is sampled from the data set. From 
𝑀, 𝑘 medoids are selected and the subspaces for each are 
determined by minimizing the standard deviation of the 
distances of the points in the neighborhood of the medoids to 
the corresponding medoid along each dimension. Then points 
are assigned to the medoid they are closest to using a distance 
metric that only considers the relevant subspaces for each 
medoid. In a refinement phase, medoids may be switched out 
for other members of 𝑀—the pool of medoids. The result is a 
strict partitioning of the data set into 𝑘 parts along with a set 
of outlier points. 



 DOC [5] defines a global measure of cluster quality to 
determine an optimal cluster. Given a subspace cluster that 
contains a set of objects 𝐶 and set of attributes 𝐷, the function 
𝜇(|𝐶|, |𝐷|) = |𝐶| 𝛽|𝐷|⁄  determines the quality of the cluster. 𝛽 
is a user defined constant that determines the tradeoff 
between objects and attributes in a cluster with the restriction 
0 < 𝛽 < 0.5. The user must also specify a cluster width 𝑤, 
that is used to determine both the relevant attributes and 
object membership in the cluster. To discover clusters, the 
algorithm iteratively samples the data set in Monte Carlo 
fashion. DOC uses two loops to find an optimal cluster: an 
inner and outer loop. In the outer loop, it randomly samples 
medoids from the data set. Then in the inner loop, it randomly 
samples a small number of points from the data set. This 
small set of points is referred to as the discriminating set. The 
relevant dimensions of the hypothesized cluster are 
determined by calculating the distance between the medoid 
and the points in the discriminating set. This process is 
repeated many times and the highest quality cluster found is 
reported. 
 A closely related algorithm to DOC is MineClus [6]. 
MineClus uses a similar Monte Carlo framework to sample 
medoids from the data set. However, in MineClus the search 
for relevant subspaces is transformed into a frequent pattern 
tree growth method. This replaces the inner loop of DOC 
turning it into a determinative step. This replacement results 
in a significant decrease in running time compared to the 
DOC algorithm. 

3 Approach 
 SEPC [3] is an iterative Monte Carlo algorithm inspired 

by DOC [5]. It inherited the cluster model as well as the 

quality function used by DOC. However, in SEPC, the outer 
loop in which DOC randomly samples the data set to 
determine a cluster medoid has been discarded. Instead, 
clusters are hypothesized using just the discriminating set.  
 In each trial, a small set of data points (the 
discriminating set) is sampled randomly from the data set. The 
minimum and maximum in each dimension of the 
discriminating set is determined.  If the difference between the 
minimum and maximum value in a given dimension is less 
than a fixed width 𝑤, then a congregating dimension has been 
discovered. This results in a sheath of width 𝑤 for 
determining the congregating dimensions. In contrast, the 
DOC algorithm uses two loops to generate a hypothetical 
cluster. In the first loop, seed points are sampled from the data 
set and in the second loop, a set of discriminating points is 
sampled from the data set. The distance along each dimension 
from the seed points to the points in the discriminating set is 
determined. The hypothesized cluster is said to congregate in 
the dimensions for which the distance is less than 𝑤. This 
results in a sheath of width 2𝑤 for determining congregating 
dimensions, twice as large in each dimension as the SEPC 
sheath. The narrower sheath of SEPC improves the detection 
of truly congregating dimensions. It also makes it possible to 
use values of 𝛽 > 0.5 (DOC is limited to 𝛽 < 0.5).  

 Once all congregating dimensions have been determined, 
the hypothesized cluster is populated with points from the data 
set. However, the distances calculated to determine the 
congregating dimensions cannot be used to determine which 
points belong to the hypothesized cluster, since they are 
generally too narrow to capture the extremal points in the 
cluster. Instead, the span of the sheath is determined in each 
congregating dimension by subtracting 𝑤 from the maximum 
value and adding 𝑤 to the minimum value. The length of the 

 
 

 

Fig. 1.  A comparison between the SEPC and DOC algorithms for determining cluster dimensions and cluster points using a 
discriminating set. (a) The SEPC algorithm uses a sheath of width 𝒘 to determine if a discriminating set congregates in a dimension. 
When the set congregates, a larger sheath with width between 𝒘 and 𝟐𝒘 is used to determine additional data points that are added to 
the cluster. (b) The DOC and FastDOC algorithms use a sheath with width 𝟐𝒘 both to determine if the discriminating set congregates 
in a dimension and to find additional data points that are added to the cluster. 

