
Evaluation of Monte Carlo Subspace Clustering with
OpenSubspace

David C. Hunn, Clark F. Olson1

1Computing and Software Systems, University of Washington, Bothell, WA, U.S.A.

Abstract - We present the results of a thorough evaluation of
the subspace clustering algorithm SEPC using the
OpenSubspace framework. We show that SEPC outperforms
competing projected and subspace clustering algorithms on
synthetic and some real world data sets. We also show that
SEPC can be used to effectively discover clusters with
overlapping objects (i.e., subspace clustering).

Keywords: subspace clustering, projected clustering,
OpenSubspace

1 Introduction
 Clustering algorithms attempt to divide objects in a data
set into groups such that objects in a group are more similar
to one another than to other objects in the data set. Similarity
is usually based on distance. For data sets with few attributes,
approaches such as k-means can be used to perform clustering
in the full feature space. However, in many applications, data
sets contain large numbers of attributes per object. For
example, in some text processing applications each object is a
term frequency vector whose length is equal to the number of
terms under analysis. Such frequency vectors can have
thousands of attributes depending on the size of the
dictionary. As the dimensionality of data sets increases,
traditional approaches that look for clusters in the full feature
space start to fail. In part, the difficulty is that the longest and
shortest distances in a data set will approach one another as
the number of dimensions increases [1]. Thus, increasing
dimensionality erodes the usefulness of distance metrics in
determining the relative similarity of objects in a data set. A
common solution is to use dimensionality reduction tools like
principal component analysis (PCA) [2] to project the data set
onto fewer dimensions. The resulting data set can then be
clustered using traditional techniques. However, applying
PCA produces a single subspace and in many applications,
clusters exist in different subspaces of the full feature space.
Thus, applying PCA may mask clusters and hide interesting
results. One solution to these problems is subspace clustering.
Subspace clustering aims to identify clusters of objects and
their associated subspaces.

The most general aim of subspace clustering is to find all
clusters in arbitrarily aligned subspaces. Unfortunately, this
form of the problem has an infinite search space and finding
clusters under these conditions is difficult. Instead, most
approaches rely on heuristics to reduce the search space to
something more practical. For example, in many applications,

it is reasonable to assume that the attributes of the data are not
correlated with one another. This enables one to restrict the
search for clusters to only those that are axis-aligned—
reducing the number of possible subspaces from infinite to 2𝑑,
where 𝑑 is the number of dimensions in the data set.
 In this paper we evaluate an algorithm for performing
projective clustering called Simple and Efficient Projective
Clustering (SEPC) [3] using the OpenSubspace framework
[4]. We present the results of a thorough evaluation of SEPC
with both synthetic and real-world data sets including
comparisons with competing approaches. We will also show
that SEPC can be used to effectively discover clusters with
overlapping objects (i.e., subspace clustering).

2 Related Work
 For a thorough review of the current state of subspace
and projected clustering, see [7]. We provide a brief overview
of some historical and closely related algorithms to the
current work.
 CLIQUE [8] is often cited as the earliest subspace-
clustering algorithm. In CLIQUE, the data set is discretized
into ξ intervals of equal length. Units containing a sufficient
number of points are considered dense. Adjacent dense cells
are joined together to create clusters. The algorithm first
discovers all one-dimensional dense units and then in a priori
fashion searches for subspace clusters. The algorithm is made
more efficient by leveraging the downward closure property
of subspace clusters to prune the search space.
 PROCLUS [9] is another approach to the problem of
subspace clustering. Where CLIQUE is a bottom-up
approach, PROCLUS builds clusters in a top-down fashion.
PROCLUS is a 𝑘-medoid-like clustering algorithm. It
partitions the data into 𝑘 clusters with an average number of
dimensions equal to 𝑙. In the first stage of the algorithm, a set
of candidate medoids (𝑀) is sampled from the data set. From
𝑀, 𝑘 medoids are selected and the subspaces for each are
determined by minimizing the standard deviation of the
distances of the points in the neighborhood of the medoids to
the corresponding medoid along each dimension. Then points
are assigned to the medoid they are closest to using a distance
metric that only considers the relevant subspaces for each
medoid. In a refinement phase, medoids may be switched out
for other members of 𝑀—the pool of medoids. The result is a
strict partitioning of the data set into 𝑘 parts along with a set
of outlier points.

