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Abstract—Fraud is the use of deception to gain some benefit, 

often financial gain.  Examples of fraud include insurance 

fraud, credit card fraud, telecommunications fraud, securities 

fraud, and accounting fraud.  Costs for the affected companies 

are high, and these costs are passed on to their customers.  

Detection of fraudulent activity is thus critical to control these 

costs.  Last but not least, in order to avoid detection, fraudsters 

often change their “signatures” (methods of operation).  We 

propose here to address insurance fraud detection via the use of 

reputation features that characterize insurance claims and 

ensemble learning to compensate for varying data distributions.  

We replace each of the original features in the data set with 5 

reputation features (RepF): 1) a count of the number of 

fraudulent claims with the same feature value in the previous 12 

months, 2) a count of the number of months in the previous 12 

months with a fraudulent claim with the same feature value, 3) 

a count of the number of legitimate claims with the same feature 

value in the previous 12 months, 4) a count of the number of 

months in the previous 12 months with a legitimate claim with 

the same feature value, and 5) the proportion of claims with the 

same feature value which are fraudulent in the previous 12 

months.  Furthermore we use two one-class Support Vector 

Machines (SVMs) to measure the similarity of the derived 

reputation feature vector to recently observed fraudulent claims 

and recently observed legitimate claims.  The combined 

reputation and similarity features are then used to train a 

Random Forest classifier for new insurance claims.  A publicly 

available auto insurance fraud data set is used to evaluate our 

approach.  Cost savings, the difference in cost for predicting all 

new insurance claims as non-fraudulent and predicting fraud 

based on a trained data mining model, are used as our primary 

evaluation metric.  Our approach shows a 13.6% increase in 

cost savings compared to previously published state of the art 

results for the auto insurance fraud data set. 

Keywords—Fraud Detection; Reputation Features; One 

Class Support Vector Machine; Random Forest; Cost Sensitive 

Learning 

I. INTRODUCTION 

According to the most recent Federal Bureau of 

Investigation Financial Crimes Report to the Public [15], 

there is an upward trend among many forms of financial 

crimes including health care fraud.  Estimates of fraudulent 

billings to health care programs, both public and private, are 

estimated to be between 3 and 10 percent of total health care 

expenditures.  This estimate is consistent with the most 

 
 

recent Association of Certified Fraud Examiners Report to 

the Nations [2], which showed survey participants estimated 

the typical organization loses 5% of its revenue each year. 

Common types of fraud include tax fraud [11], securities 

fraud [5], health insurance fraud [18], auto insurance fraud 

[19, 21], credit card fraud [9], and telecommunications fraud 

[4, 14].  For tax fraud, a taxpayer intentionally avoids 

reporting income or overstates deductions.  For securities 

fraud, a company may misstate values on financial reports.  

For insurance fraud, the insured files claims that overstate 

losses.  For credit card fraud, the credit card is used by 

someone other than the legitimate owner.  Challenges for 

fraud detection include imbalanced class distributions, large 

data sets, class overlap, and the lack of publicly available 

data. 

The novelty of our approach to fraud detection is the use 

of reputation features and one-class SVM similarity features 

for fraud detection.  Reputation features have been used in 

[1] to analyze the previous behavior of Wikipedia editors for 

vandalism detection.  For fraud detection, reputation features 

are used to characterize how often feature values from a 

claim have been associated with fraud in the past.  Similarity 

features, derived from one-class SVMs, are then used to 

extend reputation from individual features to the joint 

distribution of features for a claim.  Finally, a cost-sensitive 

Random Forest classification model is constructed to classify 

new claims based on reputation and similarity features. 

Unfortunately there is not much publicly available fraud 

detection data available for research.  Corporate victims of 

fraud are often reluctant to admit that they have been the 

victims of fraud, and transactional data is often sensitive 

(e.g. containing personally identifiable account information).  

The auto insurance fraud data set used in this study is the 

only publicly available fraud detection data set that we are 

aware of. 