(a) (b) 



resulting range is 2𝑤 − 𝑑𝑖 , where 𝑑𝑖 is the absolute difference 
between the minimum and maximum value in the 
discriminating set along dimension 𝑖. See Fig. 1 (a). In 
contrast, the DOC algorithm uses the same sheath width (2𝑤) 
for determining congregating dimensions and point 
membership in the cluster.  See Fig. 1 (b). 
 After point or object membership has been determined 
for a hypothesized cluster, its quality can be determined. If 
the quality is high enough, then it is retained. In disjoint 
mode, the points in the newly discovered cluster will be 
removed from consideration for membership in subsequently 
discovered clusters. Alternatively, if the user wishes to 
discover clusters with overlapping points, the hypothesized 
cluster will only be kept if it is qualitatively different from 
clusters that have already been discovered or if it is of higher 
quality than an existing cluster that it significantly overlaps 
with. 

3.1 Soft Cluster Equality 
 Using the algorithm in non-disjoint mode is problematic 
if we do not remove duplicate clusters. Since points are not 
removed from consideration when they are assigned to 
clusters, the algorithm needs to check that each newly found 
cluster is unique and has not been previously discovered. 
When a new cluster is discovered, it is compared to existing 
found clusters. However, using a strict test for equality will 
result in a large number of clusters being discovered that are 
not very different from one another. To solve this problem, 
the algorithm allows the user to loosen the criteria for equality 
between clusters. This allows the user to tune the algorithm to 
yield only clusters that are truly unique.  

Our test for cluster equality involves both the set of 
objects in each cluster as well as the subspaces spanned by 
each cluster. This dual check is necessary since a purely 
object-based method for determining cluster equivalence 
would be error prone. Consider two subspace clusters 
𝐶1(𝑂1, 𝑆1) and 𝐶2(𝑂2, 𝑆2) , with 𝑂1 ⊆ 𝑂2. Without 
considering the subspaces of the two clusters we may come to 

the conclusion that 𝐶1 is redundant with respect to 𝐶2. 
However, consider the case where 𝑆1 ≠ 𝑆2. In this case, we 
have discovered not one but two conceptually distinct 
clusters. Despite sharing objects, the two clusters describe a 
different relationship among those objects, thus the two 
clusters would not be equivalent.  
 The equivalence check is performed in two steps: first 
we determine if the two clusters span roughly the same 
subspace based on a user-specified tolerance (e.g. if two 
clusters share 90% of the same attributes then they span 
roughly the same subspace). Then if the two clusters are 
determined to span roughly the same subspace, we determine 
the amount of overlap between their respective sets of 
objects. If the object overlap between the two clusters 
exceeds a user-specified tolerance then the two clusters are 
considered to cover roughly the same set of objects (e.g. if 
two clusters share 90% of the same objects then they cover 
roughly the same set of objects). Formally, given two 
clusters 𝐶𝑖(𝑂𝑖 , 𝑆𝑖) and 𝐶𝑗�𝑂𝑗 , 𝑆𝑗�, 𝐶𝑖 = 𝐶𝑗  if 

 
�𝑆𝑖 ∩ 𝑆𝑗�
�𝑆𝑗�

≥ 𝑀𝑖𝑛 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (1)  

and 
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≥ 𝑀𝑖𝑛 𝑂𝑏𝑗𝑒𝑐𝑡 𝑂𝑣𝑒𝑟𝑙𝑎𝑝. (2)  

Where 𝑀𝑖𝑛 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑀𝑖𝑛 𝑂𝑏𝑗𝑒𝑐𝑡 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 
are user specified values between zero and one. Note that this 
check is not commutative, since it determines the percent 
overlap of attributes and objects by dividing by the cardinality 
of one of the clusters.  

3.2 Using Soft Cluster Equality 
 Since our check for subspace cluster equality is not 
commutative, we perform the check in both directions in the 
following way: each newly hypothesized cluster is checked 
against existing clusters using itself as the index. Therefore, 
each new cluster must be sufficiently unique with respect to 
existing clusters in order to be considered for inclusion in the 
clustering results. In other words, a user-specified percentage 
of a new cluster’s subspace must be unique. Failing that, a 
user-specified percentage of the new cluster’s set of objects 
must be unique. If a newly hypothesized cluster is determined 
to be redundant with respect to an existing cluster by this 
metric, then we discard the new cluster if its quality is lower 
than the existing cluster. If a newly hypothesized cluster is 
sufficiently unique (or of higher quality than redundant 
existing clusters) then we perform the equivalence check in 
the other direction. In this case, all existing clusters that are 
determined to be redundant with respect to the new cluster are 
removed from the clustering results. Fig. 2 depicts the process 
used by SEPC to discover overlapping clusters in a data set. 