 DOC [5] defines a global measure of cluster quality to
determine an optimal cluster. Given a subspace cluster that
contains a set of objects 𝐶 and set of attributes 𝐷, the function
𝜇(|𝐶|, |𝐷|) = |𝐶| 𝛽|𝐷|⁄ determines the quality of the cluster. 𝛽
is a user defined constant that determines the tradeoff
between objects and attributes in a cluster with the restriction
0 < 𝛽 < 0.5. The user must also specify a cluster width 𝑤,
that is used to determine both the relevant attributes and
object membership in the cluster. To discover clusters, the
algorithm iteratively samples the data set in Monte Carlo
fashion. DOC uses two loops to find an optimal cluster: an
inner and outer loop. In the outer loop, it randomly samples
medoids from the data set. Then in the inner loop, it randomly
samples a small number of points from the data set. This
small set of points is referred to as the discriminating set. The
relevant dimensions of the hypothesized cluster are
determined by calculating the distance between the medoid
and the points in the discriminating set. This process is
repeated many times and the highest quality cluster found is
reported.
 A closely related algorithm to DOC is MineClus [6].
MineClus uses a similar Monte Carlo framework to sample
medoids from the data set. However, in MineClus the search
for relevant subspaces is transformed into a frequent pattern
tree growth method. This replaces the inner loop of DOC
turning it into a determinative step. This replacement results
in a significant decrease in running time compared to the
DOC algorithm.

3 Approach
 SEPC [3] is an iterative Monte Carlo algorithm inspired

by DOC [5]. It inherited the cluster model as well as the

quality function used by DOC. However, in SEPC, the outer
loop in which DOC randomly samples the data set to
determine a cluster medoid has been discarded. Instead,
clusters are hypothesized using just the discriminating set.
 In each trial, a small set of data points (the
discriminating set) is sampled randomly from the data set. The
minimum and maximum in each dimension of the
discriminating set is determined. If the difference between the
minimum and maximum value in a given dimension is less
than a fixed width 𝑤, then a congregating dimension has been
discovered. This results in a sheath of width 𝑤 for
determining the congregating dimensions. In contrast, the
DOC algorithm uses two loops to generate a hypothetical
cluster. In the first loop, seed points are sampled from the data
set and in the second loop, a set of discriminating points is
sampled from the data set. The distance along each dimension
from the seed points to the points in the discriminating set is
determined. The hypothesized cluster is said to congregate in
the dimensions for which the distance is less than 𝑤. This
results in a sheath of width 2𝑤 for determining congregating
dimensions, twice as large in each dimension as the SEPC
sheath. The narrower sheath of SEPC improves the detection
of truly congregating dimensions. It also makes it possible to
use values of 𝛽 > 0.5 (DOC is limited to 𝛽 < 0.5).

 Once all congregating dimensions have been determined,
the hypothesized cluster is populated with points from the data
set. However, the distances calculated to determine the
congregating dimensions cannot be used to determine which
points belong to the hypothesized cluster, since they are
generally too narrow to capture the extremal points in the
cluster. Instead, the span of the sheath is determined in each
congregating dimension by subtracting 𝑤 from the maximum
value and adding 𝑤 to the minimum value. The length of the

Fig. 1. A comparison between the SEPC and DOC algorithms for determining cluster dimensions and cluster points using a
discriminating set. (a) The SEPC algorithm uses a sheath of width 𝒘 to determine if a discriminating set congregates in a dimension.
When the set congregates, a larger sheath with width between 𝒘 and 𝟐𝒘 is used to determine additional data points that are added to
the cluster. (b) The DOC and FastDOC algorithms use a sheath with width 𝟐𝒘 both to determine if the discriminating set congregates
in a dimension and to find additional data points that are added to the cluster.