The remainder of this paper is organized as follows.  

Section II describes cost sensitive learning.  Section III 

describes reputation and similarity features.  Section IV 

describes the Random Forest classification algorithm.  

Section V describes our experimental design using the 

publicly available auto insurance fraud data set.  Section VI 

provides experimental results, and Section VII provides 

conclusions.  
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II. COST SENSITIVE LEARNING 

The presence of an imbalanced class distribution is a 

common characteristic for fraud detection applications [5, 

17], because fraudulent transactions occur much less 

frequently than non-fraudulent transactions.  For some 

domains, fraud may occur 10 or more times less frequently 

than non-fraudulent transactions.  Because there are 

relatively few fraudulent transactions compared to non-

fraudulent transactions, larger data sets are required to learn 

to confidently distinguish fraudulent transactions from non-

fraudulent transactions. 

To make matters worse, fraudulent transactions often look 

like non-fraudulent transactions because the fraudsters want 

to avoid detection; i.e. the fraudulent and non-fraudulent 

classes overlap.  Because fraudulent transactions look like 

non-fraudulent transactions (the classes overlap), standard 

pattern recognition “learning” algorithms will make fewer 

errors by simply declaring all transactions to be non-

fraudulent.  The resulting classification model is known as a 

“majority” classifier, because it simply declares all 

transactions to belong to the majority class (non-fraudulent 

transactions).  Additionally, fraudsters may adapt their 

observed behavior in response to detection [5].  This leads to 

an adversarial game in which detection advocates must 

somehow adapt to changes made by fraudsters, which in turn 

leads fraudsters to adapt to changes made by detection 

advocates. 

Consider two overlapping distributions: a bivariate 

Gaussian distribution (with 2 independent features) centered 

at (2,2) with a standard deviation of 0.5, and a second 

bivariate Gaussian distribution (with 2 independent features) 

centered at (0,0) with a standard deviation of 2.  Suppose 

that the prior probability for the class centered at (2,2) is 1% 

and the prior probability for the class centered at (0,0) is 

99%.  In this situation, a majority classifier would be the 

optimal Bayes classifier [13] if the misclassification costs are 

equal!  Bayesian risk for predicting class αi for observation x 

is computed as: 
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Further suppose that the minority class represents fraud.  

The principal costs for fraud are the cost of investigations 

and the cost of paying claims.  If an investigation costs $100 

and a claim costs $5000, then the decision boundary for the 

optimal Bayes classifier is shown by the solid line in Figure 

1.  95% of the fraudulent class distribution lies in the small 

dotted circle, while 95% of the non-fraudulent class 

distribution lies in the large dotted circle. 

 

 
 

Figure 1.  Optimal Bayes Decision Boundary 

 

As shown in Table 1, this classifier would misclassify 

4.4% of the fraudulent class distribution as non-fraudulent 

and 6.8% of the non-fraudulent class distribution as 

fraudulent; but overall costs would be minimized. 

 

  
Predict 

 

  
Fraud Not Fraud 

Actual Fraud 95.6% 4.4% 

 
Not Fraud 6.8% 93.2% 

 

Table 1.  Optimal Bayes Classification Errors 

 

Strategies for overcoming the tendency to produce a 

simple “majority” classifier include sampling or cost 

sensitive learning [12, 17].  For sampling strategies, the 

training examples are “stratified” (partitioned) into two 

groups: fraudulent training examples and non-fraudulent 

training examples.  Sampling from the training set can be 

performed “with” or “without” replacement.  In sampling 

“with” replacement, each training example can be selected 

more than once, while in sampling “without” replacement, 

each training example can be selected at most once.  In order 

to balance the fraudulent and non-fraudulent training 

examples, either the majority class can be under-sampled or 

the minority class can be over-sampled.  Under-sampling 



 

 

 

involves selecting a subset of the non-fraudulent training 

examples, while over-sampling involves selecting a superset 

of the fraudulent training examples.  Selecting a superset of 

the fraudulent training examples can be performed by 

sampling with replacement, or even synthesizing new 

fraudulent training examples similar to known fraudulent 

training examples [8].  