 
Fig. 2.  Finding overlapping clusters with SEPC. 

 
 



4 Quality Metrics 
 Some subspace clustering metrics used in OpenSubspace 

are object-based [4]. That is, they ignore the congregating 
dimensions of clusters in evaluating cluster quality. Instead, 
they rely entirely on how objects have been allocated into 
found clusters compared to the “true” allocation. This 
approach works sufficiently well when points belong to only 
one cluster. However, in some instances, it is advantageous to 
allow points to belong to multiple clusters that span different 
subspaces. In such cases, the above metrics will yield 
misleading results. For example, the synthetic data sets 
provided with the OpenSubspace framework typically have 
one or two clusters that, point-wise, are subsets of other 
clusters. However, the super- and sub-clusters span a different 
set of dimensions (typically, the larger cluster spans fewer 
dimensions). This causes problems for purely object-based 
metrics, because, the sub-clusters are not unique on a purely 
object basis.  Thus, metrics like clustering error (CE) [7], 
account for the subspace spanned by each object.  
 For the following discussion, it is useful to define two 
types of clusters: found clusters and hidden clusters. A found 
cluster is returned as part of the results of running a clustering 
algorithm on a given data set. In contrast, a hidden cluster is 
known within a data set. In the case of synthetic data sets both 
the objects and subspace of hidden clusters are known, 
however, for real world data, we typically are limited to 
information about object membership in hidden clusters. 

4.1 F1 
  In OpenSubspace, F1 is an object-based metric 
computed with respect to each hidden cluster. It is composed 
of two sub-metrics called recall and precision. A high recall 
corresponds to a high coverage of objects from a hidden 
cluster while a high precision denotes a low coverage of 
objects from other clusters. Prior to calculating F1, found 
clusters are mapped to the hidden cluster they overlap with 
the most. Then recall and precision are determined for each 
hidden cluster. The F1 scores for the hidden clusters are 
determined by taking the harmonic mean of their recall and 
precision scores. The overall F1 score is the average of the F1 
scores of each hidden cluster. 
 Problems arise with the F1-measure when there are 
overlapping hidden clusters that span different subspaces. For 
F1, the trouble arises when found clusters are mapped to 
hidden clusters. Since, the mapping is done purely on a point 
or object basis, when one hidden cluster is a subset of 
another, there is a high likelihood that the smaller cluster will 
“capture” found clusters overlapping both the super- and sub- 
hidden clusters. This happens, because the overlap between a 
hidden and found cluster is normalized by the cardinality of 
the hidden cluster. This results in a bias towards smaller 
hidden sub-clusters.  

4.2 Clustering Error 
 Clustering error (CE) [7] addresses the problem of 

overlapping clusters by taking into account the dimensions 
spanned by objects in a cluster. It does this by using 
subobjects in place of objects in its calculation. A subobject is 
the combination of an object together with the dimensions 
spanned by the cluster to which it belongs. This allows an 
object to belong to multiple clusters and still be unique for the 
purpose of quality measurement.  CE measures the extent to 
which the subobjects in hidden clusters overlap with the 
subobjects in found clusters. However, before determining 
overlap between the two sets of clusters, an optimal mapping 
of found clusters to hidden clusters is performed, which may 
result in excess found clusters that are not mapped to any 
hidden cluster and vice versa. This solves a problem common 
to many subspace clustering quality metrics. Namely, many 
metrics fail to distinguish between the case where many found 
clusters overlap a single hidden cluster and, the case where 
only a single found cluster overlaps a hidden cluster. The 
second case is more desirable than the first.   

One drawback to CE, is that in real world data sets, the 
congregating dimensions are often unknown, limiting this 
method’s ability to judge a cluster’s quality with respect to its 
subspace. 

5 Experiments 
 We have reproduced the experiments performed in [8] 
using the SEPC algorithm and several competing algorithms. 
We have focused on examining the general properties of 
SEPC compared to several other subspace clustering 
algorithms. In [8], each experiment was conducted by trying 
many different parameter settings for each algorithm in an 
attempt to obtain the maximum possible performance for 
each. In addition, each run of an algorithm was limited to 30 
minutes.  For this evaluation, we used the same strategy.  The 
following algorithms, as implemented in OpenSubspace, were 
used in this comparison:   CLIQUE [9], DOC [5], MineClus 
[6], FIRES [10], PROCLUS [11], P3C [12], and STATPC 
[13]. Each algorithm has been tuned using the parameter 
settings provided by Mueller et al. [8]. The experiments were 
run on machines with 1.8GHz Dual-Core AMD Opteron™ 
2210 processors and 2GB memory running Red Hat Linux 
5.9.  