(a) (b)

resulting range is 2𝑤 − 𝑑𝑖 , where 𝑑𝑖 is the absolute difference
between the minimum and maximum value in the
discriminating set along dimension 𝑖. See Fig. 1 (a). In
contrast, the DOC algorithm uses the same sheath width (2𝑤)
for determining congregating dimensions and point
membership in the cluster. See Fig. 1 (b).
 After point or object membership has been determined
for a hypothesized cluster, its quality can be determined. If
the quality is high enough, then it is retained. In disjoint
mode, the points in the newly discovered cluster will be
removed from consideration for membership in subsequently
discovered clusters. Alternatively, if the user wishes to
discover clusters with overlapping points, the hypothesized
cluster will only be kept if it is qualitatively different from
clusters that have already been discovered or if it is of higher
quality than an existing cluster that it significantly overlaps
with.

3.1 Soft Cluster Equality
 Using the algorithm in non-disjoint mode is problematic
if we do not remove duplicate clusters. Since points are not
removed from consideration when they are assigned to
clusters, the algorithm needs to check that each newly found
cluster is unique and has not been previously discovered.
When a new cluster is discovered, it is compared to existing
found clusters. However, using a strict test for equality will
result in a large number of clusters being discovered that are
not very different from one another. To solve this problem,
the algorithm allows the user to loosen the criteria for equality
between clusters. This allows the user to tune the algorithm to
yield only clusters that are truly unique.

Our test for cluster equality involves both the set of
objects in each cluster as well as the subspaces spanned by
each cluster. This dual check is necessary since a purely
object-based method for determining cluster equivalence
would be error prone. Consider two subspace clusters
𝐶1(𝑂1, 𝑆1) and 𝐶2(𝑂2, 𝑆2) , with 𝑂1 ⊆ 𝑂2. Without
considering the subspaces of the two clusters we may come to

the conclusion that 𝐶1 is redundant with respect to 𝐶2.
However, consider the case where 𝑆1 ≠ 𝑆2. In this case, we
have discovered not one but two conceptually distinct
clusters. Despite sharing objects, the two clusters describe a
different relationship among those objects, thus the two
clusters would not be equivalent.
 The equivalence check is performed in two steps: first
we determine if the two clusters span roughly the same
subspace based on a user-specified tolerance (e.g. if two
clusters share 90% of the same attributes then they span
roughly the same subspace). Then if the two clusters are
determined to span roughly the same subspace, we determine
the amount of overlap between their respective sets of
objects. If the object overlap between the two clusters
exceeds a user-specified tolerance then the two clusters are
considered to cover roughly the same set of objects (e.g. if
two clusters share 90% of the same objects then they cover
roughly the same set of objects). Formally, given two
clusters 𝐶𝑖(𝑂𝑖 , 𝑆𝑖) and 𝐶𝑗�𝑂𝑗 , 𝑆𝑗�, 𝐶𝑖 = 𝐶𝑗 if

�𝑆𝑖 ∩ 𝑆𝑗�
�𝑆𝑗�

≥ 𝑀𝑖𝑛 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (1)

and

�𝑂𝑖 ∩ 𝑂𝑗�
�𝑂𝑗�

≥ 𝑀𝑖𝑛 𝑂𝑏𝑗𝑒𝑐𝑡 𝑂𝑣𝑒𝑟𝑙𝑎𝑝. (2)

Where 𝑀𝑖𝑛 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 and 𝑀𝑖𝑛 𝑂𝑏𝑗𝑒𝑐𝑡 𝑂𝑣𝑒𝑟𝑙𝑎𝑝
are user specified values between zero and one. Note that this
check is not commutative, since it determines the percent
overlap of attributes and objects by dividing by the cardinality
of one of the clusters.

3.2 Using Soft Cluster Equality
 Since our check for subspace cluster equality is not
commutative, we perform the check in both directions in the
following way: each newly hypothesized cluster is checked
against existing clusters using itself as the index. Therefore,
each new cluster must be sufficiently unique with respect to
existing clusters in order to be considered for inclusion in the
clustering results. In other words, a user-specified percentage
of a new cluster’s subspace must be unique. Failing that, a
user-specified percentage of the new cluster’s set of objects
must be unique. If a newly hypothesized cluster is determined
to be redundant with respect to an existing cluster by this
metric, then we discard the new cluster if its quality is lower
than the existing cluster. If a newly hypothesized cluster is
sufficiently unique (or of higher quality than redundant
existing clusters) then we perform the equivalence check in
the other direction. In this case, all existing clusters that are
determined to be redundant with respect to the new cluster are
removed from the clustering results. Fig. 2 depicts the process
used by SEPC to discover overlapping clusters in a data set.

