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Abstract— ImageNet dataset with more than 14M images
and 21K classes makes the problem of visual classification
more difficult to deal with. One of the most difficult tasks
is to train a fast and accurate classifier. In this paper, we
address this challenge by extending the state-of-the-art large
scale linear classifier LIBLINEAR-CDBLOCK proposed by
Hsiang-Fu Yu in three ways: (1) improve LIBLINEAR-
CDBLOCK for large number of classes with one-versus-all
approach, (2) a balanced bagging algorithm for training
binary classifiers, (3) parallelize the training process of
classifiers with several multi-core computers. Our approach
is evaluated on the 100 largest classes of ImageNet and
ILSVRC 2010. The evaluation shows that our approach
is 732 times faster than the original implementation and
1193 times faster than LIBLINEAR without (or very few)
compromising classification accuracy.
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1. Introduction
Visual classification is one of the important topics in

computer vision and machine learning. The usual frame-
works involve three steps: 1) extracting local image fea-
tures, 2) building codebook and encoding features, and 3)
training classifiers. These frameworks are evaluated on small
datasets, e.g. Caltech 101 [1], Caltech 256 [2] and PASCAL
VOC [3]. In step 3, most researchers choose either linear
or nonlinear SVM classifiers that can be trained in a few
minutes.

However, ImageNet dataset [4] with very large number
of classes poses more challenges in training classifiers.
ImageNet is much larger in scale and diversity than other
benchmark datasets. The current released ImageNet has
grown a big step in terms of the number of images and the
number of classes, as shown in Fig. 1 - it has 21,841 classes
with more than 1000 images for each class on average.

With millions of training examples or dimensions, train-
ing an accurate classifier may take weeks or even years
[5], [6]. Recent works in large scale learning classifiers
converge on building linear SVM classifiers, because it is
possible to train linear classifiers (e.g. LIBLINEAR [7])
in order of seconds, even with millions training examples.
However, when training data is larger and cannot fit into

main memory, most existing linear classifiers encounter a
problem. Yu [8] proposed a block minimization framework
for linear classifier (LIBLINEAR-CDBLOCK), that can be
applied to data beyond the memory capacity of computer.
They show empirically that their method can handle data
sets 20 times larger than the memory size. However, the
current version of LIBLINEAR-CDBLOCK has two main
drawbacks that prevent it scaleup to large scale dataset
with many classes. Firstly, LIBLINEAR-CDBLOCK has not
explored one-versus-all approach in the case of multi-class
classification. Secondly, it does not take into account the ben-
efits of high performance computing (HPC). On the dataset
of ImageNet Challenge 2010 (ILSVRC 2010 [9]), it takes
very long time to train classifiers. Therefore, it motivates us
to study how to extend LIBLINEAR-CDBLOCK for large
scale visual classification. Our key contributions include:

1. Improve LIBLINEAR-CDBLOCK for large number of
classes by using one-versus-all approach.

2. Propose a balanced bagging algorithm for training the
binary classifiers. Our algorithm avoids training on full data,
and the training process of LIBLINEAR-CDBLOCK rapidly
converges to the optimal solution.

3. Parallelize the training process of all binary classifiers
based on HPC models. In the training step of classifiers, we
apply our balanced bagging algorithm to achieve the best
performance.

Our approach is evaluated on the 100 largest classes of
ImageNet and ILSVRC 2010. The experiment shows that our
approach is 732 times faster than the original implementation
and 1193 times faster than LIBLINEAR without (or very
few) compromising classification accuracy. Therefore, it can
be easily applied to datasets with very large number of
classes and the training data cannot fit into the memory of
computer.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the related work on large scale visual
classification. The incremental LIBLINEAR support vector
machines is described in section 3. Section 4 presents its
improvement for large number of classes. We describe how
to speedup the training process of incremental LIBLINEAR
by using balanced bagging algorithm and take the benefits
of HPC. Section 5 presents numerical results before the
conclusion and future work.
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Fig. 1: A comparison of ImageNet with other benchmark
datasets.

