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Abstract—Survival data is common in medical applications.
The challenge in applying predictive data-analytic methods to
survival data is in the treatment of censored observations. The
survival times for these observations are unknown. This paper
presents formalization of the analysis of survival data as a binary
classification problem. For this binary classification setting, we
propose two different strategies for encoding censored data,
leading to two advanced SVM-based formulations: SVM+ and
SVM with uncertain class labels. Further, we present empirical
comparison of the advanced SVM methods and the classical
Cox modeling approach for predictive modeling of survival data.
These comparisons suggest that the proposed SVM-based models
consistently yield better predictive performance (than classical
statistical modeling) for real-life survival data sets.

Index Terms—classification, survival analysis, Support Vector
Machine (SVM), SVM+, Learning Using Privileged Information
(LUPI), SVM with uncertain labels, Cox model.

I. INTRODUCTION

A significant proportion of medical data is a collection

of time-to-event observations. Methods for survival analysis

developed in classical statistics have been used to model

such data. Survival analysis focuses on the time elapsed from

an initiating event to an event, or endpoint, of interest [1].

Classical examples are the time from birth to death, from

disease onset to death, and from entry to a study to relapse, etc.

All these times are generally known as the survival time, even

when the endpoint is something different from death. This

statistical methodology can also be used in many different

settings, such as the reliability engineering, and financial

insurance. Even though the purpose of a statistical analysis

may vary from one situation to another, the ambitious aim

of most statistical analyses is to build a model that relates

explanatory variables and the occurrences of the event.

The field of machine learning is also targeting the same

or similar goals. Learning is the process of estimating an

unknown dependency between system’s inputs and its output,

based on a limited number of observations [2]. However, the

machine learning techniques have not been widely used for

survival analysis for two major reasons.

First, the survival time is not necessarily observed in all

samples. For example, patients might not experience the

occurrence of event (death or relapse) during the study, or they

were lost to follow-up. Hence, the survival time is incomplete

and only known “up-to-a-point,” which is quite different from

the traditional notion of ‘missing data.’

The second reason is methodological. Machine learning

techniques are usually developed and applied under predic-

tive setting, where the main goal is the prediction accuracy

for future (or test) samples. In contrast, classical statistical

methods aim at estimating the true probabilistic model of

available data. So the prediction accuracy is just one of several

performance indices. The methodological assumption is that

if an estimated model is ‘correct,’ then it should yield good

predictions. So the classical statistical methodology often does

not clearly differentiate between training (model estimation)

and prediction (or test) stages. This paper assumes a predictive

setting, which is appropriate for many applications. Under this

predictive setting, the survival time is known for training data,

but it is not available during the prediction (or testing) stage.

Thus, modifications are required for applying existing machine

learning approaches to survival data analysis.

Previously, several studies applied Support Vector Machines

(SVM) to survival data [3]–[5]. Most of these efforts formalize

the problem under the regression setting. Specifically, the

SVM regression was used to estimate a model that predicts

the survival time. However, formalization using regression set-

ting is intrinsically more difficult than classification. Further,

practitioners generally use the modeling outputs as a reference

and they are usually concerned with the status of a patient at

a given time, such as six-month after surgery or two-year post

transplant.

In this paper, we propose to use a special classification for-

mulation that addresses the issues of incomplete information

in the survival time. Instead of predicting the survival time,

we try to estimate a model that predicts a subject’s status at

a time point of interest. This paper is organized as follows.

The characteristics of the survival data are summarized in

Section II. The predictive problem setting for survival analysis

is introduced in Section III. The proposed SVM-based formu-

lations are introduced in Section IV. Empirical comparisons

for several synthetic and real-life data sets are presented in

Section V and VI. Finally, the discussion and conclusion are

given in Section VII.

II. SURVIVAL DATA ANALYSIS

This section provides general background description of

survival data analysis and its terminology.
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Fig. 1. Example of survival data in a study-time scale. The exact observations
are indicated by solid dots, and the censored observations by hollow dots.

The survival data (or failure time data) are obtained by

observing individuals from a certain initial time to either the

occurrence of a predefined event or the end of the study. The

predefined event is often the failure of a subject or the relapse

of a disease. The major difference between survival data and

other types of numerical data is the time to the event occurring

is not necessarily observed in all individuals.