Fig. 2. Finding overlapping clusters with SEPC.

4 Quality Metrics
 Some subspace clustering metrics used in OpenSubspace

are object-based [4]. That is, they ignore the congregating
dimensions of clusters in evaluating cluster quality. Instead,
they rely entirely on how objects have been allocated into
found clusters compared to the “true” allocation. This
approach works sufficiently well when points belong to only
one cluster. However, in some instances, it is advantageous to
allow points to belong to multiple clusters that span different
subspaces. In such cases, the above metrics will yield
misleading results. For example, the synthetic data sets
provided with the OpenSubspace framework typically have
one or two clusters that, point-wise, are subsets of other
clusters. However, the super- and sub-clusters span a different
set of dimensions (typically, the larger cluster spans fewer
dimensions). This causes problems for purely object-based
metrics, because, the sub-clusters are not unique on a purely
object basis. Thus, metrics like clustering error (CE) [7],
account for the subspace spanned by each object.
 For the following discussion, it is useful to define two
types of clusters: found clusters and hidden clusters. A found
cluster is returned as part of the results of running a clustering
algorithm on a given data set. In contrast, a hidden cluster is
known within a data set. In the case of synthetic data sets both
the objects and subspace of hidden clusters are known,
however, for real world data, we typically are limited to
information about object membership in hidden clusters.

4.1 F1
 In OpenSubspace, F1 is an object-based metric
computed with respect to each hidden cluster. It is composed
of two sub-metrics called recall and precision. A high recall
corresponds to a high coverage of objects from a hidden
cluster while a high precision denotes a low coverage of
objects from other clusters. Prior to calculating F1, found
clusters are mapped to the hidden cluster they overlap with
the most. Then recall and precision are determined for each
hidden cluster. The F1 scores for the hidden clusters are
determined by taking the harmonic mean of their recall and
precision scores. The overall F1 score is the average of the F1
scores of each hidden cluster.
 Problems arise with the F1-measure when there are
overlapping hidden clusters that span different subspaces. For
F1, the trouble arises when found clusters are mapped to
hidden clusters. Since, the mapping is done purely on a point
or object basis, when one hidden cluster is a subset of
another, there is a high likelihood that the smaller cluster will
“capture” found clusters overlapping both the super- and sub-
hidden clusters. This happens, because the overlap between a
hidden and found cluster is normalized by the cardinality of
the hidden cluster. This results in a bias towards smaller
hidden sub-clusters.

4.2 Clustering Error
 Clustering error (CE) [7] addresses the problem of

overlapping clusters by taking into account the dimensions
spanned by objects in a cluster. It does this by using
subobjects in place of objects in its calculation. A subobject is
the combination of an object together with the dimensions
spanned by the cluster to which it belongs. This allows an
object to belong to multiple clusters and still be unique for the
purpose of quality measurement. CE measures the extent to
which the subobjects in hidden clusters overlap with the
subobjects in found clusters. However, before determining
overlap between the two sets of clusters, an optimal mapping
of found clusters to hidden clusters is performed, which may
result in excess found clusters that are not mapped to any
hidden cluster and vice versa. This solves a problem common
to many subspace clustering quality metrics. Namely, many
metrics fail to distinguish between the case where many found
clusters overlap a single hidden cluster and, the case where
only a single found cluster overlaps a hidden cluster. The
second case is more desirable than the first.

One drawback to CE, is that in real world data sets, the
congregating dimensions are often unknown, limiting this
method’s ability to judge a cluster’s quality with respect to its
subspace.

