Isolating Matrix Sparsity
in Collaborative Filtering Ratings Matrices

Brian J. Pechkis and Eun-Joo Lee
Computer Science Department, East Stroudsburg University of Pennsylvania, East Stroudsburg, PA, U.S.A.

Abstract— Collaborative filtering is a widely-used class
of methods for providing recommendations of items that
are personalized to each individual user’s tastes. Although
effective at providing easy access to the ratings of user-
item pairs, the matrix data structure typically utilized for
these tasks is often very sparse. Furthermore, the scalability
of these systems suffers when performing operations on a
large matrix with mostly null values. This paper proposes a
method of reducing the size and sparsity of these matrices by
rearranging the order of the rows and columns in such a way
that the ratings are clustered into small, easily extractable
submatrices. Experimental tests on a representative dataset
show that, in addition to achieving those goals, the quality
of the predictions within the densest submatrix is high, as
indicated by a reduced error rate compared with the full,
unaltered matrix.
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1. Introduction

The continued expansion of the World Wide Web has
made it easier to access a wide variety of products for
purchase via e-commerce and media content providers, such
as Amazon.com and Netflix. However, the large quantity
of these products has made it more difficult for users to
find products that are both pertinent to their preferences
and that are of good quality. For this reason, collaborative
filtering recommender systems have been developed to select
products, or items, for recommendation to users based on a
comparison of their purchase habits to those of other users
[1] [2]. These recommendations often rely upon predicting
a user’s preference value, or rating, on items not previously
purchased by the user [3]. Some algorithms for performing
this prediction are more statistical in nature (memory-based),
while others draw on techniques developed in the field of
machine learning (model-based) [2] [3] [4] [5].

One data structure for storing user ratings is the user-
item matrix, which contains one dimension for users and
another for items, storing the rating of one user for one item
where the two intersect. This data structure makes it simple
to extract a vector containing the information for one user
or one item and lends itself to linear algebra-based feature
extraction techniques. However, the matrix tends to be very
sparse, due to the users’ inability to rate all of the millions of

items available to them [4] [6] [7]. Dimensionality reduction
through singular value decomposition has been proposed as
a solution to this problem, but it has a high complexity due
to the need to either compute or estimate eigenvalues and
eigenvectors [6]. Other imputation-based or default voting
techniques bias a user’s average rating toward the imputated
or default rating, compromising the effectiveness of the
prediction algorithms [8] [9].

Therefore, this paper proposes a method that can effec-
tively reduce the size of the original matrix prior to any
preprocessing of the data. It will be shown that rearranging
the matrix by creating a permutation of it can create denser
regions that can be extracted and used for any further
processing and collaborative filtering prediction. Results also
indicate that producing a submatrix that is denser than the
full, unaltered matrix results incorporates the user-item pairs
that will yield more accurate predictions. The primary goal
of this method is to reduce the effective size of the matrix.

2. User-Item Matrix Permutations

The goal of rearranging the user-item matrix in a col-
laborative filtering recommender is to isolate the sparsity of
the matrix from newly-formed dense regions. Achieving this
requires two steps. First, metrics are computed for each row
or column to determine which half of the vector is denser,
before they are grouped with vectors having a similar center
of density. Second, as an optional additional step, isolation
of a greater percentage of sparsity is ensured by preventing
one group of vectors (either denser in lower indices or denser
in higher densities) from being much larger than the other.
A flow chart showing the steps of this algorithm is shown in
Figure 1. This procedure produces approximately equal-size
submatrices that are simple to extract and to be processed
individually by collaborative filtering prediction algorithms.

2.1 Permutation Algorithm

In order to form dense matrix regions, there needs to be
some means by which to judge which segments of a row or a
column of the matrix are denser than others. Simplifying this
idea, it would be beneficial to determine whether a row or a
column contains more ratings in its lower-indexed elements
or its higher-indexed elements. Two simple metrics have
been developed to quantify which of these two ends of a
row or a column is denser. Given a specific row or column
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Fig. 1: Permutation algorithm flowchart

vector from the user-item matrix, v, of length n, we define
Equation 1 and Equation 2.

n

lowgens = Z((n +1)—1)2 Yo(@i) #null (1)

i=1

highgens = »_i* V(i) # null )
=1

In Equation 1 , we see that, as ¢ — oo, the terms in the
summation become lower, resulting in higher overall values
for vectors with larger numbers of lower-indexed ratings.
Conversely, as ¢ — oo, the terms within the summation in
Equation 2 become higher, resulting in higher overall values
for vectors containing more higher-indexed ratings. If these
two metrics are computed for each of the rows and columns
in the user-item matrix, a strong overall picture of the dense
areas in the matrix is acquired.

