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Abstract - In this paper we explore the spatial and temporal 

properties of a set of news published after a natural disaster 

by using SOM (Self-organizing Maps). SOM develops a low-

dimensional representation of the input data space by 

mapping high dimensional vectors into a 2-dimensional grid. 

Training stage produces a visual representation and a set of 

quantization points that can be considered as groups of 

spatially related news. Temporal dependency is detected by 

analyzing SOM units’ activation over the time, discovering 

temporal associations between data items. Our SOM stores 

information throughout its grid in a way such that space and 

time structures of the input data set are discovered and stored. 

First it has no knowledge, but after learning it develops 

spatial-temporal representations. 

Spatial-Temporal relations can be used for predictive 

modeling, search of sequential patterns, and mostly used for 

understanding. In our case, discovered dependencies describe 

the causes or context that precede a topic, showing how it 

evolved and moved over the time.  
    

Keywords:, neural networks, self-organizing map, temporal 

clustering, principal component analysis.  

 

 

1. Introduction 

 

Data mining can be applied on various sources of data 

such as on-line newspapers, social networks, blogs, etc; to 

discover groups or clusters of related events, having as 

disadvantage that it implies to manage high-dimensional data. 

If we take in account that each single word represents a 

variable, it is very complex to process the full set of variables 

and visualize events’ relationships, fortunately, groups of 

variables often move together in time and space; one reason 

for this is that more than one variable might be measuring the 

same driving principle governing the system’s behavior. 

But besides the events’ relationships that can be found 

by a computation of a “distance” between vectors; one of the 

most interesting problem is to find an effective and simple 

method able to discover temporal relations as well. 

The purpose of this paper is to create a practical method 

based on artificial neural networks, to find spatial-temporal 

representations within raw data. In particular, we use a type of 

self-organizing map (SOM) called Kohonen’s network, which 

is applied to uncover and visualize the inherent structure and 

topology of a set of news. If the data form clusters in the input 

space, i.e. if there are regions with very frequent and at the 

same time very similar data, the self-organizing process will 

ensure that the data of a cluster are mapped to a common 

localized domain in the map. Moreover, the process will 

arrange the mutual placement of domains in such a way as to 

capture as much of the overall topology of the cluster 

arrangement as possible. In this way, even hierarchical 

clustering can be achieved.  The temporal factor is added to 

the map by the analysis of temporal dependencies between 

units, with the introduction of a time-dependent matrix that 

stores unit-to-unit and neighborhood-to-unit temporal 

relations. 

In our work, a set of news published between March 

11th and March 18th 2011 (March 11th is sadly remembered 

as the day where multiple earthquakes triggered a huge 

tsunami in Japan) are encoded as numeric vectors by using 

PCA. Secondly, a SOM is trained to build an organized 

representation of the input space. Next, a second training 

stage is applied to find temporal clusters. Finally, temporal 

representations are interpreted and analyzed, showing topics 

evolving over the time. 

 

 

2. Input Data Encoding 

 

Our data set contains 421 text files (news available at 

CNN web site). At this step, our aim is to develop a suitable 

representation of the input data as a numerical matrix. An 

implementation in C++ was developed to extract from each 

file the words, create a dictionary and compute words 

frequency. Special characters, numbers, symbols, and 

meaningless words such as conjunctions, prepositions and 

adverbs were removed. In addition, our implementation 

includes a Porter stemming algorithm [10]. Stemming is the 

process for reducing inflected (or sometimes derived) words 

to their stem, base or root form. The general idea underlying 

stemming is to identify words that are the same in meaning 

but different in form by removing suffixes and endings; for 

instance, words such as "expanded”, "expanding", "expand", 

and "expands" are reduced to the root word, "expand ". The 

output was a dictionary of words (vector I of 9961 elements) 

and a matrix X  of 421x9961 (news x words), where each 
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element jix , is a number equal to the frequency of 
jword at 

news i . As expected, the result is a high-dimensional matrix.  

By using principal component analysis is it possible to 

transform a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables 

called principal components. Each principal component is a 

linear combination of the original variables, and all of them 

are orthogonal to each other, so there is no redundant 

information. By this method it is possible to compress the 

data by reducing the number of dimensions, without much 

loss of information [8]. Let X and Y be nm  matrices 

related by a linear transformation P  ( nn ); m indicates the 

observation number with n  variables; X is the initial data set 

and Y is a re-representation of X . PCA re-express the initial 

data as a linear combination of its basis vectors:  

    

  XPY     (1) 

ip  are column vectors of P . 

ix  are row vectors of X . 

Each row of Y has the form: 

 

                    niii pxpxy 1                        (2) 

 

We recognize that each coefficient of iy is a dot product 

of ix with the corresponding column in P , in other words, the 

thj coefficient of iy is a projection on to the 
thj column 

of P . By assuming linearity, the problem reduces to find the 

appropriate change of basis, the columns vectors ip  of P , 

also known as the principal components of X .  