5 Experiments
 We have reproduced the experiments performed in [8]
using the SEPC algorithm and several competing algorithms.
We have focused on examining the general properties of
SEPC compared to several other subspace clustering
algorithms. In [8], each experiment was conducted by trying
many different parameter settings for each algorithm in an
attempt to obtain the maximum possible performance for
each. In addition, each run of an algorithm was limited to 30
minutes. For this evaluation, we used the same strategy. The
following algorithms, as implemented in OpenSubspace, were
used in this comparison: CLIQUE [9], DOC [5], MineClus
[6], FIRES [10], PROCLUS [11], P3C [12], and STATPC
[13]. Each algorithm has been tuned using the parameter
settings provided by Mueller et al. [8]. The experiments were
run on machines with 1.8GHz Dual-Core AMD Opteron™
2210 processors and 2GB memory running Red Hat Linux
5.9.

5.1 Synthetic Data
 OpenSubspace is packaged with three synthetic data

sets, each intended to explore a different aspect of algorithm
performance. These data sets enable evaluation over
increasing dimensionality (number of attributes), over
increasing data set size (number of objects), and over
increasing amounts of noise (irrelevant objects). Additionally,
all of the data sets contain overlapping hidden clusters. That
is, they contain clusters that share objects, but span different
subspaces. Thus, we applied SEPC in non-disjoint mode to
maximize its possible achievable performance.

 As in [8], we used CE to examine the relative quality of
the clustering results generated on these synthetic data by each
algorithm. Since we have information about the relevant
subspaces of the hidden clusters in the synthetic data; we can
fully leverage the power of CE. Recall that the CE metric not
only indicates that objects have been correctly assigned to
clusters, but also penalizes redundancy (e.g. multiple found
clusters covering the same hidden cluster) and splitting hidden
clusters (many small found clusters covering the objects of a
single hidden cluster). This also allows us to evaluate an
algorithm’s ability to discover clusters with overlapping
objects. Since each of the synthetic data sets include
overlapping clusters, algorithms that perform a strict
partitioning of objects into clusters will not be able to score a
perfect CE. For example, the maximum partitioned CE score
for the object-count data sets is about 0.88. Recall that CE is
determined using subobjects (objects combined with the
subspace of the cluster to which it belongs). This means that
according to the CE metric, an object may be assigned to
multiple clusters, as long as those clusters span different
subspaces. This also means that there can be more subobjects

than objects in a data set. For example, the 1500-object data
set has 1462 objects in its 10 hidden clusters. However, since
some of these objects belong to more than one cluster, the
data set contains 1663 subobjects. To determine the maximum
possible CE results with single object assignment, we simply
divide the number of objects by the number of subobjects,
which yields approximately 0.88. Therefore, a CE score
exceeding 0.88 on the 1500-object data set would indicate that
the algorithm was successfully discovering overlapping
clusters. The maximum disjoint CE value varies between the
synthetic data sets. It is about 0.88 for all of the object-count
and noise data sets, and about 0.8 for the dimension-count
data sets.

We also examined the running times for each algorithm
for each data set. For some algorithms, parameter settings may
significantly affect running time. In such cases, we used
consistent parameter settings to gather run time data even if it
did not yield optimal CE results. In addition, some of the
algorithms never completed within 30 minutes on some of the
data sets for any parameter settings. For example, P3C did not
finish within 30 minutes on any of the dimension data sets

Fig. 3. Algorithm performance over an increasing number of dimensions measured by (a) clustering error and (b) run time.

Fig. 4. Algorithm performance over an increasing number of objects measured by (a) clustering error and (b) run time.

(a) (b)

(a) (b)