This scheme of measuring vector density can be used to
cluster vectors with similarly-located dense regions. Rows
with greater density toward its lower-indexed elements can
be grouped into one partition, and those with a greater
density toward higher-indexed elements can be grouped into
the other. Such a scheme can be duplicated for columns.
In essence, this procedure examines each vector along one
dimension of the matrix and decides which of the above-
mentioned partitions to which it belongs. Then, it creates a
permutation of the indices along the dimension by sorting
the indices of vectors with a higher lowge,s score by non-
increasing order of lowge,s metric and sorting the indices
with a higher highge,s score in non-decreasing order. If the
dimension of interest is the rows of the matrix, we say that
this algorithm performs a row permutation of the matrix,
while it performs a column permutation if the columns of
the matrix are considered.

The intent of this procedure is to create distinguishable
regions with high numbers of non-null ratings in the matrix.
A row permutation can be performed to create a matrix with
a certain number of rows having more of its ratings to the
left and a certain number of rows having more of its ratings
to the right side of the matrix. A column permutation can
be performed in addition to the row permutation to further
solidify this pattern. The ultimate result is that we can find
four clear regions in the matrix - two with a very high density
of ratings and two with a rather sparse density of ratings.
If these dense regions can be extracted from the matrix, the
collaborative filtering algorithm can focus its efforts on them
and have less exposure to sparsity, since many of the empty
matrix elements have been moved to the sparse regions.

The efficiency of this algorithm comes from the fact that
the ratings do not yet need to be in matrix form to perform
the above-mentioned processing. It requires only a list of
the non-zero elements of the matrix, which it adjusts once
it has decided the proper ordering of the vectors along the
specified dimension. When implemented in the C language,
as was done for the tested implementation, the permutation
algorithm becomes a simple exercise in list processing. Later,
when processed as an actual matrix, the submatrices will
exhibit the pattern described above. Therefore, assuming a
dataset of w elements from an m x n matrix, this algorithm
will only require w operations instead of the m x n needed
to, at minimum, decide whether a matrix element is null
or not. Although w could begin to approach m x n for
denser matrices, this is unlikely to happen in the application
of collaborative filtering. For instance, in the case of the
MovieLens 100k dataset, w = 100,000 << m xn ~ 1.5M.
Therefore, the most computationally complex aspect of the
algorithm is the sorting algorithm selected to sort the scores
of the vectors in each partition. An efficient sorting algorithm
designed for sorting numeric values can be utilized for this
task.



2.2 Partition Balancing

The primary deficiency of the permutation algorithm is
that it fails when faced with an imbalance in the data. For
example, we may have many users (rows) who have rated
more of the lower indexed items. Consequently, the balance
of rows belonging to the lowgens partition will be very
high. Should this same condition occur with the columns,
we could be left with one very large submatrix and a few
small ones. This would limit how many of the null values
can be eliminated from consideration upon extraction of the
submatrices. As a result, an add-on to this algorithm can
help create a better balance between the partitions. After
performing the initial partitioning of the vectors, the lowgen s
partition is sorted by non-decreasing order of highgens Score
or the highgens partition is sorted by non-increasing order
of lowgens score, depending upon which has more member
vectors. Then, the boundary marker is moved until there are
an (approximately) even number of vectors in each partition.
In effect, this process moves some of the vectors from the
large partition that scores well in the other partition to that
partition. The premise is that these vectors would still fit
in well with the vectors of the other partitions, so it is
acceptable to move them.

Once the permutation algorithm has been executed along
both dimensions of the user-item matrix, the submatrices on
which further processing and the collaborative filtering algo-
rithms are run must be extracted. This process is simplified
by the fact that the algorithm’s execution has resulted in
knowledge of where the boundary between the two density
classes of vectors exists. If we divide the matrix along
these boundary lines, it creates four submatrices of various
densities that can be subjected to further preprocessing and
to the collaborative filtering algorithms. Note that the full
implementation of the permutation algorithm handles both
the training and the corresponding test sets together. Once
the submatrices are formed, the ratings that were part of the
training set in the original matrix become part of the training
set for the submatrix and likewise for the test ratings.