2. Related Work
Low-level local image features, bag-of-words model

(BoW [10]) and support vector machines (SVM [11]) are the
core of state-of-the-art visual classification systems. These
may be enhanced by multi-scale spatial pyramids [12] on
BoWs or histogram of oriented gradient [13] features. Some
recent works consider exploiting the hierarchical structure
of dataset for image recognition and achieve impressive
improvements in accuracy and efficiency [14]. Related to
classification is the problem of detection, often treated as
repeated one-versus-all classification in sliding windows
[15], [3]. In many cases, such localization of objects might
be useful to improve classification accuracy performance.
However, in the context of large scale visual classification
with hundreds or thousands of classes, these common ap-
proaches become computationally intractable.

To address this problem, Fergus et al. [16] study semi-
supervised learning on 126 hand labeled Tiny Images cate-
gories, Wang et al. [17] show classification experiments on a
maximum of 315 categories. Li et al. [18] do research with
landmark classification on a collection of 500 landmarks
and 2 million images. On a small subset of 10 classes, they
have improved BoWs classification by increasing the visual
vocabulary up to 80K visual words.

The emergence of ImageNet makes the complexity of vi-
sual classification much larger and very difficult to deal with.
Recently, many researchers are beginning to study strategies
to improve the classification accuracy and avoid using high
cost nonlinear kernel SVM classifiers. The prominent works
are proposed in [5], [6], [19], [20] where the data are first
transformed by a nonlinear mapping induced by a particular
kernel and then linear classifier is trained in the resulting
space. They argue that the classification accuracy of linear
classifier with high-dimensional image signature is similar
to low-dimensional BoW with nonlinear classifier.

In [6], the winner of ImageNet Challenge 2010, each local
descriptor is encoded by using either Local Coordinate Cod-
ing [21] or Super-vector Coding [22]. Then, they perform

spatial pyramid pooling and the resulting image signature is
a vector in approximately 262K dimensions. To train classi-
fiers, they propose a parallel averaging stochastic gradient
descent (ASGD) algorithm. With 1K classes of ILSVRC
2010, it takes 4 days to train 1K binary SVM classifiers
(one-versus-all) for one feature channel on three 8-core com-
puters. However, their method involves training classifiers on
a dataset in hundreds of giga-bytes. Therefore, it cannot be
easily applied to the systems with limited memory resource.
To tackle this challenge, Yu et al. [8] propose LIBLINEAR-
CDBLOCK that can handle data larger than the memory
size of computer. Nevertheless, LIBLINEAR-CDBLOCK
has two main limitations: 1) multi-class classification with
one-versus-all approach has not been explored, 2) it does not
take into account the benefits of HPC. Therefore, the training
time is very long on ILSVRC 2010 (at least 32 hours) due to
learning 1K binary classifiers sequentially, independently.

3. Incremental LIBLINEAR Support
Vector Machines

Let us consider a linear binary classification task with a
training set T = {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {+1,−1}.
SVM classification algorithm aims to find the best sepa-
rating surface as being furthest from both classes. It can
simultaneously maximize the margin between the supporting
planes for each class and minimize the errors. This can be
performed by solving the dual optimization problem (1).

min
α∈Rn

f(α) =
1

2
αTQα− eTα

s.t.

{
yTα = 0
0 ≤ αi ≤ C, ∀i = 1, 2, ..., n

(1)

where e = [1, . . . , 1]T , C is a positive constant used to
tune the margin and the error, α = (α1, . . . , αn) are the
Lagrange multipliers, Q is an n× n symmetric matrix with
Qij = yiyjK〈xi, xj〉, and K〈xi, xj〉 is the kernel function.

The support vectors (for which αi > 0) are given by
the optimal solution of (1), and then, the separating surface
and the scalar b are determined by the support vectors. The
classification of a new data point x is based on:

sign(

#SV∑
i=1

yiαiK〈x, xi〉 − b) (2)

Variations on SVM algorithms use different classification
functions. No algorithmic changes are required from the
usual kernel function K as a linear inner product other
than the modification of the kernel evaluation, including
a polynomial function of degree d, a RBF (Radial Basis
Function) or a sigmoid function. We can get different support
vector classification models.

LIBLINEAR proposed by [7] uses a dual coordinate
descent method for dealing with linear SVM using L1- and
L2-loss functions. And then, LIBLINEAR is simple and
reaches an ε-accurate solution in O(log(1/ε)) iterations. The



algorithm is much faster than state of the art solvers such as
LibSVM [23] or SVMperf [24].