above 20 dimensions. This accounts for the missing data in
Fig 3 (b), 4 (b) and 5 (b).
 To evaluate the scalability of algorithms as the
dimensionality of a data set increases, OpenSubspace
includes data sets with dimensions varying from 5 to 75. Each
data set includes ten subspace clusters that span 50%, 60%,
and 80% of the full feature space. Fig. 3 shows the results of
our evaluations of each algorithm on the dimension-based
data sets. Our evaluation agreed closely with [8], in which
Mueller and his team observed the best CE results for the
cell-based approaches—particularly DOC and MineClus. In
our evaluation, DOC and MineClus scored a CE value of
approximately 0.8 across all dimensionalities. However, as
can be seen in Fig 3 (a), SEPC exceeded these results for
dimensionality of 10 or greater. At dimensionality 5, SEPC
performs about as well as DOC or MineClus. However, as
dimensionality increases, the CE score achieved by SEPC
improves.
 OpenSubspace also includes a set of synthetic data
where the number of objects in each cluster varies, but the
number of dimensions is constant. All of these data sets
contain 20-dimensional objects, but they vary in size from
about 1500 points up to about 5500 points. We used these data
sets to evaluate algorithm performance over increasing data
set size. The best results for DOC and MineClus varied
between CE values of about 0.85 and 0.9. SEPC exceeded
these results with a CE value of at least 0.94 (on the data set
containing 4500 data points) and achieved a CE value of 1.0
for the data set containing 3500 data points. See Fig. 4 (a).
 For noise-based experiments, OpenSubspace includes
data sets where the percentage of noise objects increases from
10% noise up to 70% noise. These data sets were built by
adding noise to the 20-dimensional data set from the first
scalability experiments. For noise-based experiments, Mueller
et al. reported CE results for DOC and MineClus of about
0.79 to 0.89. We saw similar results in our evaluation. We can
see in Fig. 5 that the DOC and MineClus results exhibit a
slight downward trend as the amount of noise in the data set
increases. In contrast, the CE results for SEPC are consistent

ranging from 0.95 to 0.97, with no degradation in
performance with increasing amounts of noise.

Running time is an important factor to consider when
evaluating subspace clustering algorithms. In addition to the
CE data, we collected run time data on all of the synthetic data
sets to compare SEPC to the other algorithms. See Fig. 3 (b),
Fig. 4 (b), and Fig. 5 (b). From these graphs of run time data,
we see that SEPC is significantly faster than DOC on all data
sets. We also see that MineClus and SEPC have similar run
times across all data sets. CLIQUE and PROCLUS are the
fastest algorithms across all data sets. However, they also
score among the lowest CE values.
 SEPC consistently performed better than the other
algorithms on each of the synthetic data sets with respect to
the CE metric. Recall that the maximum disjoint CE scores
for the object and noise data sets was 0.88 and 0.8 for the
dimension data sets. SEPC scored CE results near 1.0 on all
of these data sets (with the exception of the 5-dimensional
data set). The high CE scores achieved by SEPC across all
data sets indicate that it effectively discovered overlapping
clusters. Overall, it appears SEPC’s performance increases
with scale. This was illustrated in the experiments with the
dimensionality data sets. At 5 dimensions, SEPC performed
as well as DOC and MineClus, but as the dimensionality of
the data sets increased, SEPC’s performance also increased. It
appears that for very low dimensional data (less than 5),
SEPC is comparable in performance to DOC and MineClus.
However, the performance of DOC and MineClus stays the
same for large dimensional data, while SEPC improves.
SEPC runs much faster than DOC and in similar time to
MineClus.

6 Real World Data
In addition to synthetic data, we used the real world data

packaged with OpenSubspace to evaluate SEPC against other
subspace clustering algorithms. These publicly available data
sets from the UCI archive [14] have typically been used in
classification tasks and thus the data have class labels. The
class labels are assumed to describe natural clusters in the

 Fig. 5. Algorithm performance over increasing noise measured by (a) clustering error and (b) run time.

(a) (b)

data. However, no information about the subspaces of the
clusters is known. This limits the usefulness of CE, since it
can only be applied at the object level. Thus, we have
followed the lead of [8] and optimized each algorithm with
respect to F1. Also, since all of the clusters in the real world
data sets are disjoint, SEPC was run in disjoint mode.
 SEPC was compared with MineClus, DOC, PROCLUS,
FIRES, and P3C. See Fig. 6 for a chart summarizing the F1
results obtained by each algorithm for each of the seven real
world data sets. SEPC yielded the highest F1 score on four
out of the seven data sets.