A common feature of these data sets is they contain cen-

sored observations. Censored data arise when an individual’s

life length is known to occur only in a certain period of time.

Possible censoring schemes are right censoring, where all that

is known is that the individual is still alive at a given time,

left censoring when all that is known is that the individual

has experienced the event of interest prior to the start of the

study, or interval censoring, where the only information is that

the event occurs within some interval. In this paper, we only

consider the right censoring scheme.

The graphical representation of the survival data for a hy-

pothetical study with six subjects is shown in Figure 1. In this

study, subject 2 and 6 experienced the event of interest prior

to the end of the study and they are the exact observations.

Subject 1, 3, and 5, who experienced the event after the end of

the study, are only known to be alive at the end of the study.

Subject 4 was included in the study for some time but further

observation cannot be obtained. The data for subject 1, 3, 4,

and 5 are called censored (right-censored) observations. Thus,

for the censored observations, it is known that the survival

time is greater than a certain value, but it is not known by

how much.

Suppose T denotes the event time, such as death or lifetime;

C denotes the censoring time, e.g., the end of study or the time

an individual withdraws from the study. The T ’s are assumed

to be independent and identically distributed with probability

density function ϕ(t) and survival function S(t). For right

censoring scheme, we only know Ti > Ci with observed Ci.

Then the survival data can be represented by pairs of random

variables (Ui, δi), i = 1, . . . , n. The δi indicates whether the

observed survival time Ui corresponds to an event (δi = 1) or

is censored (δi = 0). The Ui is equal to Ti if the lifetime or

event is observed, and to Ci if it is censored. Mathematically,

Ui and δi are defined as

Ui = min(Ti, Ci), (1)

δi = I(Ti ≤ Ci) =

{

0 censored observation,

1 event occurred.
(2)

In Figure 1, subject 4 and 6 have the same observed survival

time (U4 = U6), but their censoring indicators are different

(δ4 = 0, δ6 = 1). Therefore, in the survival analysis, we are

given a set of data, (xi, Ui, δi), i = 1, . . . , n, where xi ∈
R

d, Ui ∈ R+ and δi ∈ {0, 1}. In contrast, under supervised

learning setting, we are given a set of training data, (xi, yi),
i = 1, . . . , n, where xi ∈ R

d and yi ∈ R. The target values

yi’s can be real-valued such as in standard regression, or binary

class labels in classification.

Classical statistical approach to modeling survival data

aims at estimating the survival function S(t), which is the

probability that the time of death is greater than certain time

t. More generally, the goal is to estimate S(t|x), or survival

function conditioned on patient’s characteristics, denoted as

feature vector x. Assuming that the probabilistic model S(t|x)
is known, or can be accurately estimated from available data,

this model provides complete statistical characterization of

the data. In particular, it can be used for prediction and for

explanation (i.e., identifying input features that are strongly

associated with an outcome, such as death).

III. PREDICTIVE MODELING OF SURVIVAL DATA

In many applications, the goal is to estimate (predict)

survival at a pre-specified time point τ , e.g., survival of cancer

patients two years after initial diagnosis, or the survival status

of patients one year after bone marrow transplant procedure.

Generally τ can be about half of the maximum observed

survival time. Next we describe possible formalization of

this problem under predictive setting, leading to a binary

classification formulation.

Classification problem setting: Given the training survival

data, (xi, Ui, δi, yi), i = 1, . . . , n, where xi ∈ R
d, Ui ∈ R+,

δi ∈ {0, 1}, and yi ∈ {−1,+1}, estimate a classification

model f(x) that predicts a subject’s status at a pre-specified

time τ based on the input (or covariates) x.

The status of subject i at time τ is a binary class label

through the following encoding

yi =

{

+1, if Ui < τ,

−1, if Ui ≥ τ.
(3)

Note that Ui and δi are only available for training, not for

prediction (or testing stage). So the challenge of predictive

modeling is to develop novel classification formulations that

incorporate uncertain nature of censored data.

In a hypothetical study as shown in Figure 2, suppose a

subject’s status is given by (3), then there is no ambiguity in

the statuses of subject 2 and 6. Likewise, the survival status of

subject 5 is known, even though the observation is censored.

However, the survival statuses for subjects 1, 3, and 4 are

unknown since the observed survival times are shorter than τ .