Most SVM algorithms are designed by assuming that data
can be stored in the main memory. Therefore, in the con-
text of large scale classification, these approaches become
intractable. To solve this problem, [25] and [8] propose
incremental learning methods for solving the memory usage
problem of linear classifiers. They show that training SVM
classifiers can be performed on the successive subsets of the
training set.

Let {Bj}mj=1 be a fixed partition of T into m blocks
of rows. These blocks of rows are disjoint sets stored in
m separate files. At each iteration, we consider a block of
rows Bj and solve the problem (1) only for the samples in
Bj , so the algorithm does not need to keep in memory the
samples from other blocks of rows. According to memory
size, we choose block size such that the samples in Bj can fit
into memory. LIBLINEAR is used to solve the sub-problems
and the solution is updated in growing training data without
loading the entire data into memory at once. The incremental
learning for LIBLINEAR is summarized in Algorithm 1.

Algorithm 1: Incremental learning for LIBLINEAR
input : A set of training samples T = {(xi, yi)}ni=1

output: The values α or w
1 Split T into B1, ..., Bm and store data in m files

accordingly
2 α← 0 or w ← 0
3 for j ← 1 to m do
4 Read xr ∈ Bj from disk
5 Solve the sub-problem (3) by using LIBLINEAR
6 Update α or w
7 end

Solving dual SVM by LIBLINEAR for each block.
The optimal solution of (1) can be obtained by solving the
sub-problems (3).

min
d∈Rn

f(α + d) =
1

2
(α + d)TQ(α + d)− eT (α + d)

s.t.

 di = 0,∀i /∈ Bj

0 ≤ αi + di ≤ C , ∀i ∈ Bj .
(3)

Let dBj
be a vector of |Bj | non-zero coordinates of d

that correspond to the indices in Bj . The objective (3) is
equivalent to

1

2
dTBj

QBjBj
dBj

+ (QBj ,•α− eBj
)TdBj

, (4)

where QBj ,• is a sub-matrix of Q including elements
Qri, r ∈ Bj , i = 1, . . . , n. Obviously, QBj ,• in Eq. 4
involves all training data. This violate the method presented
in Algorithm 1. However, by maintaining w =

∑n
i=1 αiyixi

into memory, we can compute QBj ,• by using the Eq. 5.

QBj ,• − 1 = yrw
Txr − 1,∀r ∈ Bj (5)

where w ← w +
∑
r∈Bj

d∗ryrxr
This operation involves only the samples in Bj .

4. Improving incremental LIBLINEAR
for large number of classes

Most SVM algorithms are only able to deal with a
two-class problem. There are several extensions of binary
classification SVM solver to multi-class (k classes, k ≥ 3)
classification tasks. The state-of-the-art multi-class SVMs
are categorized into two types of approaches. The first one is
to consider the multi-class case in an optimization problem
[26], [27]. The second one is to decompose multi-class into
a series of binary SVMs, including one-versus-all [11], one-
versus-one [28] and Decision Directed Acyclic Graph [29].
Recently, hierarchical methods for multi-class SVM [30],
[31] start from the whole data set, hierarchically divide the
data into two subsets until every subset consists of only one
class.

In practice, one-versus-all, one-versus-one are the most
popular methods due to their simplicity. Let us consider k
classes (k > 2). The one-versus-all strategy builds k different
classifiers where the ith classifier separates the ith class from
the rest. The one-versus-one strategy constructs k(k − 1)/2
classifiers, using all the binary pairwise combinations of the
k classes. The class is then predicted with a majority vote.

When dealing with very large number of classes, e.g. hun-
dreds of classes, the one-versus-one strategy is too expensive
because it needs to train many thousands of classifiers.
Therefore, the one-versus-all strategy becomes popular in
this case.

However, for multi-class classification, LIBLINEAR-
CDBLOCK solves a single optimization problem by us-
ing [32]. Therefore, the current version of LIBLINEAR-
CDBLOCK needs very long time to classify very large
number of classes.

Due to this problem, we propose three ways for speedup
the learning task of LIBLINEAR-CDBLOCK. The first one
is to implement one-versus-all approach for multi-class case.
The second one is to build the balanced bagging classifiers
with sampling strategy. Finally, we parallelize the training
task of all classifiers with several multi-core computers.

