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Abstract—Agricultural yields can be predicted from 

detailed multi-year remote sensing image sequences using 

measured features of vegetation conditions. In this paper, 

the dependency between the moment of prediction and the 

accuracy of the forecast is studied. The linear model is 

selected as a basic approach of yield forecasting. Then, the 

model is extended with non-linear components (factors) in 

order to improve the accuracy of the forecasts. The 

extensions take into consideration long-term technological 

advances in agricultural productivity as well as regional 

variations in yields (fertility of the lands). The accuracy of 

the model has been estimated based on the time period 

between the moment of the forecast formation and the 

harvest time. 

Keywords: Image mining, crop yield forecasting, nonlinear 

regression. 

1 Introduction 

Effective and efficient yield forecasting is an important 

area of the research which helps in ensuring food security all 

around the world. Nowadays yield forecasting based on 

multi-year observations of the land surface from space is a 

subject of intensive research based on data mining 

techniques. 

The principal idea of the approach is the following. 

Having two years with similar observations of informative 

features of vegetation condition one should expect similar 

yields. However, the complexity of vegetation models and 

incompleteness of observations provides a challenge in 

verification of any yield forecasting method. The level of 

noise makes it difficult to extract a useful signal. Only by 

analyzing a large dataset which contains several regions and 

spans over many years it is possible to estimate the accuracy 

of a yield forecast model and reliably compare it with any 

alternatives. 

For these reasons it is required to use a source of data 

that can provide reliable and accurate spatial-temporal 

measurements of vegetation conditions. This data can be 

obtained from remote sensing using satellite imaging. 

Various sources of remote sensing information can be used 

for the purposes of the crop yields forecasting as 

complimentary to weather measurements as well as a sole 

source of data [3], [4], [5], [6]. 

There were attempts to develop a computational 

algorithm which uses different channels from the 

multispectral radiometers [4]. As an intermediate step the 

multispectral images were transformed into vegetation 

indices. These indices were used for droughts detection as 

well as the crop yields forecasting. The technique has shown 

promising results [7], [8], [9].  

Rather than studying a general accuracy of the 

forecasts the authors of this study concentrated on finding a 

dependency between the moment of prediction and 

efficiency of yield forecasting for the selected model. 

2 Forecasting model 

The proposed model can be described as follows. Crop yield 

of a particular culture at a given region should be fairly 

reliably predicted by function whose parameters are 

averaged (by this region) values of vegetation indices during 

growth and ripening period of the crop. The better the 

historical track record of the indices is known, the better the 

forecast of crop yields can be made. 

The model for forecasting crop yields is based on the 

history of vegetation indices, accumulated over a fixed 

period of the year but not earlier than the start of the 

growing season. 

The model for crop yields forecasting in general looks 

like: 

       ,2,1,  tvtvtvfkrkry  (1) 

where  

kry  - predicted value of the yield at the end of the 

season for territorial region r  and crop type k , 

krf  - unknown function of the yield forecast for the 

region and crop type, 

 tv  - vegetation index value for a region, 



 

t  - time of the start of the measurements in the current 

growing season, with t+1, t+2, ... corresponds to a discrete 

points in time when the measurements carried out during this 

season. 

According to the recent studies in the field of crop 

yield forecasting there is a close correlation between 

vegetation indices obtained from multispectral images and 

productivity of plants [10], [11], [12]. In order to forecast 

the yield most of the studies require so called crop masks 

[13]. A reliable extraction of crop masks is organizationally 

difficult task. It requires close collaboration with farmers. 

Not to mention that is it often financially unfeasible activity. 

The proposed in this study method extracts the information 

from the overall condition of vegetation in the given area 

instead of using crop masks. 

Regional administrative divisions are selected as units 

of the area. This choice is made due to the structure of 

available statistical information on the crop yields for 

previous years, which are officially provided by the 

government and publicly available. For example, the State 

Statistics Service of the Russian Federation allows obtaining 

historical information about the crop yields for all regions of 

the country [14]. Availability of this information makes it 

possible to adjust free parameters of a model to a specific 

region and crop type through learning process (or 

optimization). 

From the available statistical data one can make a 

conclusion that the variability of the yield is small relative to 

its magnitude. Hence, after expansion of a yield model 

function in equation (1) into the Taylor polynomial the main 

contribution to the accuracy of the forecast will be made by 

the linear terms of the polynomial. As a simplification the 

non-linear terms of higher orders can be ignored. In this 

case, the model becomes linear, i.e. krf  is a linear 

combination of  tv . 

2.1 Basic approach 

As was mentioned earlier the model can be transformed 

into the linear one assuming that the soil and climate 

characteristics have a small variation for within (but ton 

between) the studied regions. The simplified linear model 

can be written as: 

    



T

t
rrkrk tvty

1

  (2) 

where 

k  - index indicating the crop type, 

r  - index pointing to a territorial region of the Russian 

Federation, 

rky  - crop yield estimate for a given area r , and crop 

type k , 

 
r

tv  - average value of the vegetation condition 

index for a given territorial region, 
r

  is averaging 

operator by region r , 

 trk  - adjustable parameters of the model for 

individual time intervals of the vegetation period (or 

calendar year). 