There are two simplistic ways to incorporate censored data

into standard classification formulation:
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Fig. 2. Example of survival data under the predictive problem setting. The
goal is to find a model that predicts the subjects’ statuses at time τ .

• Treat the censoring time as the actual event time, i.e.,

replace Ti with Ci. This approach underestimates the

actual event time because Ti > Ci.

• Simply ignore the censored data and estimate a binary

classifier using only exact observations. This approach

yields suboptimal models, as we ignore the information

available in the censored data.

This paper investigates two different strategies for incorpo-

rating censored data in SVM-based classifiers:

1) Note that censoring information is available/known for

training data, but not known during prediction, the

censored data can be regarded as the privileged infor-

mation under the so-called Learning Using Privileged

Information (LUPI) paradigm [6], [7].

2) We can assign probabilities to reflect the uncertain status

of censored data samples. One simple rule is to set the

probability of a subject being alive at time τ proportional

to the (known) survival time, as indicated in Figure 2.

That is, Pr(yi = −1|xi) = Ui/τ or Pr(yi = +1|xi) =
1−Ui/τ . The idea is that if Ui is small, it is more likely

subject i will not survive at time τ . On the other hand, if

Ui is very close to τ , subject i will be alive at time τ with

high probability. Therefore, the survival data (xi, Ui, δi),
i = 1, . . . , n, can be translated into (xi, Ui, li), i =
1, . . . , n. For exact observations, li = yi ∈ {−1,+1},

i = 1, . . . ,m. For censored observations, li = pi ∈
[0, 1], i = m+ 1, . . . , n, where

pi = Pr(yi = −1|xi) = Ui/τ (4)

considers the uncertainty about the class membership of

xi. The concept of assigning probability to the uncertain

status can be extended to the exact observations. For

a exact observation, we have its status yi with proba-

bility pi = 1. Then the survival data are represented

as (xi, Ui, pi, yi), i = 1, . . . , n. This formalization of

censored data leads to the so-called SVM with uncertain

labels modeling approach [8].

Both modeling approaches are presented later in Section IV.

Finally, we describe application of classical survival analysis

under predictive setting (introduced earlier in this section).

Classical survival analysis models describe the occurrence of

the event by means of survival curves and hazard rates and

analyze the dependence (of this event) on covariates by means

of regression models [1]. One of the most popular survival-

curve estimation is the Cox modeling approach based on the

proportional hazards model. Once a survival function S(t|x)
is known or estimated (from training data) it can be used for

prediction. Specifically, for new (test) input x the prediction

is obtained by a simple thresholding rule

yi =

{

+1, if S(t|xi) < r,

−1, if S(t|xi) ≥ r,
(5)

where the threshold value r should reflect the misclassification

costs given a priori. In this paper, we assume equal misclassi-

fication costs. Hence, the threshold level is set to r = 0.5. This

approach will be used to estimate the prediction accuracy (test

error) of the Cox model in empirical comparisons presented

in Sections V and VI.

IV. SVM-BASED FORMULATIONS FOR SURVIVAL

ANALYSIS

This section presents two recent advanced SVM-based

formulations appropriate for predictive modeling of survival

data. Presentation starts with a general description of these

SVM-based formulations, followed by specific description of

incorporating censored data into these formulations.

A. SVM+

One strategy to handle the survival data is the setting known

as Learning Using Privileged Information (LUPI) developed

by Vapnik [6], [7]. In a data-rich world, there often exists

additional information about training samples, which is not

reflected in the training data. This additional information can

be easily ignored by standard inductive methods such as SVM.

Effective use of this additional information during training

often results in improved generalization [7].

Under the LUPI setting, we are given a set of triplets

(xi,x
∗

i
, yi), i = 1, . . . , n, where xi ∈ R

d, x
∗

i
∈ R

k, and

yi ∈ {−1,+1}. The (x, y) is the ‘usual’ labeled training

data and (x∗) denotes the additional privileged information

available only for training data. Note that the privileged

information is defined in a different feature space. This SVM+

approach maps inputs, xi and x
∗

i
, into two different spaces:

• decision space Z via the mapping Φ(x) : x 7→ z, which

is the same feature space used in standard SVM;

• correcting space Z∗ via the mapping Φ∗(x) : x 7→ z
∗,

which reflects the privileged information about the train-

ing data.