3. Experimental Setup

In addition to permutation algorithm described above, the
system requires some additional components to constitute
an operating collaborative filtering system. In this section, a
description of the dataset used for the testing, as well as the
preprocessing and collaborative filtering algorithms utilized
are discussed.

3.1 Dataset

The chosen dataset for our testing was a widely-used, real-
life dataset, the MovieLens 100k dataset [10]. It contains rat-
ings data collected through the GroupLens research group’s
MovieLens movie recommendation website. The users of
this website expressed their critique of various movies using

a 1-5 scale, with 1 indicating a poor opinion of a movie and
5 indicating a high approval of the movie. The 100k dataset
contains 943 unique users and 1682 unique movies (i.e. the
“item” in this particular context), with its users submitting
a total of 100,000 ratings out of a possible 1.59M ratings (a
density of 6.3%). The MovieLens dataset contains a series
of splits of training and test data, with each in the series
containing a unique 20% subset used for test data, allowing
for the use of 5-fold cross validation as the test method. This
dataset meets the demands of testing collaborative filtering
techniques by providing real-world data and, although not
as large as many recommender systems, is large enough to
discern the effects of the techniques in an operational setting.

3.2 Preprocessing

In collaborative filtering, it is rarely feasible to execute
collaborative filtering algorithms on a raw set of ratings.
These raw values usually are not numerous enough to
be directly used to compute the Pearson correlations in a
memory-based scenario nor do these alone serve as adequate
features for training a model-based algorithm. As a result,
a preprocessing of the data was needed to provide such
features. The method used for preprocessing the training set
parallels that described in [6]. Mean imputation is performed
using the column mean, and then mean normalization is
performed using the row mean. Once this was completed,
the singular value decomposition could be computed for the
matrix. Next, the element-wise square root of the matrix, .S,
was computed, so that any collaborative filtering prediction
algorithm could use U %+/S as a set of features for each user
and \/§ +x V7T could be used as a set of features for each
item. Dimensionality reduction was delayed until execution
of the collaborative filtering algorithms, so that the testing
of multiple numbers of singular values to determine the
permutation algorithm’s effect on the optimal number of
singular values. This procedure was performed in MATLAB,
as its SVD routine was found to be faster than the one
in the GNU Scientific Library used for implementing the
collaborative filtering algorithms.

3.3 Collaborative Filtering Algorithms

After creating permutations of the user-item matrix, pro-
cessing the matrix, and computing the singular value decom-
position of the matrix, the process of producing predictions
for each test rating in system can be performed. First, the
training set for each submatrix is subjected to the training
step for the algorithm while the test set is subjected to
the prediction algorithm, producing the figures MAE and
RMSE.

Three collaborative filtering algorithms were imple-
mented. First, a user-based, memory-based algorithm was
implemented that used the rows of U % /S as the basis upon
which Pearson correlation values were computed. The SVD-
based algorithm described in [6] was also implemented. Fi-



Table 1: Percentage of non-null matrix elements (density)
in submatrices extracted from permutation compared with
density of original matrix

No Balancing  Balancing
Unaltered 5.04% -
Perm. submtx. 1 6.36% 3.36%
Perm. submtx. 2 3.11% 0.09%
Perm. submtx. 3 0.56% 14.92%
Perm. submtx. 4 8.41% 1.83%

nally, a linear regression algorithm that learns the parameter
matrix, A, in the formula P = (U x \fS) * A through a
process of gradient descent was implemented to examine a
more traditional model-based method.

4. Experimental Results

4.1 Evaluation Criteria

The testing of the permutation-enhanced collaborative
filtering system required metrics through which to judge
its effectiveness. This process was performed in two steps.
First, it was evaluated how well the permutation algorithm
clustered the ratings into dense submatrices, effectively
isolating the sparsity to specific submatrices. This could be
judged using two metrics - the density of the submatrices
(i.e. what percentage of the submatrices’ elements were non-
null) and the number of ratings contained in the submatrix.
The second of these two helped judge how many of the
non-null elements from the original matrix were contained
in each of the submatrices.

In addition, it needed to be determined whether per-
forming these permutations had any effect on the error
of the predicted ratings made by the collaborative filtering
algorithm. The well-established collaborative filtering error
metric - the mean absolute error (MAE) - was computed as
shown in Equation 3.

