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Abstract — The synthesis of an effective multi-category 
nonlinear classifier with the capability to output calibrated 
posterior probabilities to enable post-processing is of great 
significance in practical recognition situations in that the 
posterior probability reflects the assessment uncertainty. In 
this paper, a multi-scale nonparametric and parametric 
hybrid recognition strategy is developed for this purpose. 
Based on the binary tree representation for nested structure, a 
new nonlinear polychotomous classification algorithm with 
the capability of estimating posterior probability is developed 
on the strength of kernel learning and Bayesian decision 
theory. In particular, by capitalizing on the intrinsic conexus 
between hierarchical structure and multi-scale analysis, the 
polychotomous multi-scale Bayesian kernel Fisher 
discriminant is implemented for building the classifier at 
different scales for different levels. Finally, the performance 
of the proposed classification and posterior probability 
estimation algorithm is validated by designing a multi-
category Bayesian kernel Fisher discriminant classifier for a 
satellite images dataset. 

Keywords: Kernel Fisher Discriminant; Binary Tree; 
Posterior Probability; Inter-class Separability; Class-
conditional density function; Multi-scale.  

 

1 Introduction 
     In the realm of pattern recognition and statistical learning, 
most of existing schemes can be categorized into parametric 
or nonparametric approaches. Parametric methods assume 
specific parametric models, while nonparametric methods 
usually do not require any postulations for the model and 
utilize the sampled data directly for model representation. 
Both parametric and nonparametric methods have their own 
strengths and limitations [1], and the complementarity 
between them has aroused considerable research endeavours 
in fusing non-parametric and parametric methods for targets 
tracking, nonlinear systems identification, classifier 
construction and modeling, etc [1−6]. In this paper, as a stride 
towards the fusion of kernel-based nonparametric 
computational learning methods and parametric density 

estimation methods, a multi-scale multi-class recognition 
strategy is developed, where the kernel Fisher discriminant 
(KFD) is employed for feature extraction and parametric 
class-conditional density estimation is used for Bayesian 
classification.  

    In real world, most of classification problems 
encountered comprise multiple categories, i.e., 
polychotomous classification problem, such as automatic 
target recognition, optical character recognition, face 
recognition, etc. In general, the issue of polychotomous 
classification is much more involved than dichotomic 
classification. With the burgeoning of various kernel learning 
algorithms since 1990s [7−9], such as support vector machine 
(SVM), kernel Fisher discriminant (KFD) and kernel principal 
component analysis (KPCA) and so on, the synthesis of multi-
category nonlinear kernel classifier with superior 
generalization capability has become a focus of research in 
the past decade [10−16]. The conventional approaches for 
extending binary classifier to polychotomous classifier fall 
into two categories, i.e., the direct method and ‘divide-and-
combine’ approach. The direct method is a straightforward 
generalization of the corresponding dichotomic algorithms, 
and all data are considered in one optimization formulation, 
which may result in prohibitively-expensive computing cost 
for solving a nonlinear optimization problem with a large 
number of variables.  
       In contrast to the direct method, the methodology of 
‘divide-and-combine’ usually decomposes the multi-category 
problem into several subproblems that can be solved by using 
binary classifiers. Two widely used ‘divide-and-combine’ 
methods are pairwise and one-versus-rest. In the approach of 
pairwise, an n-class problem is converted into n(n-1)/2 
dichotomic problems which cover all pairs of classes. Then, 
the binary classifiers are trained for each of pairs, and the 
classification decision for a test pattern is given on the 
aggregate of output magnitudes. Apparently, in pairwise 
methods, the number of binary classifiers built increases 
rapidly with the increasing of the number of classes, which 
easily leads to onerous computational task. This problem is 
alleviated in the one-versus-rest method, where only n binary 
classifiers are needed for n-class problem and each of them is 
trained to separate one class of samples from all others. 