The goal of the SVM+ is to estimate a decision function

(w · z) + b by using the correcting function ξ(z∗) = (w∗ ·
z
∗)+d ≥ 0 as the additional constraints on the training errors

(or slack variables) in the decision space. The SVM+ classifier

is estimated from the training data by solving the following



optimization problem:

minimize
1

2
‖w‖2 +

γ

2
‖w∗‖2 + C

n
∑

i=1

ξi

subject to ξ � 0
yi((w · zi) + b) ≥ 1− ξi, i = 1, . . . , n
ξi = (w∗ · z∗

i
) + d, i = 1, . . . , n

(6)

with w ∈ R
d, b ∈ R, w∗ ∈ R

k, d ∈ R, and ξ ∈ R
n
+as the

variables. The symbol � denotes componentwise inequality

and R+ denotes non-negative real numbers.

Predictive modeling of survival data can be formalized un-

der SVM+/LUPI formulation (6) as explained next. Available

survival data (xi, Ui, pi, yi) can be represented as (xi,x
∗

i
, yi),

where x
∗

i
= (Ui, pi) is the privileged information. Then the

problem of survival analysis can be formalized and modeled

using the SVM+/LUPI paradigm.

B. SVM with Uncertain Labels

This section describes novel SVM-based formulation [8]

that introduces the notion of uncertain class labels. That is,

some instances (training samples) are not associated with defi-

nite class labels. For such uncertain labels, only the confidence

levels (or probabilities) regarding the class memberships are

provided. In the context of survival analysis, exact observa-

tions have known class labels, and censored observations have

uncertain class labels.

For the non-separable survival data, we have the following

optimization problem,

minimize
1

2
‖w‖2 + C

m
∑

i=1

ξi + C̃

n
∑

i=m+1

(ξ−
i
+ ξ+

i
)

subject to ξ � 0
yi((w · xi) + b) ≥ 1− ξi, i = 1, . . . ,m
ξ− � 0
ξ+ � 0
q−
i
− ξ−

i
≤ (w · xi) + b ≤ q+

i
+ ξ+

i
,

i = m+ 1, . . . , n.
(7)

with w ∈ R
d, b ∈ R, ξ ∈ R

m
+ , ξ− ∈ R

n−m

+ , and ξ+ ∈
R

n−m

+ as the variables. The first part of the constraints is for

the exact observations. As for the censored observations, their

decision values, (w ·xi)+ b, are bounded by q−
i

and q+
i

. The

boundaries are functions of pi, a, and η, i.e.,

q−
i
= −

1

a
log

(

1

pi − η
− 1

)

, q+
i
= −

1

a
log

(

1

pi + η
− 1

)

,

where a = log(1/η − 1) is a constant and η is the max

deviation of the probability estimate from pi [8], [9].

The pi values defined in (4) encode the information about

survival time for both censored and exact observations, avail-

able in the training data. This formulation can be extended

to nonlinear (kernel) parameterization using standard SVM

methodology. This method is known (and will be referred to)

as pSVM in this paper.

V. EMPIRICAL COMPARISONS FOR SYNTHETIC DATA

This section describes the empirical comparisons between

the pSVM, SVM+/LUPI method and the Cox modeling ap-

proach [1]. Practical application of these methods to finite data,

involves additional simplifications, as discussed next:

• For SVM+, the non-linearity is modeled only in the cor-

recting space [10]. That is, in all experiments the decision

space uses linear parameterization, and the correcting

space is implemented via non-linear (RBF) kernels.

• pSVM uses either linear or non-linear mapping in the

experiments.

Consequently, pSVM with RBF kernel has three tuning param-

eters, C, C̃, and σ (RBF width parameter), whereas SVM+

with RBF kernel has three tuning parameters, C, γ, and σ.

Furthermore, pSVM with linear kernel has two tuning param-

eters (C and C̃). In contrast, there is no tunable parameter in

the Cox modeling approach.

Empirical comparisons are designed to understand relative

advantages and limitations of SVM-based methods for model-

ing the survival data sets with various statistical characteristics,

such as the number of training samples, the noise in the

observed survival times, and the proportion of censoring. The

synthetic data set is generated as follows [11]:

• Set the number of input features d to 30.