Balanced bagging incremental LIBLINEAR
In the one-versus-all approach, the learning task of incre-

mental LIBLINEAR SVM is to try to separate the ith class
(positive class) from the k−1 other classes (negative class).
For very large number of classes, e.g. 1000 classes, this
leads to the extreme imbalance between the positive class
and the negative class. The problem is well-known as the
class imbalance. As summarized by the review papers [33],
[34] and the very comprehensive papers [35], [36], solutions
to the class imbalance problems were proposed both at the
data and algorithmic level. At the data level, these algorithms



change the class distribution, including over-sampling the
minority class or under-sampling the majority class. At the
algorithmic level, the solution is to re-balance the error
rate by weighting each type of error with the correspond-
ing cost. Our balanced bagging incremental LIBLINEAR
SVM belongs to the first approach (forms of re-sampling).
Furthermore, the class prior probabilities in this context are
highly unequal (e.g. the distribution of the positive class is
0.1% in the 1000 classes classification problem), and over-
sampling the minority class is very expensive. We propose
the balanced bagging incremental LIBLINEAR SVM using
under-sampling the majority class (negative class).

For separating the ith class (positive class) from the rest
(negative class), the balanced bagging incremental LIBLIN-
EAR SVM trains T models as shown in algorithm 2.

Algorithm 2: Balanced bagging incremental LIB-
LINEAR SVM

input : B+ the training data of positive class in Bj
B− the training data of negative class in Bj
T the number of base learners

output: LIBLINEAR SVM model
1 Learn:
2 for k ← 1 to T do
3 1. B′− = sample(B−) (with |B′−| = |B+|)
4 2. LIBLINEAR(B+, B′−)
5 end
6 combine T models into the aggregated

LIBLINEAR SVM model

We remark that the margin can be seen as the minimum
distance between two convex hulls, H+ of the positive class
and H− of the negative class (the farthest distance between
the two classes). Under-sampling the negative class (B′−)
done by balanced bagging provides the reduced convex
hull of H−, called H ′−. And then, the minimum distance
between H+ and H ′− is larger than between H+ and H−
(full dataset). It is easier to achieve the largest margin
than learning on the full dataset. Therefore, the training
task of incremental LIBLINEAR SVM is fast to converge
to the solution. According to our experiments, by setting
T =

√
|B−|
|B+| , the balanced bagging incremental LIBLINEAR

SVM achieves good results in very fast training speed.

Parallel incremental LIBLINEAR training

Although the incremental LIBLINEAR SVM and bal-
anced bagging incremental LIBLINEAR SVM deal with
very large dataset with high speed, they do not take into
account the benefits of HPC, e.g. multi-core computers. Fur-
thermore, both incremental LIBLINEAR SVM and balanced
bagging incremental LIBLINEAR SVM train independently
k binary classifiers for k classes problems. This is a nice
property for parallel learning. Our investigation aims to
speedup the training task of multi-class incremental LIBLIN-
EAR SVM and balanced bagging incremental LIBLINEAR

SVM with several multi-processor computers. The idea is to
learn k binary classifiers in parallel way.

The parallel programming is currently based on two major
models, Message Passing Interface (MPI) [37] and Open
Multiprocessing (OpenMP) [38]. MPI is a standardized and
portable message-passing mechanism for distributed memory
systems. MPI remains the dominant model (high perfor-
mance, scalability, and portability) used in high-performance
computing today. However, MPI process loads the whole
subset (block) into memory during learning tasks, making it
wasteful. The simplest development of parallel incremental
LIBLINEAR SVM algorithms is based on the shared mem-
ory multiprocessing programming model OpenMP. However,
OpenMP is not guaranteed to make the most efficient com-
puting. Finally, we present a hybrid approach that combines
the benefits from both OpenMP and MPI models. The hy-
brid MPI/OpenMP parallel incremental LIBLINEAR SVM
algorithm is described in algorithm 3. The number of MPI
processes depends on the memory capacity of the HPC
system used.