However, all training data have to be involved in constructing 
each binary classifier and one-versus-rest method is not 
capable to yield the optimal decision boundaries. In particular, 
both methods can result in the existence of unclassified 
regions.  
        Recently, as a new member in the family of ‘divide-and-
combine’ methods, the multi-category classifier with 
hierarchical tree structure has aroused extensive interest in the 
community of pattern recognition and machine learning 
[16−19]. As a natural hierarchical representation for nested 
structure, the binary tree usually organizes information into 
different levels, which enables the multi-scale implementation 
so that the higher in the hierarchy a level is the finer scales the 
information is processed in.  
      Moreover, compared to the conventional approaches in 
constructing the multi-category classifiers, the polychotomous 
classifiers with hierarchical structure are advantageous in 
improving computational tractability and classification 
accuracy, diminishing the amount of data involved in training 
each binary classifier and eliminating unclassifiable regions. 
Also, the hierarchical structure invoked empowers the design 
and implementation of multi-scale polychotomous 
classification algorithms to take care of local as well as global 
complexity of the input-output map. For constructing the 
hierarchical tree structure, non-metric distance functions for 
measuring the inter-class separability was developed in Refs. 
[17−18, 20]. The significance of no-metric distance function 
in image classification and computer vision has been 
investigated in [21], and the raison d'etre of non-metric 
distance function is also corroborated by some research in 
psychology suggesting the ubiquity of non-metric distance in 
human similarity judgments [22].  
      On the other hand, the synthesis of a multi-category 
nonlinear classifier with the capability to produce a calibrated 
posterior probability ( )P class input  to enable post-
processing is of great significance in practical recognition 
situations. For instance, a posterior probability allows 
decisions that can use a utility model. Posterior probabilities 
are also required when a classifier is making a small part of an 
overall decision, and the classification outputs must be 
combined with other sources of information for decision-
making, such as example-dependent misclassification costs, 
the outputs of other classifiers or domain knowledge [23−25]. 
For the nonlinear kernel classification algorithms, albeit some 
endeavours have been devoted to convert the output of 
support vector classifier into the posterior probability by 
fitting some predefined mapping functions [23−27], such as 
logistic link function and sigmoid function, these schemes are 
empirical per se and the building of classifier is irrespective of 
the estimation of posterior probability.  
       Compared to the algorithm of support vector 
classification, which directly generates geometric decision 
boundary for dichotomy with an uncalibrated value, a crucial 
advantage of the KFD is that the produced outputs can easily 
be transformed into the posterior probabilities, i.e., the class 
membership. In other words, the output values imply not only 
whether a given test pattern belongs to a certain class, but also 

the probability of this event [7, 28]. Some recent researches 
have revealed the essence of KFD in nonlinear classification 
[29] and the equivalence between linear SVC and sparsified 
Fisher discriminant analysis [30]. Although the algorithm of 
Fisher discriminant can be generalized to n − class feature 
extraction and dimension reduction problem by directly 
projecting the data onto a ( 1)n −  dimensional space [31], this 
direct method is obviously unable to be used when the 
number of classes is greater than the dimensionality of the 
input space. While, for the algorithm of polychotomous KFD 
developed in Ref. [17], it can be used for multi-category 
problem regardless of the dimensionality of the input space, 
and in particular the hierarchical tree structure synthesized 
provides a natural framework for evaluating the multi-class 
posterior probabilities. Herein, in the line of our previous 
arguments [17−18], the problem of evaluating multi-class 
posterior probability is approached by an innovative multi-
scale polychotomous Bayesian kernel Fisher discriminant 
algorithm developed in this paper. The proposed algorithm 
primarily rests on two pillars: class-conditional density 
function estimation and binary tree representation for nested 
structure. The former enables the evaluation of posterior 
probability for the dichotomic subproblems, and the latter 
empower us to convert the multi-category classification 
problem into ( 1)n −  dichotomic subproblems and thereby 
implement the multi-scale classification.  
      The rest of this paper is organized as follows. In the next 
section, the kernelized group clustering algorithm used in [17] 
for binary tree induction is briefly reviewed. Following that, 
the polychotomous Bayesian KFD on the strength of 
Lindeberg-Feller central limit theorem is discussed in Section 
3. In Section 4, the algorithms for estimating class conditional 
probability densities and multi-class posterior probability are 
presented. The simulation study on satellite image data 
classification is conducted in Section 5, with concluding 
remarks in Section 6.  
       The following generic notations will be used throughout 
this paper: non-boldface symbols such as , , ,y k P  refer to 
scalar valued objects, lower case boldface symbols such as 

, , ,x ϕ β  refer to vector valued objects, and capital 
boldface symbols such as , , ,N Κ Α  will be used for 
matrices and sets.  