• Generate x ∈ R
d with each element xi being a random

number uniformly distributed within [−1, 1].
• Define the coefficient vector as

β = [1, 1, 2, 3, 3, 1, 1, 1, 1, 0, 2, 0, 2, 2, 0,

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

• Generate the event time T following Exp((β · x) + 2)
distribution. The Gaussian noise ν ∼ N (0, 0.2) is also

added to the event time T . Generate the censoring time

C following Exp(λ) distribution.

• The survival time and event indicator are obtained accord-

ing to (1) and (2). The rate of the exponential distribution,

λ, is used to control the proportion of censoring in the

training set.

• Assign class label to each data vector by the rule in (3).

The time of interest, τ , is set to the median value among

the survival times. In this way, the prior probability for

each class is about the same.

• Generate 400 samples for training, 400 for validation, and

2000 for testing.

This data set conforms to probabilistic assumptions (i.e.,

exponential distribution) underlying the classical modeling

approach. So the Cox modeling approach is expected to be

very competitive for the synthetic data set.

The following experimental procedure was used in all

experiments:

• Estimate the classifier using the training data.

• Find optimal tuning parameters for each method using

the validation data. For the Cox modeling approach, the

validation data are not used.



TABLE I
THE TEST ERRORS (%) FOR THE SYNTHETIC DATA WITH 400 TRAINING SAMPLES.

Trial 1 2 3 4 5 6 7 8 9 10
Cox 26.6 27.1 26.3 29.6 27.4 27.1 28.3 28.7 27.4 26.9
pSVM linear 25.7 22.6 25.0 27.5 24.2 26.5 26.1 26.0 25.6 26.1

pSVM rbf 24.6 25.7 25.8 27.9 25.7 25.4 25.7 26.9 26.2 26.8
LUPI 25.2 25.5 25.6 29.6 25.7 25.5 25.6 27.2 25.0 26.5

TABLE II
THE TEST ERRORS (%) FOR THE SYNTHETIC DATA WITH 250 TRAINING SAMPLES.

Trial 1 2 3 4 5 6 7 8 9 10
Cox 30.1 29.6 28.0 27.6 30.1 30.3 28.9 30.1 29.3 28.3
pSVM linear 28.6 25.8 27.6 28.1 29.8 26.8 28.0 28.1 27.3 29.0
pSVM rbf 28.9 26.9 30.4 27.6 30.5 28.1 27.5 26.8 27.7 28.1
LUPI 30.0 28.0 29.3 29.8 29.9 27.6 30.6 30.0 25.0 26.3

TABLE III
THE TEST ERRORS (%) FOR THE SYNTHETIC DATA WITH 100 TRAINING SAMPLES.

Trial 1 2 3 4 5 6 7 8 9 10
Cox 35.6 31.3 34.0 32.3 27.7 30.6 30.6 33.5 31.4 28.4
pSVM linear 32.5 33.0 33.5 30.0 25.1 33.5 36.9 30.4 31.4 30.8
pSVM rbf 32.5 32.0 33.8 29.3 32.2 32.2 34.2 31.4 33.1 29.9
LUPI 33.6 37.1 32.0 32.0 26.0 41.0 33.6 37.0 30.9 29.3

TABLE IV
THE TEST ERRORS (%) FOR THE SYNTHETIC DATA WITH 50 TRAINING SAMPLES.

Trial 1 2 3 4 5 6 7 8 9 10
Cox 35.0 31.6 37.5 39.3 33.7 46.5 40.2 41.2 33.9 42.1
pSVM linear 34.3 35.1 37.6 34.3 34.8 40.3 41.8 40.9 35.7 38.1
pSVM rbf 35.8 31.6 37.5 33.1 34.1 38.0 38.1 35.5 35.8 39.1
LUPI 37.8 35.4 35.5 32.0 39.4 41.3 41.5 39.3 38.4 42.0

• Estimate the test error of the final model using the test

data.

The SVM+/LUPI has three tunable parameters, C, γ, and σ.

These parameters are estimated using the validation data, and

we consider C in the range of [10−1, 102], γ in [10−3, 101],
and σ in [2−2, 22] for model selection. For pSVM with RBF

kernel, we consider C and C̃ in the range of [10−1, 102], and

σ in [2−2, 22].
Further, the experiment is performed ten times with different

random realizations of the training, validation, and test data.