7 Conclusions
 SEPC outperformed all other algorithms on synthetic

data in terms of clustering quality measured by CE. The high
CE scores achieved on the synthetic data sets show that the
algorithm effectively identifies clusters even when they share
objects. Thus, demonstrating SEPC can be rightly called a
subspace clustering algorithm.
The experiments using the synthetic data sets reveal some
possible areas where differences in algorithm performance
might be more visible. For example, both DOC and
MINECLUS, exhibit steady CE results of about 0.8 over an
increasing number of dimensions, while the CE results for
SEPC started at about 0.8, then increased to values closer to
1.0. Similar results were observed for data containing
significant amounts of random noise. Experiments with larger
data sets (both in the number of objects and in the number of
dimensions), as well as with noisier data, would likely yield
more interesting comparisons of performance between
algorithms. We also demonstrated that SEPC can be used to
achieve high quality results on real world data.

8 References

[1] C. Aggarwal, A. Hinneburg, and D. Keim, “On the

Surprising Behavior of Distance Metrics in High
Dimensional Space,” Database Theory—icdt 2001, pp.
420–434, 2001.

[2] S. Wold, K. Esbensen, and P. Geladi, “Principal
component analysis,” Chemom. Intell. Lab. Syst., vol. 2,
no. 1, pp. 37–52, 1987.

[3] C. F. Olson and H. J. Lyons, “Simple and Efficient
Projective Clustering,” Proc. Int. Conf. Knowl. Discov.
Inf. Retr., pp. 45–55, Oct. 2010.

[4] E. Müller, I. Assent, S. Günnemann, P. Gerwert, M.
Hannen, T. Jansen, and T. Seidl, “A Framework for
Evaluation and Exploration of Clustering Algorithms in
Subspaces of High Dimensional Databases,” 2011.

[5] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M.
Murali, “A Monte Carlo Algorithm for Fast Projective
Clustering,” in Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, 2002,
pp. 418–427.

[6] M. L. Yiu and N. Mamoulis, “Frequent-Pattern Based
Iterative Projected Clustering,” in Data Mining, 2003.
ICDM 2003. Third IEEE International Conference on,
2003, pp. 689–692.

[7] A. Patrikainen and M. Meila, “Comparing Subspace
Clusterings,” Knowl. Data Eng. Ieee Trans., vol. 18, no.
7, pp. 902–916, 2006.

[8] E. Müller, S. Günnemann, I. Assent, and T. Seidl,
“Evaluating Clustering in Subspace Projections of High
Dimensional Data,” Proc. Vldb Endow., vol. 2, no. 1,
pp. 1270–1281, 2009.

[9] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic Subspace Clustering of High Dimensional
Data for Data Mining Applications,” in Proceedings
ACM SIGMOD International Conference on
Management of Data, Seattle, WA, 1998, vol. 27.

[10] H. P. Kriegel, P. Kroger, M. Renz, and S. Wurst, “A
Generic Framework for Efficient Subspace Clustering
of High-Dimensional Data,” in Data Mining, Fifth
IEEE International Conference on, 2005, p. 8–pp.

[11] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and
J. S. Park, “Fast Algorithms for Projected Clustering,”
Acm Sigmod Rec., vol. 28, no. 2, pp. 61–72, 1999.

[12] G. Moise, J. Sander, and M. Ester, “P3C: A Robust
Projected Clustering Algorithm,” in Data Mining, 2006.
ICDM’06. Sixth International Conference on, 2006, pp.
414–425.

[13] G. Moise and J. Sander, “Finding Non-Redundant,
Statistically Significant Regions in High Dimensional
Data: A Novel Approach to Projected and Subspace
Clustering,” in Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, 2008, pp. 533–541.

[14] “UCI Machine Learning Repository.” [Online].
Available: http://archive.ics.uci.edu/ml/. [Accessed: 05-
Mar-2013].

Fig. 6. F1 results with real world data sets.

	Evaluation of Monte Carlo Subspace Clustering with OpenSubspace
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Soft Cluster Equality
	3.2 Using Soft Cluster Equality

	4 Quality Metrics
	4.1 F1
	4.2 Clustering Error

	5 Experiments
	5.1 Synthetic Data

	6 Real World Data
	7 Conclusions
	8 References