2 Macro-class partition algorithm for 
binary tree synthesis 

    The strategy of determining the topology of binary tree by 
dividing the multiple classes to be recognized into two smaller 
macro-classes at each non-leaf node has been developed in 
Refs. [17−18]. Apparently, there exist many possibilities to 
split the multiple classes into two smaller macro-classes; 
hence the macro-class partitioning algorithm plays a vital role 
in the success of this strategy. Albeit the hierarchical divisive 
clustering method may be a natural choice for macro-class 
partitioning [32], the challenge is posed for defining the 
appropriate distance function capable of measuring the inter-



class separability in feature space for clustering classes in the 
scenario of nonlinear classification. 
       In Ref. [20], the sum of minimum distances function mdd  
was proposed for measuring the inter-class separability 
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where { }| 1, 2, ,i i p= =A a  and { }| 1, 2, ,i i q= =B b  
are training datasets of two different classes. Compared to the 
well-known Hausdorff metric, which is defined as the 
maximum distance between any point in one shape and the 
point that is closest to it in the other, the distances function 

mdd  defined by (1) is non-metric and advantageous due to its 
capability of taking into account the overall structure of the 
points set. Further, for measuring inter-class separability in 
the feature space induced by nonlinear mapping ( )⋅ϕ , the 
sum of minimum distance function was kernelized to the 
following form in Ref. [17−18] 
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where ( , ) ( ) ( )Tk =i i i ia b a bϕ ϕ  is the kernel function such 
that ( , ) 1k =x x , and obviously the kernelized distance 
function mdd  in (2) can be evaluated without explicitly 
knowing the nonlinear mapping ( )⋅ϕ .  
       Before training the dichotomic classifiers at non-leaf 
nodes, the topology of the binary tree needs to be determined 
firstly by partitioning the classes to be recognized into two 
smaller macro-classes at each non-leaf node from top to 
down. This procedure specifies the training datasets used for 
training each binary classifier and therefore is critical to the 
recognition performance of the hierarchical classification 
algorithm.  
      In the hierarchical classification algorithm, it is obvious 
that the degeneration of classification performance at higher 
level has greater impact on the overall classification 
performance than that occurred at lower levels. Therefore, the 
upper level the more separable classes should be partitioned, 
i.e., maximizes the degree of separability while partitioning 
the multiple classes into two macro-classes from top to down. 
       With the kernelized distance function mdd  for measuring 
the inter-class separability, the macro-class partition 
algorithm implemented by invoking the hierarchical divisive 
clustering can be applied for each non-leaf node from top to 
down, where the classes in one macro-class are recursively 
divided into two macro-classes belonging to left-node and 
right-node respectively. Initially, the macro-class partition 
algorithm starts from the root node, where the macro-class 
includes all classes to be recognized. Firstly, the kernelized 
sum of minimum distance function mdd  between all pairs of 
the classes in one macro-class are evaluated, and then 
partition the pair of classes between which the distance is 

maximal into the left-node and right-node as the prototype 
classes of the child nodes, respectively. Subsequently, assign 
the remaining classes in the non-leaf node into the child node 
whose prototype class is the closest to it in the sense of 
kernelized distance function mdd . Thus, two smaller macro-
classes, either of which may also consist of multiple classes, 
are formed in the left child node and right child node, 
respectively. Iterating this procedure from top to down for 
every non-leaf node until only one individual class is left in 
each leaf node produces a hierarchy of nested macro-classes, 
and thereby determines the topology of the binary tree. 
Apparently the number of leaf nodes equals to the number of 
classes.  