1
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4.2 Submatrix Density

The first step in evaluating the above collaborative filtering
system was to fine-tune the parameters of the permutation
algorithm. These parameters included the order in which the
two dimensions of the matrix were permutated, the number
of iterations of the algorithm, and whether the partition
balancing routine was used or not. The primary means of
evaluation was the density of the submatrices and the number
of ratings in each submatrix.

The densities of the submatrices when partition balancing
was used and was not used are shown in Table 1. The sub-
matrices are numbered from left-to-right and top-to-bottom
according to their position in the matrix. As anticipated, the

Table 2: Number of non-null matrix elements in submatri-
ces extracted from permutation compared with count from
original matrix

No Balancing  Balancing
Unaltered 80000.0 -
Perm. submtx. 1 68424.0 13390.4
Perm. submtx. 2 6006.4 368.8
Perm. submtx. 3 1502.4 59027.2
Perm. submtx. 4 4067.2 7213.6

permutation created when partition balancing is not used
creates one large submatrix with a much greater density than
the original matrix, but its size is very small compared to the
second-densest submatrix. In addition, this second-densest
submatrix contains a majority of the ratings in the original
dataset, as shown in Table 2. When partition balancing was
not used, the sizes of the submatrices are more uniform, and
the largest one still contains a large percentage of the ratings
from the original matrix while the others have a smaller
density. However, the second-densest one contains enough
ratings that, if combined with the densest, the number of
ratings approaches that of the large, dense matrix in the other
test, except that the total number of matrix elements (both
null and non-null) is less. Our tests revealed that the order
in which the dimensions were permutated did not alter the
densities of the submatrices.

The permutation algorithm was also tested with a number
of iterations varying between 1 and 20. Since it was found
that the densities of the submatrices did not change sig-
nificantly after 5 iterations, numbers of iterations between
1 and 5 were also tested. Overall the change in density
was minute with a changing number of iterations, varying
only by a fraction of a percentage point after the first few
iterations. However, it appeared that 10 iterations maximized
the densities of the two densest submatrices, and therefore,
this number of iterations was used for any further tests. The
optimal number of iterations was the same for the case in
which the partition balancing was not used.

4.3 Collaborative Filtering Prediction Error

Submatrices created by the permutation algorithm were
subjected to the three collaborative filtering algorithms
mentioned above. A wide range of numbers of singular
values was tested. The row permutation was performed first,
and only the matrices created using the partition balancing
routine were tested, as it was a goal to test the error rate of
the concatenation of the two densest submatrices.

Table 3 on the final page shows the error rate of the linear
regression collaborative filtering algorithm on the submatri-
ces with changing numbers of singular values. The values
between 10-20 were tested since the results in [6], upon
which the SVD algorithm is based, indicates a minimum
MAE within this range. Higher values were also tested to



determine the difference in MAE with increasing numbers
of singular values. The SVD-based algorithm demonstrated a
similar trend in its results, although the MAE of submatrices
1 and 4 had a slightly higher MAE than in the linear
regression case. It reveals a trend that, if the submatrix is
of greater density than the original, full matrix, then the
error rate will be lower, In addition, the concatenation of
the two densest submatrices did not show an error rate that
was as low as the densest submatrix alone. It appears that
concatenating the second-densest submatrix (which by itself
has a lower density than the original matrix) introduces
enough sparsity back into the data that the error rates are
slightly reduced. However, the one advantage is that these
two submatrices permitted all of the users to be included in
the combined dataset.

The memory-based algorithm was also tested with the
same datasets. However, none of the submatrices had a lower
error rate than the original matrix. This likely is due to the
fact that memory-based algorithms compute predictions from
the weighted averages of already-existing ratings. Therefore,
predictions computed from a smaller subset of a user’s or an
item’s ratings are based on less information, and the error
rates are bound to be higher.

5. Conclusion

Creating permutations of a user-item matrix in a col-
laborative filtering recommender system has two primary
benefits. First, the size of the matrix can be reduced by
about half while losing only approximately 10% of the
ratings in the original dataset. Furthermore, when such a
permutation is created, the highest quality predictions are
contained within the densest submatrix, as indicated by a
lower error rate compared to the full, unaltered matrix. These
more accurate predictions are ultimately more useful when
making recommendations to the user. In conclusion, this

method addresses two of the major drawbacks of collabora-
tive filtering recommender systems - sparsity and scalability
- in a simple algorithm.
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