The insufficient amount of statistical information 

available for one region makes it difficult to adjust this 

simple model. Indeed, only a decade of yields data is 

available. 

Thus, the model needs to be extended in order to be 

used in practical applications. 

2.2 Resultant model with factor adjustment 

for regions and temporal trend 

In the case when the amount of statistical data available 

for the adjustment of the individual models for each of the 

region is not sufficient it is required to reduce the number of 

adjustable parameters. Thus, in particular, one can assume 

that the main contributions to the difference in crop yields 

are made by the following factors: 

- fertility of soils in a region, 

- climatic differences between regions, 

- amount of solar radiation, depending on the latitude 

of a region. 

At the same time to build the model, we deliberately 

ignore the temporary displacement of growing season for 

various regions, for example, for the western part of the 

Russian Federation taken for this study. Using the above 

assumptions, the following formula can be suggested: 

    



T

t
rkrkrk tvtCy

1

  (3) 

where 

k , r , rky ,  
r

tv  - were defined for equation (2), 

 tk  - adjustable parameters of the model for crop 

type k  but are now independent from the region 

r
  - averaging operator by region r , 

rkC  - coefficient of performance of the region r  for 

specific crop type k . 

During the validation of the model described by the 

equation (3) was found that there are regular errors which 

depend from the year of the forecast. This observation was 

used to make a hypothesis about existence of a long-term 

trend in the yields. This trend hypothesis needed to be 

validated. In order to do that the original forecasting model 

has been modified to take into account the assumed trend as 

described further in the text. 

Indeed, in the past few decades, there has been a stable 

growth of crop yields per unit of cultivated area [15] all over 



 

the globe. This is due to several factors. First of all, it is 

worth noting the progress in genetic engineering for crops 

improvement. Improved seeds are more resistant to drought, 

temperature changes and parasites. Another factor is the 

more efficient use of fertilizers. Progress in the field of 

agricultural technology has allowed to harvest with fewer 

losses. Improved methods of chemical treatment resulted in 

better control of pest populations. 

Such improvements can be referred as a trend in crop 

yields. It is likely required to take it into account in order to 

improve the accuracy of the forecast. This trend may not 

continue but it is essential to (at least) remove this regular 

error from the training data. 

Making an assumption that the yields changes are 

linearly dependent on time within the studied historic period 

it is possible to modify the previous model to predict the 

long-term increase in yields. 

The average yield for the current year can be expressed 

from the yield of previous year by the following equation: 

  startcurrent

start

startcurrent
YY

y

yy



   

where 

currenty  - average crop yield for the current year 

currentY , 

starty  - average crop yield in year of the beginning 

of observations startY , 

  - averaging operator, 

  - relative annual increase in productivity due to 

long-term trend. 

Let us express currenty  in terms of the other 

variables: 

    startstartcurrentcurrent yYYy  1   

The following nonlinear regression formula for the 

refined model of crop yields is obtained: 

      



T

t
rkrkstartrk tvtCYYy

1

1   

where 

k , r , rky ,  
r

tv ,  tk , rkC  - were defined for 

equations (2) and (3), 

Y  - current year for which the crop yields are 

evaluation, 

startY  - the year of the beginning of observations, 

  - relative annual increase in productivity due to 

long-term trend. 

Unlike initial linear approach this model can no longer 

be qualified as a linear but rather a factor model due to 

multipliers describing productivity of a region and the trend. 

Authors made attempts to reduce this model back to 

linear one by adding coefficients rkC  and 

  startYY  1  but the accuracy of the model has been 

reduced drastically in this case. It can be explained by 

significant variation of the above mentioned multipliers 

(which can be also called factors). For example the 

productivity (fertility) rkC  can differ by the factor of 2 

between the regions. 

On the other hand insufficient data per region makes it 

impossible to build separate linear model per individual 

region. 

2.3 Forecast accuracy and the moment of the 

prediction 

One can assume that the earlier in time we are making 

the forecast the less accurate it will be. In the contrary the 

closer we get to a harvest the more reliable forecasts we can 

achieve. Usually, it is required to know how reliable the 

forecast is depending on the date of the prediction. This 

study tries to provide the answer to this question for the 

described above model. 

3 Results 

The accuracy of the model was assessed using K-fold cross-

validation method. The whole set of the input data has been 

partitioned several times into two subsets: the training subset 

and the testing subset. Each time the testing subset was 

different. In total 10 unique testing subsets were used so that 

the data for each year available were used as a testing subset 

at least once. 

In addition, the dependency between the accuracy of 

the forecast and the moment of the forecast was studied. In 

each case it was assumed that the remote sensing data was 

available up to the moment of the forecast. That is: if, for 

example, a prediction takes place in August 13 one can 

assume that all the remote sensing data (for this year) prior 

to this date is already available for the analysis. 

Cross-validation is used to evaluate the performance of 

the forecasting model in a manner similar to that which is 

commonly used for classifiers. 