3 Estimation of class-conditional PDF of 
projected data in kernel feature space 

     The binary tree synthesized via macro-class partition 
algorithm offers a skeleton where the dichotomic classifier 
can be trained at each non-leaf node for implementing a 
decision rule that separates the macro-class into its left child 
node and its right child node. Thus, the n -class 
polychotomous classifier can be constructed by training 
( 1)n −  binary classifier at non-leaf nodes, which is less than 
the number of dichotomic classifiers trained in pairwise and 
one-versus-rest methods. Also, as learning proceeds from top 
to down, the amount of data involved in the subsequent 
training processes decrease rapidly. These substantially 
improve the computational tractability. In this section, 
following a briefly review for KFD algorithm, the estimation 
of the underlying class-conditional PDF for the projections 
generated via KFD in feature space will be discussed. 
        Given a set of m − dimensional input vectors 

jx ,  

1, ,j = , 1  input vectors in the subset 1D  labeled 1ω  
and 2  input vectors in the subset 2D  labeled 2ω . In the 
algorithm of KFD, the generalized Rayleigh quotient is 
maximized in the feature space in order to find the projection 
direction w  which maximizes the between-class variance and 
minimizes the within-class variance for the projections on it. 
In feature space, the generalized Rayleigh quotient becomes 
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and iΚ  are the kernel matrices with entries 
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k= x xΚ . With the vital ansatz that 
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= ∑w xϕ , the generalized Rayleigh quotient (3) can 

be reformulated in terms of kernel function in the feature 
space as [33]  
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The expansion coefficients vector β  can be obtained by 
maximizing the ( )J β  in (4), and several effective algorithms 
for that have been available and discussed in [7]. Thereby, the 
projections of the mapped data points ( )jxϕ  onto the 
discriminant w  in feature space can be calculated as 

   
1 1

( ) ( ) ( ) ( , )T
j j j j

j j
y kβ β

= =

= =∑ ∑T= w x x x x xϕ ϕ ϕ .      (5) 

From equation (5), it is reasonable to treat the projection 
( )y T= w xϕ  as a scalar random variable, which is the 

weighted summation of all components of the data points
 ( )xϕ  mapped into the high-dimensional feature space. It is 

noteworthy that the feature spaces induced by kernel 
functions are usually very high-dimensional, and for instance, 
the dimension of the feature space induced by Gaussian RBF 
kernel is infinite. Hence, according to the celebrated 
Lindeberg-Feller Central Limit Theorem, this fact implies that 
the set of projections y  of the mapped data in each class 
tends to be distributed normally, i.e. 

                                ( | ) ~ ( , )i i ip y Nω μ σ                           (6) 

where 
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is the univariate Gaussian probability density function. Thus, 
the estimation of the class-conditional density function 

( | )ip y ω  for the projections 
jy
 
is boiled down to the issue 

of estimating the parameters iμ , iσ  of Gaussian PDFs, 
which can be readily solved by the methods of maximum 
likelihood or Bayesian inference. In this paper, the method of 
maximal likelihood estimation is exerted for calculating the 
parameters of class-conditional Gaussian PDF, and the details 

of maximal likelihood estimation algorithm can be referred to 
[31−32]. The availability of class-conditional density 
functions makes it possible to build the classifier upon the 
Bayesian decision theory, which is a fundamental statistical 
approach, whose power, coherence, and analytical nature 
when applied in pattern recognition make it among the 
elegant formulations in science. 

4 Multi-category posterior probability 
estimation & multi-scale discriminant 

       With the estimated class-conditional Gaussian density 
functions ( | )ip y ω , 1, 2i =

 
the two-class posterior 

probability can be evaluated at each non-leaf node 
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where ( )iP ω  is the priori probability, which can be estimated 
from the training dataset empirically, and the denominator is 
the unconditional probability density function. Thereby, the 
dichotomic Bayesian classifier can be constructed at each 
non-leaf node by selecting the class iω  having the largest 
posterior probability, so that x  is assigned to class iω  if  