Algorithm 3: Hybird MPI/OpenMP parallel incre-
mental LIBLINEAR SVM

input : A set of training samples T = {(xi, yi)}ni=1

P the number of MPI processes
output: The value α or w

1 Split T into B1, ..., Bm and store data in m files
accordingly

2 αt ← 0, wt ← 0, 1 ≤ t ≤ k
3 for j ← 1 to m do
4 Read xr ∈ Bj from disk /* block j */
5 Learn:
6 MPI − PROC1

7 #pragma omp parallel for
8 for t1 ← 1 to k1 do /* class t1 */
9 LIBLINEAR (Bt1j , Bj \B

t1
j )

10 Update αt1 and wt1
11 end
12 .̇
13 MPI − PROCP
14 #pragma omp parallel for
15 for tP ← 1 to kP do /* class tP */
16 LIBLINEAR (BtPj , Bj \BtPj )
17 Update αtP and wtP
18 end
19 end

5. Experiments and Results
In this section we compare our implementation with

LIBLINEAR-CDBLOCK and LIBLINEAR in terms of
training time, memory usage and classification accuracy. Our
experiments were run on a cluster of ten computers with the
same hardware architecture as shown in Table 1. The cores
in the same processor share one L2 cache and the main



Table 1: The physical features of a multi-core computer.
# of CPUs # of cores Frequency Memory L2 cache

2 8 2.10GHz*16 47.26GB 256KB*2

memory is shared among all the cores. All the computers
are running Linux 3.2.0-4-amd64 (X86_64).

The extended versions of LIBLINEAR are designed for
large scale datasets, so we have evaluated our implementa-
tions on the two following datasets.

ImageNet 100. This dataset contains the 100 largest
classes from ImageNet (183,116 images with data size
23.6GB). In each class, we sample 1K images for training
and 150 images for testing. We construct BoW histogram of
images by using libHIK [39] with SIFT descriptor [40], 1000
codewords and parameters “use both, grid step size 2 and
split level 1”. The image is encoded as a 12000 dimensional
vector. We end up with 10.5GB of training data.

ILSVRC 2010. This dataset contains 1K classes from
ImageNet with 1.2M images for training, 50K images for
validation and 150K images for testing. Due to the memory
restriction of computer, we take ≤ 900 images per class
for training. We use the BoW feature set provided by [9]
and encode every image as a vector in 21000 dimensions.
Therefore, the total training images is 887,816 and the
training data size is 12.5GB. All testing samples are used
to test SVM models.

5.1 Memory usage
According to the memory size of the computer used, we

have split data into small blocks of rows that can fit into
memory in each incremental step of LIBLINEAR.

ImageNet 100. We have split this dataset into 3 and 6
blocks of rows. As shown in Table 2, our implementation
can run on computer with the main memory less than 4GB
(LIBLINEAR-B-3) and less than 2GB (LIBLINEAR-B-6).

ILSVRC 2010. Due to the large size of dataset, we
have split this dataset into 8 and 24 blocks of rows, that
allows training data to fit into 4GB RAM (LIBLINEAR-B-
8) and 2GB RAM (LIBLINEAR-B-24) in each incremental
step. As shown in Table 3, LIBLINEAR and LIBLINEAR-
CDBLOCK-B-8 consume a large amount of main memory
(16.70GB and 9.68GB), making it intractable on computers
with limited memory. On the other hand, by splitting data
into many small blocks of rows and using one-versus-all
approach for multi-class case, our approach is found to
be very suitable for this case. For instance, LIBLINEAR-
B-8 uses only 3.23GB RAM to train 1K classifiers on
ILSVRC 2010. That means our implementation can save
from 66.63% to 80.66% memory usage, compared to
LIBLINEAR-CDBLOCK and LIBLINEAR. Furthermore,
by setting the block size appropriately, the program does
not need to swap parts of the blocks of rows between main
memory and secondary memory (on the hard disk), as shown
in Fig. 2.

Fig. 2: Memory usage (GB) of the incremental LIBLINEAR
(LIBLINEAR-B-8) on ILSVRC 2010.

Table 2: Memory usage (GB) of classifiers on ImageNet 100.
Method ImageNet 100
LIBLINEAR 11.00
LIBLINEAR-CDBLOCK-B-3 3.78
LIBLINEAR-CDBLOCK-B-6 1.92
LIBLINEAR-B-3 3.71
LIBLINEAR-B-6 1.86

Note that the training time increases if we split the data
into blocks of rows with smaller size. It is because the
classifiers need to load and train more blocks (Table 4, 5).

