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Abstract - Situation/threat modeling and threat prediction 

require higher levels of data fusion to provide actionable 

information to the warfighter. A significant challenge to the 

fusion of information into higher levels of knowledge is the 

uncertainty in the underlying data. This uncertainty may be 

in the form of trust pedigree, sensor noise, and data 

relevancy. Handling these elements within the fusion 

structure is vital in order to develop high level information 

fusion (HLIF) systems for multi-sensory, multi-use 

applications. 21st Century Systems, Inc. has developed the 

initial concepts for what we call Fusion with Uncertainty 

Reasoning using Nested Assessment Characterizer Elements 

(FURNACE). FURNACE utilizes nested fusion loops building 

higher levels of information fusion without losing sight of the 

potential weaknesses of the underlying data. FURNACE uses 

advanced technologies in information filtering and reasoning 

to provide the levels of fusion. These reduce bias, 

disambiguate, and fill gaps in the data. FURNACE handles 

uncertainty through an innovative evidential reasoning 

technology that provides the necessary data to the analyst, 

such that they can account for the pedigree of the 

information supplied as it is aggregated and fused. Our 

preliminary results indicate this uncertainty handling scheme 

is capable of maintaining process standards such that 

actionable information is produced for the warfighter. 

Keywords: High Level Information Fusion (HLIF), Nested 

Fusion Loops, Situation Assessment and Modeling, Threat 

and Impact Assessment, Bias and Ambiguity and 

Uncertainty Handling  

1 Introduction 

 The FURNACE effort is focused on the process and 

algorithms for high level data fusion with improved handling 

for bias, ambiguity, and uncertainty (BAU). Figure 1 shows 

our conceptual diagram of how FURNACE will support 

higher level fusion processes. FURNACE changes the 

paradigm in that it does not view the fusion levels as a 

sequential hierarchy. Instead, FURNACE parallels a meta-

tagging scheme that adds the fused information as metadata 

to the existing data. Each level of FURNACE deals with the 

direct data plus the added metadata generated by each level 

of the fusion. FURNACE is able to account for data that is 

controlled by the analyst (i.e., a set of sensors or known data 

sources where the analyst can direct the content) as well as 

‘outsourced’ data sources where the data is being repurposed 

for the analyst’s needs and not collected specifically for those 

needs. The concept is applicable to all levels of data fusion. 

Initial work has developed the underlying algorithmic needs 

to produce a fusion system able to handle BAU, repurposed 

data, and do so in a cohesive manner. FURNACE creates the 

framework by which the user can connect feeds, define the 

domain, utilize repurposed data, and add context to 

information. 

 FURNACE takes a cue from the way human situational 

awareness is modeled to create an innovative data fusion 

system. By parallelizing the fusion process (i.e., getting away 

from the sequential hierarchy paradigm), the higher level 

fusion emerges from the data. The continual feedback 

 
Figure 1: Conceptual diagram of the nested fusion loops. 



bolsters true evidence, while ambiguous, or even fraudulent, 

data is suppressed. The structure of FURNACE provides a 

wealth of power to reduce bias and disambiguate data, but we 

also add filtering and fusion processes to the FURNACE 

concept. These algorithms help FURNACE further identify 

relevant data and helps fill in the gaps caused by missing 

data. A data uncertainty handling capability rounds out 

FURNACE’s arsenal by helping the analyst understand the 

trustworthiness of the data so that proper decisions are made 

from the fused information FURNACE generates. 

 Our initial results show that the FURNACE concept is 

technically feasible. The resulting design and proof-of-

concept form the basis for future development and a testbed 

to showcase FURNACE’s abilities. We highlight here an 

example scenario from the Global Intelligence, Surveillance 

and Reconnaissance (GISR) domain to demonstrate the 

algorithms and concepts. FURNACE’s design is different 

from previous fusion systems in that each fusion level bears 

symmetry with the other levels in the form and function of 

the design. Using a common fusion engine [1], [2], 

abstracted for both high and low level information fusion, 

provides a unique opportunity to setup an advanced nested 

feedback system that drives the reduction of BAU, as well as 

stabilizes the fusion results. This system is designed to 

handle BAU and repurposed data at an intrinsic level rather 

than treat it as an outside calculation. Given the period of 

performance constraint on initial Phase I work, we were able 

to show FURNACE operating up to Level 2. However, we 

show that the abstractions made in the design should be able 

to be adapted for any fusion level which we will show in 

Phase II development. 