                 ( | ) > ( | )i kP y P y for all i kω ω ≠                (8) 

where y  is the projections of x  onto the discriminant w  in 
the feature space. A Bayesian approach achieves the exact 
minimum probability of error based entirely on evaluating the 
posterior probability.  
      For classifying an unlabeled pattern, the evaluation starts 
from the root node of the binary tree, and then from top to 
down the synthesized dichotomic classifiers on the non-leaf 
nodes is used to assign the input pattern into one of child 
nodes. This procedure is iterated until the unlabeled pattern is 
finally classified into the class associated with one of leaf 
nodes, which determine a path from the root to one of leaf-
nodes for each unlabeled pattern. Contrary to the conventional 
‘divide-and-combine’ methods where all the dichotomic 
decision functions need to be calculated in evaluating an 
unlabeled pattern, only those dichotomic decision functions 
on the specified path need to be calculated in the proposed 
method.  
        In the realm of pattern recognition, there is general 
consensus that one of important technical challenges is how to 
estimate the multi-class posterior probability, which is more 
unwieldy than that for dichotomic classifier. However, in the 
algorithm developed in this paper, the multi-class posterior 
probabilistic outputs can be readily evaluated by capitalizing 
on the posterior probability estimated in (7) at each non-leaf 
node of the synthesized binary-tree. For the path along which 
an unlabeled pattern was classified from the root to one of the 
leaf nodes, each trained dichotomous Bayesian KFD on the 
path outputs the posterior probability, which is used to 
determine which child node the unlabeled pattern should be 



assigned to. Given that the path is determined by a sequence 
of dichotomous KFD successively, the posterior probability of 
classifying the unlabeled pattern into one of the multiple 
classes can be calculated by multiplying the posterior 
probabilistic outputs produced by each dichotomous KFD on 
the path. Contrary to the conventional methods, in which the 
values for all the decision functions need to be calculated in 
the phase of classification, it is not necessary to calculate the 
values of all the decision functions in the proposed method. 
         On the other hand, by taking advantage of the 
monotonicity of natural logarithm, the discriminant function 
induced by rule (8) on each non-leaf node can be expressed as 
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Substituting the Gaussian density functions into 1( | )p y ω   
and 2( | )p y ω  yields 
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If the variances for the macro-classes on the non-leaf node are 
equal, viz. 1 2=σ σ σ= , the equations (10) becomes 
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The decision function ( )f x  for data point x  on each non-
leaf node can be obtained by plugging equation (5) into the 
equation above as follows 
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Hence, in this case the discriminant function can be 
represented in the form of kernel expansion (12), which is 
same as that in support vector learning. Whereas, for the case 
that the variances for the macro-classes on the non-leaf node 
are not same, viz. 1 2σ σ≠ , the expression of discriminant 
function becomes more involved than (12), and it is no longer 
as simple as the linear combination of kernel functions.  
       The hierarchical structure of binary tree together with the 
kernel expansion (12) also shed light on the avenue to fulfill 
the polychotomous multi-scale Bayesian kernel Fisher 
discriminant. Hierarchical structures organize information 
into different levels and usually arrange it so that the higher in 
the hierarchy a level is, the smaller scale the information is 
analyzed. In the algorithm developed in this paper, the degree 
of separability between macro-classes on the non-leaf nodes 
of the binary tree decrease from top to down, and the 

synthesis of polychotomous classifier can be viewed as a 
mathematical process of hierarchically building classifier such 
that finer details are added to the coarser description at each 
level. This intrinsic conexus between hierarchical structure 
and multi-scale analysis sheds lights on the way to implement 
the polychotomous multi-scale Bayesian KFD via setting 
different kernel parameters on different levels of the tree. For 
the Gaussian RBF kernel used in this research 
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       The values of parameter nρ  can be set as 

1 2 mρ ρ ρ> > >  at different levels n  from top to down for 
controlling the scales. With the declining of the degree of 
separability between macro-classes from top to down, the 
scale parameter also decrease gradually. The larger scale 
parameters are adopted for the lower levels to prevent 
memorizing data, and the smaller scale parameters are 
employed for the higher levels for irregular localized features. 
In Ref. [34], two schemes, which use geometric sequence and 
arithmetic sequence respectively, have been invoked to adjust 
the scale parameters nρ  for non-flat function regression.  