In cost sensitive learning, the training examples are 

weighted to reflect different misclassification costs.  

Fraudulent training examples are given a larger weight than 

the non-fraudulent training examples, reflecting the notion 

that misclassifying a fraudulent example as non-fraudulent 

has a higher cost than misclassifying a non-fraudulent 

training example as fraudulent.  This can be viewed as an 

alternative form of a sampling strategy, where the use of 

larger weights is a form of over-sampling and the use of 

smaller weights is a form of under-sampling.  Strategies for 

handling imbalanced class problems can be used with any 

pattern recognition algorithm, including decision trees, rules, 

neural networks, Support Vector Machines, and others.  This 

includes the use of bagging and boosting with the MetaCost 

framework [12]. 

III. REPUTATION AND SIMILARITY FEATURES 

The training process for the proposed approach to fraud 

detection is illustrated in Figure 2.  As shown, our first step 

is to compute reputation features. 

 

 
 

Figure 2.  Training Process 

 

We propose replacing each of the original features in the 

data set with 5 reputation features: 

1. Fraud Count: a count of the number of fraudulent 

claims with the same feature value in the previous 12 

months, 

2. Fraud Months: a count of the number of months in the 

previous 12 months with a fraudulent claim with the 

same feature value, 

3. Legitimate Count: a count of the number of legitimate 

claims with the same feature value in the previous 12 

months, 

4. Legitimate Months: a count of the number of months in 

the previous 12 months with a legitimate claim with 

the same feature value, and 

5. Fraud Rate: the proportion of claims with the same 

feature value which are fraudulent in the previous 12 

months. 

These 5 values capture support and confidence values for 

each feature: how often a particular value is observed for a 

class (support) and what proportion of the time a particular 

value is associated with fraud (confidence).  For the 

proportion feature we use a Wilson estimate [22] of the 

proportion to avoid the extremes of zero or one when we 

have not observed the value very often in previous months.  

The Wilson estimate is a weighted average of the observed 

proportion and one half: 
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A training set is then randomly partitioned into two equal 

size subsets.  The first subset is used to derive two one-class 

SVMs, while the second subset is used to construct a 

Random Forest classifier using the reputation and one-class 

SVM similarity features. 

The two one-class Support Vector Machines (SVMs) 

measure the similarity of the derived feature vector to 

previously observed fraudulent claims and previously 

observed legitimate claims.  One class SVMs [20] are used 

to estimate the probability of class membership.  Given a set 

of observations {x1, x2, ..., xn}, a one class SVM is trained 

by finding the corresponding αi coefficient for each training 

observation such that the following expression is minimized: 
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Training observations with a non-zero αi coefficient are 

known as “support vectors”, because they define the decision 



 

 

 

boundary.  The kernel function K is used to measure 

similarity of two observations, which is the equivalent of 

measuring the dot product in a higher dimension feature 

space.  The radial basis function was used as the kernel 

function: 
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where σ is the mean of the 10
th

, 50
th

, and 90
th

 percentile of 

Euclidean distance values for a random sample of n/2 pairs 

of observations [7].  The hyper-parameter  places an upper 

bound on the proportion of the training data that can be 

declared to be outliers and a lower bound on the proportion 

of the training set to be used as support vectors.  The value 

of  was chosen to be 0.05. 

Once the αi coefficients have been found, the distance of a 

new observation from the class boundary defined by the one- 

class SVM can be computed as: 
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where ρ is chosen as the offset that yields  
 positive values for observations of the training set.  

The similarity feature of the one-class SVM is a measure of 

how well a new observation fits with the observed training 

distribution.  The larger the similarity feature value, the more 

likely the observation belongs to the distribution 

characterized by the training data.  The probability of 

membership can be estimated by comparing the distance for 

a new observation to the distance values computed for the 

training data. 