5.1 Synthetic Data 
 OpenSubspace is packaged with three synthetic data 

sets, each intended to explore a different aspect of algorithm 
performance. These data sets enable evaluation over 
increasing dimensionality (number of attributes), over 
increasing data set size (number of objects), and over 
increasing amounts of noise (irrelevant objects). Additionally, 
all of the data sets contain overlapping hidden clusters. That 
is, they contain clusters that share objects, but span different 
subspaces. Thus, we applied SEPC in non-disjoint mode to 
maximize its possible achievable performance. 



 As in [8], we used CE to examine the relative quality of 
the clustering results generated on these synthetic data by each 
algorithm. Since we have information about the relevant 
subspaces of the hidden clusters in the synthetic data; we can 
fully leverage the power of CE. Recall that the CE metric not 
only indicates that objects have been correctly assigned to 
clusters, but also penalizes redundancy (e.g. multiple found 
clusters covering the same hidden cluster) and splitting hidden 
clusters (many small found clusters covering the objects of a 
single hidden cluster). This also allows us to evaluate an 
algorithm’s ability to discover clusters with overlapping 
objects. Since each of the synthetic data sets include 
overlapping clusters, algorithms that perform a strict 
partitioning of objects into clusters will not be able to score a 
perfect CE. For example, the maximum partitioned CE score 
for the object-count data sets is about 0.88.  Recall that CE is 
determined using subobjects (objects combined with the 
subspace of the cluster to which it belongs). This means that 
according to the CE metric, an object may be assigned to 
multiple clusters, as long as those clusters span different 
subspaces. This also means that there can be more subobjects 

than objects in a data set. For example, the 1500-object data 
set has 1462 objects in its 10 hidden clusters. However, since 
some of these objects belong to more than one cluster, the 
data set contains 1663 subobjects. To determine the maximum 
possible CE results with single object assignment, we simply 
divide the number of objects by the number of subobjects, 
which yields approximately 0.88. Therefore, a CE score 
exceeding 0.88 on the 1500-object data set would indicate that 
the algorithm was successfully discovering overlapping 
clusters. The maximum disjoint CE value varies between the 
synthetic data sets. It is about 0.88 for all of the object-count 
and noise data sets, and about 0.8 for the dimension-count 
data sets. 

We also examined the running times for each algorithm 
for each data set. For some algorithms, parameter settings may 
significantly affect running time. In such cases, we used 
consistent parameter settings to gather run time data even if it 
did not yield optimal CE results. In addition, some of the 
algorithms never completed within 30 minutes on some of the 
data sets for any parameter settings. For example, P3C did not 
finish within 30 minutes on any of the dimension data sets 

 
 

Fig. 3.  Algorithm performance over an increasing number of dimensions measured by (a) clustering error and (b) run time. 

  
 

Fig. 4. Algorithm performance over an increasing number of objects measured by (a) clustering error and (b) run time. 

(a) (b) 

(a) (b) 



above 20 dimensions. This accounts for the missing data in 
Fig 3 (b), 4 (b) and 5 (b). 
 To evaluate the scalability of algorithms as the 
dimensionality of a data set increases, OpenSubspace 
includes data sets with dimensions varying from 5 to 75. Each 
data set includes ten subspace clusters that span 50%, 60%, 
and 80% of the full feature space. Fig. 3 shows the results of 
our evaluations of each algorithm on the dimension-based 
data sets. Our evaluation agreed closely with [8], in which 
Mueller and his team observed the best CE results for the 
cell-based approaches—particularly DOC and MineClus. In 
our evaluation, DOC and MineClus scored a CE value of 
approximately 0.8 across all dimensionalities. However, as 
can be seen in Fig 3 (a), SEPC exceeded these results for 
dimensionality of 10 or greater. At dimensionality 5, SEPC 
performs about as well as DOC or MineClus. However, as 
dimensionality increases, the CE score achieved by SEPC 
improves. 
 OpenSubspace also includes a set of synthetic data 
where the number of objects in each cluster varies, but the 
number of dimensions is constant. All of these data sets 
contain 20-dimensional objects, but they vary in size from 
about 1500 points up to about 5500 points. We used these data 
sets to evaluate algorithm performance over increasing data 
set size. The best results for DOC and MineClus varied 
between CE values of about 0.85 and 0.9. SEPC exceeded 
these results with a CE value of at least 0.94 (on the data set 
containing 4500 data points) and achieved a CE value of 1.0 
for the data set containing 3500 data points. See Fig. 4 (a). 
 For noise-based experiments, OpenSubspace includes 
data sets where the percentage of noise objects increases from 
10% noise up to 70% noise. These data sets were built by 
adding noise to the 20-dimensional data set from the first 
scalability experiments. For noise-based experiments, Mueller 
et al. reported CE results for DOC and MineClus of about 
0.79 to 0.89. We saw similar results in our evaluation. We can 
see in Fig. 5 that the DOC and MineClus results exhibit a 
slight downward trend as the amount of noise in the data set 
increases. In contrast, the CE results for SEPC are consistent 