In this experiment, the average proportion of the censored

observation is 16.1% (or about 64 observations in the training

set are censored). The test errors for ten trials are shown in

Table I. The average test errors in percentage (along with

standard deviations) for the Cox model, pSVM with linear

kernel, pSVM with RBF kernel, and LUPI are 27.5±1.0,

25.6±1.4, 26.1±0.9, and 26.2±1.4, respectively.

The pSVM with linear kernel achieves the lowest test error

among the methods in most trials. Comparing the pSVM

method with different kernels, it is not surprising to find

that pSVM with linear kernel performs better than that with

RBF kernel. Because our synthetic data is generated from a

nearly linear model and there is intrinsic linearity in the data.

Methods with linear kernel are expected to perform better than

those with RBF kernel.

The Cox model has the highest test error in most trails.

The results illustrate potential advantage of using the SVM-

based methods. Note that SVM-based methods yield similar or

superior performance vs. classical Cox models, even thought

the training and test data is generated using exponential distri-

butions (for which the Cox method is known to be statistically

optimal).

A. Number of Training Samples

To investigate the effect of training sample size on the test

errors, the training sample size is reduced to 250, 100 and

50. The validation sample sizes are changed accordingly. The

results are reported in Table II, III and IV.

For 250 training samples, the average test errors for the Cox

model, pSVM with linear kernel, pSVM with RBF kernel,

and LUPI are 29.2±1.0, 27.9±1.1, 28.3±1.3, and 28.7±1.9,

respectively. The pSVM with linear kernel has the best per-

formance in five trials. The relative performances between

the pSVM with RBF kernel and LUPI are roughly the same.

However, the performance gap between the Cox model and

the pSVM with linear kernel is closing when the size of the

training data is reduced. This observation is more evident when

the sample size is reduced to 100. For 100 training samples,

the Cox model has the lowest test error in four trials, whereas

the pSVM with linear kernel has the best performance in three

trials only.

When the training sample size is further reduced to 50,

both the Cox model and the pSVM with linear kernel are

outperformed by the pSVM with RBF kernel. This can be

attributed to the high dimensionality of the input (feature)

vectors. With high dimensional input vectors, methods with

linear kernel fail to capture the linearity of the data when

only 50 samples are available for training. It is also expected



TABLE V
TEST ERRORS AS A FUNCTION OF TRAINING SAMPLE SIZE.

Training size 50 100 250 400
Censoring 16.6% 15.9% 16.4% 16.1%
Cox 38.1 ± 4.6 31.5 ± 2.4 29.2 ± 1.0 27.5 ± 1.0
pSVM linear 37.3 ± 2.9 31.7 ± 3.1 27.9 ± 1.1 25.6 ± 1.4
pSVM rbf 35.8 ± 2.4 32.0 ± 1.5 28.3 ± 1.3 26.1 ± 0.9
LUPI 38.3 ± 3.2 33.2 ± 4.3 28.7 ± 1.9 26.2 ± 1.4

TABLE VI
TEST ERRORS AS A FUNCTION OF NOISE LEVEL.

Noise level 0 0.1 0.2 0.5
Censoring 15.9% 16.0% 17.2% 17.7%
Cox 11.1 ± 0.4 22.5 ± 1.7 28.7 ± 1.8 36.3 ± 1.3
pSVM linear 14.2 ± 1.0 21.1 ± 1.8 27.1 ± 2.0 34.8 ± 1.1
pSVM rbf 15.1 ± 1.5 22.5 ± 0.9 27.2 ± 2.1 36.0 ± 1.4
LUPI 14.3 ± 0.7 22.8 ± 1.7 27.5 ± 2.1 34.7 ± 2.0

that the estimated Cox model is not accurate due to the small

sample size.
Table V shows the relative performance of the five methods,

as a function of sample size. The pSVM with linear kernel

outperforms all other methods when the training sample size

is larger than 250. This is not surprising, because the linear

space matches the synthetic data model. As expected, with

increasing number of training samples, the relative advantage

of the SVM-based methods is more noticeable. Nonetheless,

the Cox model is more competitive for moderate training

sample size (100).