To generate 2 new features for input to a classification 

model, two one-class SVMs are constructed using the first 

subset of training data.  The first one-class SVM is 

constructed from fraudulent transactions in the first subset of 

training data, while the second one-class SVM is constructed 

from non-fraudulent transactions in the first subset of 

training data.  Unlike the other reputation features, the one-

class SVM similarity features consider the joint distribution 

of feature values when evaluating feature vectors. 

IV. RANDOM FORESTS 

The derived feature vectors for the second subset of 

training data, including the two one-class SVM similarity 

features, are used to construct a Random Forest classifier [6].  

The Random Forest algorithm is an implementation of 

bootstrap aggregation (bagging) where each tree in an 

ensemble of decision trees is constructed from a bootstrap 

sample of feature vectors from the training data.  Each 

bootstrap sample of feature vectors is obtained by repeated 

random sampling with replacement until the size of the 

bootstrap sample matches the size of the original training 

subset.  This helps to reduce the variance of the classifier 

(reducing the classifier’s ability to overfit the training data).  

When constructing each decision tree, only a randomly 

selected subset of features is considered for constructing 

each decision node.  Of the k randomly selected features to 

consider for constructing each decision node, the yes/no 

condition that best reduces the Gini impurity measure g of 

the data is selected for the next node in the tree: 
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The Gini impurity measure is largest when the classifier is 

most uncertain about whether a feature vector belongs to the 

fraud class. 

To support cost sensitive learning, we used a balanced 

stratified sampling approach [10] to generate bootstrap 

samples for training the classifier.  For training each tree, a 

bootstrap sample is drawn from the minority class and a 

sample of the same size is drawn (with replacement) from the 

majority class.  This effectively under-samples the majority 

class. 

To classify new feature vectors, the reputation features 

and two one-class SVM similarity features are derived, then 

each tree in the Random Forest classification model casts its 

vote for a class label: fraud or not fraud.  The proportion of 

votes for the fraud class is the probability that a randomly 

selected tree would classify the feature vector as belonging 

to the fraud class.  This is interpreted as the probability of a 

feature vector belonging to the fraud class. 

V. EXPERIMENTAL DESIGN 

The auto insurance data set [3] has been used to 

demonstrate fraud detection capabilities [16, 19].  As this is 

the only publicly available fraud data set, we use it for our 

experiments as well.  It consists of 3 years of auto insurance 

claims: 1994, 1995, and 1996.  Table 2 describes the 

distribution of fraud and not-fraud claims by year. 

 

Year Fraud Not Fraud Fraud Rate 

1994 409 5,733 6.7% 

1995 301 4,894 5.8% 

1996 213 3,870 5.2% 

All 923 14,497 6.0% 
 

Table 2.  Fraud Rates for Auto Insurance Data 

 

The proportion of overall claims that are fraudulent is only 

6%, so only 1 in 17 claims are fraudulent.  Table 3 lists the 

features of the data.  As shown, two of the features were not 

used for prediction.  The Year attribute obviously does not 

generalize to future data.  As we assume that policies 

associated with known fraudulent activity are terminated, we 

ignore the PolicyNumber attribute as well. 

 

 

 

 

 

 

 

 

 



 

 

 

Month RepNumber 

WeekOfMonth Deductible 

DayOfWeek DriverRating 

Make DaysPolicyAccident 

AccidentArea DaysPolicyClaim 

DayOfWeekClaimed PastNumberOfClaims 

MonthClaimed AgeOfVehicle 

WeekOfMonthClaimed AgeOfPolicyHolder 

Sex PoliceReportFiled 

MaritalStatus WitnessPresent 

Age AgentType 

Fault NumberOfSuppliments 

PolicyType AddressChangeClaim 

VehicleCategory NumberOfCars 

VehiclePrice Year 

FraudFound BasePolicy 

PolicyNumber 
  

Table 3.  Original Auto Insurance Fraud Features 

 

Values in the data set have been pre-discretized (probably 

for anonymization); e.g. the distribution of VehiclePrice 

appears in Table 4. 