5.2 Training time
We have implemented two extended versions of

LIBLINEAR-CDBLOCK: 1) OpenMP balanced bagging in-
cremental LIBLINEAR (omp-iLIBLINEAR-B), 2) Hybrid
MPI/OpenMP balanced bagging incremental LIBLINEAR
(mpi-omp-iLIBLINEAR-B). Incremental LIBLINEAR is de-
signed to handle data beyond the memory size, so the
training time is considered at disk-level:

training time = user time to run data into memory + time
to access data from disk.

ImageNet 100. As shown in Table 4, on medium dataset
ImageNet 100 our implementation shows a very good
speedup in training process, compared to the original im-
plementation. For instance, by splitting the dataset into 3
blocks of rows and use 10 MPI process and 16 OpenMP
threads per MPI process, our implementation (10mpi-omp-
iLIBLINEAR-B-3) is 494 times faster than LIBLINEAR-
CDBLOCK-B-3.

ILSVRC 2010. Our implementations achieve a significant
speedup in training process on this large dataset.

Balanced bagging incremental LIBLINEAR
As shown in Table 5, by splitting ILSVRC 2010 into

8 blocks, the balanced bagging incremental LIBLINEAR

Table 3: Memory usage (GB) of classifiers on ILSVRC 2010.
Method ILSVRC 2010
LIBLINEAR 16.70
LIBLINEAR-CDBLOCK-B-8 9.68
LIBLINEAR-CDBLOCK-B-24 7.74
LIBLINEAR-B-8 3.23
LIBLINEAR-B-24 1.29



(omp-iLIBLINEAR-B-8 running with 1 thread) has a very
fast convergence speed in training process, it is 11 times
faster than LIBLINEAR-CDBLOCK-B-8.

OpenMP balanced bagging incremental LIBLINEAR
By applying balanced bagging algorithm to OpenMP ver-

sion of incremental LIBLINEAR, we significantly speedup
the training process of 1K binary classifiers. With the number
of OpenMP threads set to 16, our implementation (omp-
iLIBLINEAR-B-8) is 127 times faster than LIBLINEAR-
CDBLOCK-B-8 (Table 5).

Hybrid MPI/OpenMP balanced bagging incremental LI-
BLINEAR

Although OpenMP balanced bagging incremental LIB-
LINEAR shows a significant speedup in training process,
it does not ensure that the program achieves the most effi-
cient high-performance computing on multi-core computers.
Therefore, we explore this challenge by using a combination
of MPI and OpenMP models. With this approach, our im-
plementation achieves an impressive parallelization perfor-
mance on a cluster of ten SMP (symmetric multiprocessor)
nodes. For shorter, we use the technical term node instead
of SMP node. The program first loads the whole block of
data into nodes and each MPI process runs on one node.
Therefore, each MPI process can work with their local data
independently. However, we cannot increase the number of
MPI processes exceed the memory capacity of a node. It is
because each MPI process occupy the main memory during
their computation process, resulting in an increase in the
overall memory requirement. Unfortunately, OpenMP has
been proven to work effectively on shared memory systems.
It is used for fine-grained parallelization within a node.
Consequently, in each node we can increase the number of
OpenMP threads without demanding more extra memory.
In this experiment, we have set the maximum number of
OpenMP threads equal to the number of cores available on
a node. As shown in Table 5, our implementation (10mpi-
omp-iLIBLINEAR-B-8) achieves a significant speedup in
training process by using 160 cores from ten nodes (10
MPI processes × 16 OpenMP threads). It is 732 times
faster than LINEAR-CDBLOCK-B-8 and 1193 times faster
than LIBLINEAR. We need only 2.62 minutes to train 1K
binary classifiers, compared to LIBLINEAR-CDBLOCK-B-
8 (∼ 32 hours) and LIBLINEAR (∼ 52 hours). This result
confirms that our approach has a great ability to scaleup to
full ImageNet dataset with more than 21K classes.