B. Noise Level in the Survival Time

To examine the effect of noise level in the survival time on

the test errors, noise with different variances are added to the

survival time. The noise variance ranges from 0 to 0.5 and the

training and validation sample sizes are kept at 250. The test

errors are summarized in Table VI.
It is evident that the test errors are reduced in all methods

when the noise variance is decreased. When there is no noise

in the survival time, the data are generated from a distribution

that follows the Cox modeling assumption. It is expected that

the Cox model achieves the lowest test error under low-noise

scenario. However, the increasing of noise level has much

larger negative effect in the Cox modeling approach. The test

error is increased from 11% to 36% when the noise level is

raised from 0 to 0.5. Meanwhile, for the same changes in the

noise levels, the test errors of the SVM-based approaches are

raised from 14% to 35%.
Apart from the zero-noise scenario, the pSVM with linear

kernel achieves the lowest average test error when the noise

variance is less than 0.2. The LUPI, however, has the best

performance when the noise level is higher than 0.2. It can be

concluded that the SVM-based methods show more robustness

to noisy data.

C. Proportion of Censoring

We also adjust the proportion of censoring in the training

data to investigate the effect of censoring on the test errors. The

percentage of censoring observations in the training data varies

from 6% to 46% in our experiment. The noise variance is set

to 0.2 and the training and validation sample sizes are kept at

250. The experiment results are summarized in Table VII.

TABLE VII
TEST ERRORS AS A FUNCTION OF CENSORING RATE.

Censoring 6.1% 30.6% 38.6% 46.0%
Cox 27.4 ± 2.0 33.8 ± 1.6 38.6 ± 2.2 42.0 ± 1.0
pSVM linear 26.1 ± 1.6 31.5 ± 1.8 36.8 ± 1.9 41.8 ± 2.4
pSVM rbf 26.9 ± 1.7 32.4 ± 2.5 36.7 ± 1.3 39.9 ± 1.4

LUPI 28.0 ± 2.7 32.5 ± 2.2 37.1 ± 2.1 41.3 ± 1.5

When less than 30% of the training data are censored, the

pSVM linear gives the lowest test error. On the contrary, if

a large portion of the observations are censored (about 40%

or more), the pSVM with RBF kernel outperforms all other

methods. With more censored observations in the training set,

more observed survival times are obtained by the non-linear

operator in (1). Hence, the linearity within the data is no longer

maintained, and methods with non-linear parameterization

(kernel) are expected to achieve better performances.

VI. REAL-LIFE DATA SETS

This section describes empirical comparisons using four

real-life data sets from the Survival package in R [12]. For

all comparisons, the common decision space for SVM+ uses

the linear kernel while the unique correction space uses the

RBF kernel. For the pSVM method, both linear and the RBF

kernels are investigated. In all experiments, the time of interest

τ was set to the median of the observed survival times. Our

experiments for the four medical data sets follow the following

procedure [2], [10]:

• Use five-fold cross-validation to estimate the test errors.

• Within each training fold, the parameter tuning (model

selection) is performed through a five-fold resampling.

Our experimental set-up uses double resampling proce-

dure [2]. One level of resampling is used for estimating the test

error of a learning method, and the second level is for tuning

the model parameters (or model selection). During the model

selection stage, the possible choices of tuning parameters are

C and C̃ in the range of [10−1, 102], γ in [10−3, 101], and σ in

[2−2, 22]. Since there is no definite class label for the censored

observation with Ui < τ , the test errors are reported based

on samples with definite labels, i.e., exact observations and

censored observations with Ui ≥ τ . Further, model parameters

are selected based on the performance with those samples with

well-defined labels.

1) Veteran Data Set: The veteran data set is from the

Veterans’ Administration Lung Cancer Study which is a ran-

domised trial of two treatment regimens for lung cancer. In

the veteran data set, there are 137 instances (observations) and

each instance has 10 attributes. Less than 7% of the instances

are censored. Among the nine censored instances, one has the

observed survival time less than the time of interest. In other

words, only one instance is associated with the uncertain class

label in the veteran data set.

2) Lung Data Set: The lung data set studied the survival

and usual daily activities in patients with advanced lung cancer

by the North Central Cancer Treatment Group (NCCTG).

There are 167 instances in this data set, and each instance

has 8 attributes. About 28% of the instances are censored,

and 21 censored instances are linked to uncertain class labels.