5 Landsat satellite image data classification 
       The goal of image classification is to separate images 
according to their visual content into two or more disjoint 
classes [35]. In this section, the developed multi-scale 
parametric/nonparametric hybrid recognition strategy and 
multi-class posterior probability estimation algorithm are 
applied on the recognition of satellite image data [36], which 
is a benchmark problem from real-world and has been 
intensively studied. The experimental result is compared with 
those acquired from other popular multi-class pattern 
classification methods in terms of the generalization 
capability. The implementation of algorithms is on the 
strength of the Statistical Pattern Recognition Toolbox [37]. 
For the sake of fair comparison, the same training and 
validation datasets as those in Ref. [36] are used.  
       The satellite image database was generated by taking a 
small section from the original Landsat Multi-Spectral 
Scanner (MSS) image data from a part of Western Australia. 
In this database, each sample was featured by 36 attributes, 
which are numerical in the range 0 to 255. Namely, the input 
space is of 36 dimensions. Totally, 4435 samples are included 
in the training dataset and 2000 samples in the validation 
dataset. There are six categories of different soil conditions to 
be classified, and their distributions in the training and 
validation dataset are listed in Table 1.   
       For synthesizing the proposed polychotomous multi-
scale Bayesian KFD classifier, the value and tuning scheme of 
scale parameter of the adopted kernel function need to be 
specified beforehand. In our experiment, the Gaussian radial 
basis function kernel with scale parameter 1 = 33ρ  is used at 
the root node, and subsequently the scale parameter is tuned 



as 1n nρ ρ δ+ = − , where δ  is the common difference of the 
arithmetic sequence and n  is the level of the hierarchical 
binary tree (root node is at the lowest level, i.e. level 1). The 
first step towards building the multi-class classifier is to 
induce the topology of the binary tree by taking advantage of 
macro-class partition algorithm described in section 2. For 
satellite image training database used herein, the topological 
structure of binary tree obtained via top-to-down induction is 
visualized in Fig. 1.  
       Upon determining the structure of the binary and the 
macro-classes on each non-leaf node, the algorithms 
developed in sections 3&4 can be brought to bear for training 
the dichotomic classifier at each non-leaf node and estimating 
the posterior probability.  
       To confirm the superiority of the proposed 
polychotomous multi-scale Bayesian KFD algorithm in terms 
of generalization capability, the testing error rate is calculated 
on the validation datasets, and then compared with those 
obtained from other popular classification strategies [36], 
such as Logistic regression, RBF neural networks, K-nearest-
neighbor and multi-category SVM direct method [10], and so 
on. The results are listed in Table 2 and the details about the 
parameters setting and algorithmic implementation can be 
referred to the references [18,36]. From the test error rates in 
Table 2, it is salient that the polychotomous multi-scale 
Bayesian KFD excels other commonly-used pattern 
classification methods, including multi-class SVMs, in 
generalization capability. Also, for the Bayesian classification 
algorithms, the superiority in classification accuracy also 
implies the triumph in estimating the posterior probability. 
The uniqueness of path from root node to one leaf node 
enables us to calculate the multi-category posterior 
probability by multiplying the posterior probabilistic outputs 
produced by each dichotomous KFD on the path.  
 

6 Conclusions 
      The fact that the outputs produced by KFD can be 
interpreted as probabilities makes it possible to assign a 
confidence to the final classification. Based on this fact, in the 
polychotomous multi-scale classification algorithm developed 
in this paper, several key components are elegantly 
synergized together for synthesizing the multi-category 
Bayesian classifier in an nonparametric/parametric hybrid 
way: non-metric distance function for measuring inter-class 
separability; binary tree representation for nested macro-
classes; Bayesian classification via class-conditional PDF 
estimation; multi-scale classification implemented in 
hierarchy.  
      The computations for constructing and evaluating the 
binary classifiers on non-leaf nodes are propagated from the 
root downwards through the binary tree. In the experiment on 
satellite image dataset, the excellent generalization capability 
and learnability are confirmed in terms of the testing error rate 
on validation dataset, which also corroborated the reliability 
of posterior probability estimation for multiple classes.  
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TABLE II 
COMPARISON ON TESTING ERROR RATES OF VARIOUS ALGORITHMS 

Pattern classification algorithms Testing error rate (%) 

Logistic discrimination            16.9  
Quadratic discrimination 
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