 

Value Frequency 

Less than 20,000 1,096 

20,000 to 29,000 8,079 

30,000 to 39,000 3,533 

40,000 to 59,000 461 

60,000 to 69,000 87 

More than 69,000 2,164 
 

Table 4.  VehiclePrice Distribution 

 

We constructed Random Forest classification models for 

both the original features and the reputation features, as 

described in section III.  To be consistent with previously 

reported results, claims from 1994 and 1995 were used as 

training data, and claims from 1996 were used as testing 

data.  The primary evaluation measure is cost savings, as this 

was reported in earlier publications and it directly relates to 

the core goal for a fraud detection system: cost reduction.  

Table 5 shows an example of a confusion matrix describing 

the following counts: 

 True Positives (TP): the number of claims in the test set 

that are predicted to be Fraud and are actually Fraud 

 False Positives (FP): the number of claims in the test set 

that are predicted to be Fraud but are actually Not 

Fraud 

 False Negatives (FN): the number of claims in the test 

set that are predicted to be Not Fraud but are actually 

Fraud 

 True Negatives (TN): the number of claims in the test 

set that are predicted to be Not Fraud and are actually 

Not Fraud 

 

  
Predicted 

 

  
Fraud Not Fraud 

Actual Fraud TP FN 

 
Not Fraud FP TN 

 

Table 5.  Example of Confusion Matrix 

 

Given classification results, as shown in Table 5, costs can 

be computed as follows: 
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InvestigationCost TP

InvestigationCost ClaimCost FP
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  (11) 

 

In [19], the average InvestigationCost was given as $203 

and the average ClaimCost was given as $2,640.  We use 

these values as well for consistency.  We ran 10 trials for 

both the Original Features (OrigF) approach and the 

Reputation Features (RepF) approach. 

Using the Original Features (OrigF), we constructed 10 

Random Forests from the 11,337 original feature vectors 

from 1994 and 1995.  Each of these 10 Random Forests was 

evaluated on the 4,083 original feature vectors from 1996. 

Using the Reputation Features (RepF), we partitioned the 

5,195 reputation feature vectors from 1995 into two subsets 

(as we used 12 months of history to construct reputation 

features).  For 10 iterations, the first subset was used to 

construct our one-class SVMs and the second subset was 

used to construct a Random Forest classifier.  Each of the 10 

Random Forests was then evaluated on the 4,083 reputation 

feature vectors from 1996. 

Balanced stratified random sampling was used for 

constructing Random Forests for both the original features 

and the reputation features.  A total of 2,000 trees were 

constructed for each Random Forest model, with the ceiling 

of the square root of the number of input features used as the 

number of randomly selected features to consider for each 

decision node.  For both Original Features (OrigF) and 

Reputation Features (RepF) the Out Of Bag (OOB) estimate 

of error from the training data [6] was used to select the 

classification threshold which minimizes cost. 

VI. EXPERIMENTAL RESULTS 

Cost savings is used as our primary metric of interest.  In 

[19], cost savings was recorded as the difference between the 



 

 

 

cost of paying all claims and the cost of using a fraud 

detection model (Equation 11).  In addition to cost savings, 

we also report the following metrics: 

1. Area Under the Receiver Operating Characteristic 

(ROC) Curve (AUC): the probability that a randomly 

selected claim from the fraud class will be viewed as 

more likely to be a fraudulent claim than a randomly 

selected claim from the not-fraud class  

2. Precision: the probability that a predicted fraudulent 

claim is actually a fraudulent claim (TP/(TP+FP)) 

3. Recall: the probability that an actual fraudulent claim is 

predicted to be a fraudulent claim (TP/(TP+FN)) 

4. F Measure: the harmonic mean of Precision and Recall 

(2/(1/Precision + 1/Recall)) 

 

Table 6 shows evaluation metrics for our experiments.  