2 Example Scenario and Evidence 

Reasoning 

 We now describe the example scenario and data reasoning 

algorithm. The scenario is designed to test the data reasoning 

component of FURNACE. While the scenario is not overly 

complex, it does show where the data reasoning is able to 

modify the fusion results as it is applied to the feedback 

mechanism. The change in the fused data can be seen in the 

Results Section. 

2.1 Example Scenario 

 This Scenario showcases the feedback concept in that 

higher level fusion reduces the uncertainty at the lower level 

to make additional combinations. To date, the feedback is 

designed for the Level 2 to Level 1 path, but the concept is 

general enough to be used at higher levels. 

 Figure 2 is the conceptual drawing of the scenario and 

Figure 3 is a screen capture from the simulation. The images 

show two entities (E1, E2) entering a building. A few 

minutes later two more entities (E3, E4) exit the building. 

The Area of Interest (AOI) is covered by three sensors. A 

GMTI-radar detects movement in a large area around the 

building. An EO-camera (EO1) has a Field of View (FOV) 

covering the front entrance. A second EO-camera (EO2) has 

a FOV covering the parking lot, but does not see the exit. E1 

and E2 are detected by GMTI and EO1, while E3 is first 

detected by the GMTI and then EO2. E4 is only ever detected 

by the GMTI. There exists domain knowledge that no vehicle 

may enter the building. E1 and E3 have similar appearance, 

but there is no information about what happens inside the 

building to connect the two directly. 

2.2 Evidential Reasoning Network (ERN
®
) 

 Typical decision-support approaches will use either a 

simplistic uncertainty tracking method or something along 

the lines of a Bayesian probability approach. Simple 

uncertainty tracking does not fully account for the 

propagation and combination of uncertainty. It does not 

propagate the error whereby it may allow potentially 

erroneous data to bias the results. Bayesian approaches are 

better and account for the error propagation, but have the 

basic need of a priori probability measures on the uncertain 

elements. What is sometimes needed is a way to incorporate 

various degrees of uncertainty ranging from simple percent 

 
Figure 2: Concept drawing of Example Scenario 

 
Figure 3: Example Scenario screen capture 
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Figure 5: Discount Operation 

unknown up to probabilistic measures, where available. 

21CSi’s Evidential Reasoning Network (ERN®) technology is 

designed for this purpose. 

 ERN technology uses a belief algebra structure for 

providing a mathematically rigorous representation and 

manipulation of uncertainty within the evidential reasoning 

network. Since the introduction of the Dempster-Shafer 

Theory of Evidence [3], new evidential reasoning methods 

have been, and continue to be, developed, including fuzzy 

logic [4] and Subjective Logic [5], [6]. Recently, Mr. Steven 

O’Hara from 21CSi worked with Dr. Jøsang (creator of 

Subjective Logic) to develop Hypothesis Abduction using 

Subjective Logic (Analysis of Competing Hypothesis) [7], [8]. 

An evidential reasoning framework was needed to ensure that 

evidential reasoning expressions are coherent, consistent, and 

computationally tractable. 21CSi’s Evidential Reasoning 

Network is a novel structure that addresses these needs. The 

two prime belief algebra operators required are consensus 

and discount. These operators allow the propagation of belief 

values through the network amongst various opinion 

generating authorities, such as human subject matter experts 

or software agents that perform some sort of data analysis, 

processing, and reasoning. The belief algebra structure is 

capable of using probabilistic belief mass assignments 

through the use of belief frames. The ERN Toolkit includes a 

Subjective Logic and Dempster-Shafer belief algebra 

implementation. 

 Subjective Logic (SL) [9] is a way of thinking about 

uncertainty that builds upon the basic ideas presented by 

Dempster and Shafer to incorporate the subjectivity of all 

observations. In Subjective Logic, we operate on opinions as 

opposed to facts. An opinion ωx
A on a subject x by a party A 

is a 4-tuple of the belief (bx
A), disbelief (dx

A), uncertainty 

(ux
A), and relative atomicity (ax

A) (with respect to all possible 

states) about subject x. Note that bx + dx + ux = 1, so while it 

is not necessary to specify all three of these values, it is 

convenient when performing certain calculations. 

 SL introduces the consensus operator to combine 

opinions and the discount operator to support the belief in the 

source of an opinion. It has been shown that the consensus 

combination rule generates more intuitively correct results 

than common variants of Dempster’s rule [5], [6]. Subjective 

Logic can be viewed as an extension to binary logic and 

probability calculus. 