TABLE VIII
SUMMARY OF THE Survival DATA SETS AND THE EXPERIMENT RESULTS.

Data set Veteran Lung PBC Stanford2
Size 137 167 258 157
Attributes 10 8 22 2
δ = 0 9 47 147 55
Censored % 6.57 28.14 56.98 35.03
Uncertain cls 1 21 54 8
Cox 23.4 ± 4.6 43.3 ± 5.6 34.3 ± 7.1 51.9 ± 4.7
pSVM linear 27.2 ± 7.8 38.3 ± 6.2 26.2 ± 2.5 53.9 ± 7.4
pSVM rbf 32.0 ± 5.9 42.5 ± 8.0 23.5 ± 5.2 34.3 ± 6.2
LUPI 30.4 ± 4.5 38.3 ± 9.9 25.3 ± 10.6 42.4 ± 17.7

3) PBC Data Set: The pbc data set is from the Mayo

Clinic trial in primary biliary cirrhosis (PBC) of the liver

conducted between 1974 and 1984. The pbc data set contains

258 instances and each instance has 22 attributes. More than

half of the instances are censored, and 54 censored instances

do not have the definite class labels.

4) Stanford2 Data Set: The fourth data set is the stanford2

data set from the Stanford Heart Transplant data, which

contains 157 instances, each with 2 attributes. More than 35%

instances are censored and 8 of them are associated with the

uncertain labels.

The descriptions of the data sets are summarized in Ta-

ble VIII. The fourth row indicates the proportions of censored

observations in the data sets. The fifth row shows the number

of censored observation with Ui < τ when τ is set to the

median of the observed survival times. Table VIII also shows

the test errors from different methods applied to the four data

sets. Note that the SVM-based approaches achieve the lowest

test error in three of the four data sets. On the other hand,

the Cox model gives the best performance in the veteran data

set. In these experiments, the number of training samples is

fixed, so we cannot make any conclusions regarding the effect

of sample size on methods’ performance. However, we can

make inferences about inherent non-linearity in some of the

data sets. For example, for the stanford2 data set, non-linear

pSVM performs much better than other methods using linear

parameterization. So we can infer this data set requires non-

linear modeling.

These results illustrate the effect of censoring on generaliza-

tion performance. For small proportion of censoring (such as

6%) in the data, the Cox model gives the lowest test error.

However, the SVM-based methods show their advantages

when the proportion of censoring is increased. Further, relative

advantage of SVM-based approaches becomes quite evident

for higher-dimensional survival data.

These results also show large variability of estimated test

errors, due to partitioning of available data into five (training,

test) folds. This variability is reflected in large standard

deviations of test error rates. Direct comparisons suggest that

SVM-based methods yield smaller or similar test error in

each (training, test) fold. Another reason for variability of

the SVM-based model estimates is due to model selection

via resampling. Notably, standard deviations of error rates for

all SVM-based methods shown in Table VIII are consistently

higher than standard deviations for the Cox model (which

has no tunable parameters). This underscores the importance

of robust model selection strategies for SVM-based methods,

which would be the focus of our future work.

VII. DISCUSSION AND CONCLUSIONS

This paper proposes predictive modeling of high-

dimensional survival data as a binary classification problem.

We apply the LUPI formulation and SVM with uncertain class

labels to solve the problem. Both methods incorporate the

information about survival time to estimate an SVM classifier.

We have illustrated the advantages and limitations of these

modeling approaches using synthetic and real-life data sets.
Advanced SVM-based methods appear very effective when

the proportion of censoring in training data is large, or the

observed survival time does not follow the classical proba-

bilistic assumptions, e.g., the exponential distribution [1], [11].

On the other hand, with fewer censored observations the Cox

modeling approach may perform better. Further, the relative

performance of LUPI and pSVM depends on the intrinsic

linearity/non-linearity of the data itself. In particular, superior

performance of the pSVM with RBF kernel for the stanford2

data indicates an intrinsic non-linearity of this data set.
The equal misclassification cost is assumed throughout

this paper; however, realistic medical applications use un-

equal costs. We will incorporate different misclassification

costs into the proposed SVM-based formulations. Further, our

methodology for predictive modeling of survival data can

be readily extended to other (non-medical) applications, such

as predicting business failure (aka bankruptcy) or predicting

marriage failure (aka divorce).
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