The values for the Reputation Features approach are marked 

as RepF, while the values for the Original Features approach 

are marked as OrigF.  Standard Error (SD) values are listed 

to assess statistical significance. 

 
RepF RepF SD OrigF OrigF SD 

Cost Savings $189,651 $2,665 $165,808 $748 

AUC 82.0% 0.1% 73.8%  < 0.1% 

Precision 13.3% 0.1% 11.2% < 0.1% 

Recall 80.3% 1.1% 94.2% 0.1% 

F Measure 22.8% 0.1% 20.0% 0.0% 
 

Table 6.  Experimental Results 

 

  Table 7 shows the average confusion matrix for the 

Reputation Features approach. 

  
Predicted 

 

  
Fraud Not Fraud 

Actual Fraud 171.0 42.0 

 
Not Fraud 1,118.6 2,751.4 

 

Table 7.  Average RepF Confusion Matrix 

 

Table 8 shows the average confusion matrix for the 

Original Features approach. 

 
 

Predicted 
 

  
Fraud Not Fraud 

Actual Fraud 200.6 12.4 

 
Not Fraud 1,591.4 2,278.6 

 

Table 8.  Average OrigF Confusion Matrix 

 

Figure 3 compares the Receiver Operating Characteristic 

(ROC) curves for the two approaches to fraud detection. 

 

 
 

Figure 3.  ROC Curves 

 

Figure 4 identifies the most important classification 

features for the Reputation Features approach.  Both the one-

class SVM similarity feature for the Fraud class and the 

Legitimate class are identified as important features. 

 

 
 

Figure 4.  Most Important Reputation Features 

 

As shown in Table 6, the Random Forest classifier 

constructed from the Original Features is competitive with 

previously reported state-of-the-art results.  The previously 

reported state-of-the-art results for cost savings was 

$167,000, while the upper bound of the 95% confidence 

interval for the Original Features approach shown in Table 6 

is $165,808 + 1.96 * 748 = $167,274.  The cost savings for 

the Reputation Features approach is 13.6% higher than the 

previously reported state-of-the-art results: 

($189,651 - $167,000) / $167,000 = 13.6% 

It’s interesting to note that the operating threshold for the 

Original Features approach occurs where the two ROC 

curves meet; but the operating threshold for the Reputation 

Features approach occurs in the region where the False 



 

 

 

Positive rate is 10% lower.  Though the True Positive rate 

(recall) is lower for the Reputation Features approach, the 

overall cost is significantly reduced.  

VII. CONCLUSIONS 

The use of deception for financial gain is a commonly 

encountered form of fraud.  Costs for the affected companies 

are high, and these costs are passed on to their customers.  

Detection of fraudulent activity is thus critical to control 

these costs.  We proposed to address insurance fraud 

detection via the use of reputation and similarity features that 

characterize insurance claims and ensemble learning to 

compensate for changes in the underlying data distribution.  

A publicly available auto insurance fraud data set was used 

to evaluate our approach.  Our approach showed a 13.6% 

increase in cost savings compared to previously published 

state of the art results for the auto insurance fraud data set.  

Though an auto insurance fraud data set was used for this 

demonstration, reputation features could easily be applied to 

other fraud detection domains, including health care 

insurance fraud, credit card fraud, securities fraud, and 

accounting fraud.  This approach could also be useful for 

other applications, such as credit risk classification [23] or 

computer network intrusion detection [24]. 

Future extensions include investigation into the use of 

alternative reputation history lengths.  For example, we will 

explore the use of reputation features based on the most 

recent 3, 6 and 9 month intervals (in addition to the existing 

12 month interval).  We also plan to investigate the utility of 

updating the one-class SVMs on a monthly basis, and 

synthesizing data to show robustness against adversarial 

changes to the underlying data distribution for the fraud 

class. 
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