 The consensus between opinions ωx
A and ωx

B is defined 

by the formulas in Figure 4. In the case where we are dealing 

with dogmatic opinions (those with no uncertainty), then 

K=0, and a slightly different form of these equations is 

needed, and can be found in the referenced literature on 

Subjective Logic [9]. We use the  symbol to represent the 

consensus operator. The discount operator represents an 

opinion about another opinion, or the source of the opinion. 

The opinion ωB
A represents the opinion of B by A. This is a 

model for the concept of trust, where an opinion/source you 

trust would be discounted slightly, while an opinion that is 

not trustworthy would be discounted greatly. Figure 5shows 

the SL Discount operator. We use a  symbol to represent a 

discount operator. 

 The expressivity of the belief algebra is important in a 

heterogeneous system that may be incorporating some 

mixture of probabilistic and evidential reasoning. When 

working in known probability measure spaces, the belief 

algebra should reduce to probability calculus to preserve the 

accuracy and functionality of the supporting probabilistic 

systems—and Subjective Logic is easily shown to do so. 

3 Results 

 The design of the feedback mechanism has two 

components: the threshold function to determine if feedback 

is necessary and the uncertainty adjustment to produce the 

actual feedback information. The first thing that the feedback 

mechanism does is determine if there is need to send back 

any information. This is done for two reasons: First, since 

every relationship (including all primary, secondary, etc.) can 

potentially generate feedback, we would quickly create a 

logjam of data that would slow the process. By forcing the 

relationships to pass a threshold (i.e., a sniff-test to see if 

there is anything unusual that hampers the relationship 

(either in believability or uncertainty)) we only require the 

system to analyze that data and not everything. Second, we 

also eliminate many race conditions. By forcing the system to 

stabilize once it hits a threshold, feedback oscillations are 
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Figure 4: Consensus Operation 



attenuated while the system identifies and updates 

characteristics about an entity.  

 To calculate the threshold we utilize 21CSi’s ERN 

technology. If we consider each relationship from the 

scenario as an opinion, then the data that forms the 

relationship is the evidence. Equation 1 shows an example of 

the calculation for relationship R1 based upon the entities E1 

and E2 which form R1: 

  Eq. 1 

 Equation 1, in belief algebra, says that the opinion on 

R1 is the opinion multiplication of the opinion of E1 about R1 

and the opinion of E2 about R1. For our purposes, we are 

using the multiplication operator since the consensus operator 

is too sensitive to calculations with a dogmatic condition 

either in belief or disbelief. The opinion multiplication 

operator ^ is calculated as: 

 

 

 

 
 

 The opinion E1 about R1 takes into account how much 

E1 effects R1, the uncertainty of E1, and any additional 

domain knowledge that can affect the relationship. Then by 

analyzing the resulting opinion’s disbelief (which is a 

function of both the level of dissimilarity and uncertainty in 

the opinion) we have a measure of the need for re-evaluating 

the entities that formed the relationship.  

 If the opinion about R1 has zero disbelief there is no 

need to re-evaluate the entities E1 and E2. However, if a 

relationship generates a feedback request, FURNACE would 

then determine what should be fed back. The relationships in 

the example are: 

 R1: E1 – E2 spatial close  

        E1 – E2 temporal close  

 R2: E1 – Bg location close 

 R3: E2 – Bg location close 

 R4: E3 – Bg location close 

 R5: E4 – Bg location close 

 R6: E3 – E4 spatial close  

        E3 – E4 temporal close 

 Suppose Relationship R5 reaches a threshold. With 

domain knowledge from the GISR examples stating that 

vehicles cannot exit the building, the opinion generated on 

R5 from the Building (Bg) will contain relatively high 

disbelief that E4 is a vehicle. Suppose E4 is initially 

classified as possibly vehicular (with high uncertainty). In 

this case, when the opinion multiplication combines the E4 

and building opinions into R5, the disbelief reaches the 

threshold to be re-evaluated. When the updated R5 opinion is 

fed back, it forces the uncertainty that E4 is a human to 

decrease. When Level 1 processes the new uncertainty levels, 

it is able to determine that E4 is a human and not a vehicle. 

 The R1 opinion from Equation 1 is a primary 

relationship, dealing only with direct connections. Secondary 

relationships are harder to show and may or may not be 

useful. Table 1 shows a connectivity matrix example where 

the relationship label indicates a primary connection. If we 

look at the table, we see that E4 has primary connections to 

E3 and the building (Bg). However, Bg has primary 

connections to all four entities which implies that E4 has 

secondary connections E1 and E2. We can then form 

secondary opinion equations similar to Equation 1 using the 

opinion of E1 about E4 and so forth.  