ranging from 0.95 to 0.97, with no degradation in 
performance with increasing amounts of noise. 

Running time is an important factor to consider when 
evaluating subspace clustering algorithms. In addition to the 
CE data, we collected run time data on all of the synthetic data 
sets to compare SEPC to the other algorithms. See Fig. 3 (b), 
Fig. 4 (b), and Fig. 5 (b). From these graphs of run time data, 
we see that SEPC is significantly faster than DOC on all data 
sets. We also see that MineClus and SEPC have similar run 
times across all data sets. CLIQUE and PROCLUS are the 
fastest algorithms across all data sets. However, they also 
score among the lowest CE values.    
 SEPC consistently performed better than the other 
algorithms on each of the synthetic data sets with respect to 
the CE metric. Recall that the maximum disjoint CE scores 
for the object and noise data sets was 0.88 and 0.8 for the 
dimension data sets. SEPC scored CE results near  1.0 on all 
of these data sets (with the exception of the 5-dimensional 
data set). The high CE scores achieved by SEPC across all 
data sets indicate that it effectively discovered overlapping 
clusters. Overall, it appears SEPC’s performance increases 
with scale. This was illustrated in the experiments with the 
dimensionality data sets. At 5 dimensions, SEPC performed 
as well as DOC and MineClus, but as the dimensionality of 
the data sets increased, SEPC’s performance also increased. It 
appears that for very low dimensional data (less than 5), 
SEPC is comparable in performance to DOC and MineClus. 
However, the performance of DOC and MineClus stays the 
same for large dimensional data, while SEPC improves. 
SEPC runs much faster than DOC and in similar time to 
MineClus. 

6 Real World Data 
In addition to synthetic data, we used the real world data 

packaged with OpenSubspace to evaluate SEPC against other 
subspace clustering algorithms. These publicly available data 
sets from the UCI archive [14] have typically been used in 
classification tasks and thus the data have class labels. The 
class labels are assumed to describe natural clusters in the 

 
 

  Fig. 5.  Algorithm performance over increasing noise measured by (a) clustering error and (b) run time. 
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data. However, no information about the subspaces of the 
clusters is known. This limits the usefulness of CE, since it 
can only be applied at the object level. Thus, we have 
followed the lead of [8] and optimized each algorithm with 
respect to F1.  Also, since all of the clusters in the real world 
data sets are disjoint, SEPC was run in disjoint mode.  
 SEPC was compared with MineClus, DOC, PROCLUS, 
FIRES, and P3C. See Fig. 6 for a chart summarizing the F1 
results obtained by each algorithm for each of the seven real 
world data sets. SEPC yielded the highest F1 score on four 
out of the seven data sets. 

7 Conclusions 
 SEPC outperformed all other algorithms on synthetic 

data in terms of clustering quality measured by CE. The high 
CE scores achieved on the synthetic data sets show that the 
algorithm effectively identifies clusters even when they share 
objects. Thus, demonstrating SEPC can be rightly called a 
subspace clustering algorithm.  
The experiments using the synthetic data sets reveal some 
possible areas where differences in algorithm performance 
might be more visible. For example, both DOC and 
MINECLUS, exhibit steady CE results of about 0.8 over an 
increasing number of dimensions, while the CE results for 
SEPC started at about 0.8, then increased to values closer to 
1.0. Similar results were observed for data containing 
significant amounts of random noise. Experiments with larger 
data sets (both in the number of objects and in the number of 
dimensions), as well as with noisier data, would likely yield 
more interesting comparisons of performance between 
algorithms. We also demonstrated that SEPC can be used to 
achieve high quality results on real world data. 
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Fig. 6.  F1 results with real world data sets. 
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