Due to insufficient amount of statistical data during the 

validation the chronological order of training data and 

validation data was not preserved. This does not jeopardize 

the validation for the following two reasons:  

1) the forecasting scenario for each year is based on 

processing of the current year data and does not depend of 

the data from other (including previous) years. 

2) the forecasting algorithm uses only data that strictly 

precede the forecasting time within the giving vegetation 

period (within the current year). In other words, the model 

uses only past observations for each forecasting moment and 

does not involve any future data within the considered year. 



 

Remote sensing data for 14 regions of Russian 

Federation over span of 10 years (from 2000 to 2009) were 

used for training and validation of the model. Total data set 

used for training and validation consisted of more than 1500 

images with dimensions 2400 x 2400 pixels each. The size of 

the images set was more than 54 GB. After the process of 

model training was complete the smaller set of images was 

used in the forecast for a given year. The images used in the 

forecast represent 7 separate moments in time with 16 days 

distance from each other. These images are 16 days 

cloudless composites snapshots with resolution of 500 

meters captured by MODIS TERRA satellite. 

For example, figure 1 shows the image with vegetation 

condition index (NDVI) for 3 regions of the Russian 

Federation: Ivanovo, Vladimir and Nizhny Novgorod 

regions. The image represents values of the index for 9 May 

2007. 

In order to simulate the change in prediction date the 

snapshots used in the model were selected in a “sliding 

window” manner. This is to maintain the number of 

snapshots constant and equal to 7. The constant number of 

observations was required to avoid model overfitting and 

preserve the ratio of the amount of training cases versus the 

number of coefficients in the model. 

The resultant accuracies of prediction for two groups 

of cultures are shown in Table 1. Forecasting errors of crop 

yields is evaluated in the form standard deviation of 

forecasted values from the yield data available through the 

official statistics. 

As can be seen from Table 1 the worst result is 

generated in late spring / early summer. This is due to the 

fact that information about vegetation condition in early 

stages of growth is less informative than in final stages. The 

visual representation of the forecasting errors is shown in 

Figure 2. 

 

Fig. 1. The area in study: for Ivanovo (A), Vladimir (B) and Nizhny 

Novgorod (C) regions for 9 May 2007 (Vegetation index map). 

It is worth noting that the proposed model does not 

require crop masks which are usually used in similar studies 

[13]. Our method extracts the required information from the 

overall condition of vegetation in the given area rather than 

condition of a given crop. The lack of crop mask may reduce 

the accuracy of the forecasts. Nevertheless, the comparison 

of our results with the results from other studies [13] shows 

that our model demonstrate competitive accuracy even 

without the crop mask or other information about cultivated 

areas such as soil types and weather conditions. 

TABLE 1 

STANDARD DEVIATION OF THE FORECASTS CROP YIELDS FOR DIFFERENT 

CULTURES USING CROSS-VALIDATION FOR THE MODEL WITH FACTOR 

ADJUSTMENT FOR REGIONS AND TEMPORAL TREND FOR THE PERIOD 2000-

2009. BEST ACCURACIES ARE MARKED WITH BOLD ITALIC FONT. 

 Date of the forecast 

 June 10 June 26 July 12 July 28 August 13 August 29 

Grain 16,1% 15,2% 13,7% 12,7% 12,5% 13,5% 

Potato 19,8% 22,1% 20,4% 18,7% 18,0% 16,9% 

4 Conclusion 

This study introduces an approach to develop an 

efficient model for crop yield forecasting via extracting 

information from the large set of satellite images. 

Also, the dependence between the moment of the 

forecast and its accuracy has been studied. It is shown the 

closer to the harvest the prediction is performed the better 

accuracy can be achieved. However, the useful forecast can 

be done even several months before the harvest. 

The dependency of forecasting errors from the date of 

the forecast is shown in Figure 2 for the yields of grain and 

potatoes. 
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Fig. 2. Standard deviation of yield predictions for grain (top image) 

and potato (bottom image) cultures. As can be seen the accuracy of 

predictions improves gradually as we get closer to the harvest. 



 

The main advantage of the suggested approach is the 

possibility to use free to access information, including 

satellite multispectral images and official statistical data.  

It is shown that by finding out the appropriate form of 

forecasting function on the basis of remote sensing images 

and official government statistics data is possible to obtain 

fairly accurate results of yields forecasting. 

Other advantage is that the proposed approach does 

not require any specific information about the cultivated 

areas. It minimizes the amount of the input data for practical 

implementation of the models. Specifically, this approach 

does not require crop masks. In other words the method 

uses overall condition of the vegetation in the given area 

rather than the condition of specific culture. 

The analysis of the accuracy of forecasting crop yields 

using cross-validation method demonstrates the advantages 

and disadvantages of the proposed approach. The model 

with factor adjustment for regions and temporal trend allows 

obtaining forecasting errors from 12% to 22% depending on 

the culture, and the moment in time of the forecast. The 

closer we get to the harvest the better accuracy we can 

expect for such kind of forecasts. 

We plan to continue this study with enhanced 

forecasting models in order to improve the accuracy and 

generality of the crop yield prediction as well as extend the 

forecasts to cover the more territorial regions. 
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