 The feedback due to primary connections affects the 

entities individually that formed the relationship. However, 

the secondary connections affect the relationship between the 

entities. Equation 2 shows the opinion of the secondary 

relationship between E1 and E3. 

  Eq. 2 

 When this is calculated it shows a high belief that a 

relationship exists between E1 and E3. The relationship is 

due to the secondary connection with building between the 

two entities as well as the similarity in appearance (which is 

obtained as metadata when processed in Level 1). This 

secondary connection opinion reaches the threshold to 

activate the feedback mechanism. This time, however, the 

feedback reduces the uncertainty such that the data for E1 

and the data for E3 are the same entity. When Level 1 re-

calculates the entities, it creates a new entity list.  

Table 1: Connectivity matrix 

 



 The above example illustrates that the bias produced by 

the initially mislabeled entity E4 was reduced along with the 

uncertainty and ambiguity allowing the system to correctly 

classify the object. As the examples become more realistic 

and more complex we will be able to utilize the feedback 

system to iteratively correct the analysis and provide the best 

possible fusion results to the analyst. The actual calculations 

are somewhat more involved than portrayed above, but the 

principles still apply. Using data from the Example Scenario 

and the above analysis we calculate the base rate (Ex(a)) and 

probability expectation (P(Ex)) using the Evidential 

Reasoning Network for the entities involved in the 

relationship, shown in Table 2.  

 We next construct the a priori truth table of the possible 

context (which could possibly also be learned context). Table 

3 shows three possible building types that could be included 

to extend this scenario. We will show first the calculation for 

a building (Type A) that would allow vehicles near it and 

then redo the calculation for the Type B building to illustrate 

the contextual aspect of FURNACE. 

 We can now calculate the opinion on the relationship as 

shown in Table 4. Note that when Entity E4 might be 

classified as a vehicle, the Type A building allows for 

vehicles, so it concludes that the relationship is 98% valid, so 

no feedback is needed. However, Type B does not allow 

vehicles and would trigger the feedback mechanism since the 

relationship is considered only 71% valid (see Table 4). 

4  Conclusions 

 We investigated how a holistic fusion approach could 

be constructed and how uncertainty could be measured and 

then manipulated by the ERN technology. We also designed 

a feedback mechanism around the ERN technology which 

would help stabilize and prevent race conditions in the data 

feedback. By analyzing the level of disbelief in the fused 

Table 2: Base rate and probability expectation calculations 

Veh person Bldg Irrelevant Uncertainty

Person - E4 0.22 0.22 0.22 0.34

E4(a) 0.15 0.2 0.05 0.6

P(E4) 0.271 0.288 0.017 0.424

Building B - E5 0.97 0.03

E5(a) 0.15 0.2 0.05 0.6

P(E5) 0.0045 0.006 0.9715 0.018  
 

Table 3: Context truth table 

Relationships Veh person Bldg Irrelevant

Building A T T F T Garage, can take cars and people

Building B F T F T Regular building, only people can interact

Building S F T F F Secure Facility, need to know everything 

Person T T T T

Vehicle F T T T  
 

Table 4: Relationship opinion calculation 

R5 B D U A P(x)

O1 0.983 0.017 0.5 98%

O2 1 0 0.5 100%

P(R5) = 98% 0.98 0.02 0.25 98%

R5 B D U A P(x)

O1 0.712 0.288 0.5 71%

O2 1 0 0.5 100%

P(R5) = 71% 0.71 0.29 0.25 71%

E5 Opinion of R5

E4 Opinion of R5

Relationship Opinions - Building B

Relationship Opinions - Building A

E5 Opinion of R5

E4 Opinion of R5

O1 ^ O2

O1 ^ O2

 



output (along with its associated uncertainty) we could 

produce an intelligent threshold that would indicate if fused 

information is in need of additional processing. The actual 

feedback acts to either reduce or increase uncertainty such 

that lower fusion processes can make better decisions about 

the objects. Preliminary results show that the contextual 

information in the initial scenarios is successful in providing 

relevant feedback and reductions in uncertainty to provide 

fused output. These results indicate the approach to be 

feasible, but more work is needed to verify and increase the 

robustness of the concept through additional data and 

increasingly complex and higher level information fusion. 
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