5.3 Classification accuracy
We have compared our implementations with

LIBLINEAR-CDBLOCK and LIBLINEAR in terms
of classification accuracy.

LIBLINEAR. The linear SVM from [7] with default
parameter value C = 1.

LIBLINEAR-CDBLOCK-B. The block minimization
framework for LIBLINEAR [8] with parameter C = 1, s

Table 4: SVMs training time (minute) on ImageNet 100.
# OpenMP threads

Method 1 8 16
LIBLINEAR 188.97
LIBLINEAR-CDBLOCK-B-3 202.75
LIBLINEAR-CDBLOCK-B-6 243.87
omp-LIBLINEAR-B-3 56.45 9.12 7.50
omp-LIBLINEAR-B-6 72.55 11.28 8.82
omp-iLIBLINEAR-B-3 27.57 4.52 3.28
omp-iLIBLINEAR-B-6 30.07 4.88 3.43
5mpi-omp-iLIBLINEAR-B-3 6.08 0.98 0.70
10mpi-omp-iLIBLINEAR-B-3 3.32 0.55 0.41

Table 5: SMVs training time (minute) on ILSVRC 2010.
# OpenMP threads

Method 1 8 16
LIBLINEAR 3126.78
LIBLINEAR-CDBLOCK-B-8 1917.37
LIBLINEAR-CDBLOCK-B-24 2533.33
omp-LIBLINEAR-B-8 1287.27 164.32 134.22
omp-LIBLINEAR-B-24 1716.00 238.42 202.17
omp-iLIBLINEAR-B-8 174.12 22.85 15.12
omp-iLIBLINEAR-B-24 210.22 29.82 23.42
5mpi-omp-iLIBLINEAR-B-8 38.14 5.10 3.96
10mpi-omp-iLIBLINEAR-B-8 23.89 3.22 2.62

= 4 (multi-class SVM by Crammer and Singer).
LIBLINEAR-B. The incremental LIBLINEAR with the

same SVM parameters as LIBLINEAR (multi-class classifi-
cation is implemented by using one-versus-all approach).

iLIBLINEAR-B. The balanced bagging incremental LI-
BLINEAR.

As shown in Table 6, on medium dataset ImageNet 100,
iLIBLINEAR-B (4GB) is 1.74% worse than LIBLINEAR-
CDBLOCK-B (4GB) in terms of classification accuracy.
However, on large dataset ILSVRC 2010, the classification
accuracy obtained by iLIBLINEAR-B (4GB) is nearly the
same as LIBLINEAR-CDBLOCK-B (4GB) (it is 0.89%
worse than the original implementation). This result shows
that our balanced bagging algorithm is very useful when
one wants to speedup the training process of classifiers on
large scale datasets without (or very few) compromising
classification accuracy.

6. Conclusion and future work
In this paper, we have developed the extended versions

of LIBLINEAR-CDBLOCK in three ways: (1) develop
multi-class classification for LIBLINEAR-CDBLOCK by
using the one-versus-all approach, (2) a balanced bagging

Table 6: Overall classification accuracy (%).
Method ImageNet

100
ILSVRC

2010
LIBLINEAR 43.17 21.11
LIBLINEAR-CDBLOCK-B (4GB) 44.19 19.99
LIBLINEAR-CDBLOCK-B (2GB) 44.10 18.12
LIBLINEAR-B (4GB) 42.78 19.15
LIBLINEAR-B (2GB) 41.80 18.17
iLIBLINEAR-B (4GB) 42.45 19.10
iLIBLINEAR-B (2GB) 41.46 18.12



algorithm for training binary classifiers, (3) parallelize the
training process of these classifiers with several multi-core
computers. Our approach has been evaluated on the 100
largest classses of ImageNet and ILSVRC 2010. The ex-
periment shows that our implementation is 732 times faster
than the original implementation and 1193 times faster than
LIBLINEAR with 160 cores. We need only 2.62 minutes
to train 1K binary classifiers. Furthermore, our approach
can be easily applied to dataset larger than the memory
capacity of computer. Obviously, this is a roadmap towards
large scale visual classification for systems with limited
individual resource. The next step is to perform incremental
LIBLINEAR on 10K classes of ImageNet. With this large
dataset, the training data would be much larger than the
capacity of many existing HPC systems.
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