But first, let’s define xS as the covariance matrix of X . 

xS  is a simple way to quantify redundancy by calculating the 

spread between variables. X is in mean deviation form 

because the means have been subtracted off or are zero. 
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                                    (3) 

 

 xS is a square symmetric nn  matrix. Its diagonal 

terms are the variance of particular variables. The off-

diagonal terms are the covariance between variables. From 

xS  the eigenvectors with their corresponding eigenvalues are 

calculated. Eigenvectors are a special set of vectors associated 

with a linear system of equations (i.e., a matrix equation), also 

known as characteristic vectors, proper vectors, or latent 

vectors [11]. Each eigenvector is paired with a corresponding 

factor so-called eigenvalue by which the eigenvector is scaled 

when multiplied by its matrix. A non-zero vector ip  is an 

eigenvector of the covariance matrix xS  if there is a factor 

i such that: 

    iiix ppS                            (4) 

Generalizing: 

                                        PPSx                              (5) 

 

The full set of eigenvectors is as large as the original set 

of variables. In PCA, the eigenvectors of xS are the principal 

components of X . Matrix P ( nn ) contains n  

eigenvectors, arranged in a way such as 1p  is the principal 

component with the largest variances (the most important, the 

most “principal”); 2p  is the 2
nd

 most important, and so on. In 

addition, the eigenvalues contained in diagonal matrix   are 

arranged in descending order n  21 and they 

represent the variance of X captured by the principal 

components. This last relation is used for dimensionality 

reduction.  

 

    iiix ppS 2       with   
22

2

2

1 n             (6) 

 

From matrix X , after subtracting off the mean for each 

variable, the covariance matrix and its principal component 

are computed. As result, the full set of 9961 principal 

components, matrix P , and the corresponding 9961 

eigenvalues, diagonal matrix , are obtained.  

Principal components with larger associated variances 

have important dynamics; while those with lower variances 

represent noise. It is common to consider only the first few 

principal components whose variances exceed 80% of the 

total variance of the original data. In our case, the first 362 

principal components (out of 9961) describe almost all the 

variability of the data set. Let’s take, for instance, the 

362l  largest eigenvalues l  21 , )( nl  ; and 

truncate the matrix P at column l . That means, we are taking 

only the first l principal components of P . It implies a strong 

dimensionality reduction, in the order of 96%. This reduced 

( ln ) matrix is called


P . The original data set X ( nm ) 

is re-expressed then as Y ( lm ) by using matrix 


P ( ln ): 

 

                                


 PXY                                           (7) 

 

 Equation (7), as a dot product, shows how 

matrix Y compresses X and contains the distribution of the 

news along the most important l components. Rows of matrix 

Y  will be the input vectors of the Self-Organized Map used 

to discover spatial-temporal relations.  

 



3. Spatial Relations Uncovering by Self-

organizing maps (SOM). 

 

At this stage, our work seeks to generate an 

understandable spatial map of the input space. To achieve it, 

we use matrix Y to feed a 2-dimensional 10x10 SOM 

network; each row iy of Y represents a news. Considering 

the 421 training vectors, we assume that a grid of 100 units 

may produce a reasonable amount of quantization points and 

a suitable visualization. Generally, in SOM, variables are 

normalized by dividing each column of Y  by its standard 

deviation, however, in our case; we consider that 

representation by PCA has homogenized the input data.  

A SOM consists of components called units, cells or 

neurons. Associated with each unit there is a weight vector of 

the same dimension as the input data and a position vector in 

the map space. In learning stage an input vector is presented 

to the SOM at each step. These vectors constitute the 

“environment” of the network. SOM includes a competitive 

and unsupervised learning able to find clusters from the input 

data.  Competitive learning means that a number of units are 

comparing the same input signals with their internal 

parameters, and the unit with the best match, the winner, is 

tuned itself to that input affecting also its neighbors. 

Therefore, different units learn different aspects from the 

input. 

Some requirements are needed for self-organization: i) 

the units are exposed to a sufficient number of different 

inputs; ii) for each input, the synaptic input connections to the 

exited group of units are only affected; iii) similar updating is 

imposed on many adjacent neurons; iv) the resulting 

adjustment is such that it enhances the same responses to a 

subsequent, sufficiently similar input. 

The most popular model of SOM is the model proposed 

by Teuvo Kohonen[5] called Kohonen network. Kohonen 

algorithm introduces a model that is composed of two 

interacting subsystems. One of these subsystems is a 

competitive neural network that implements the winner-take-

all function. The other subsystem modifies the local synaptic 

plasticity of the neurons in learning [6]. Kohonen learning 

uses a neighborhood function  , whose value ),( ki  

represents the strength of the coupling between unit i and unit 

k during the training process. The learning algorithm is as 

follows [6]: 

 

 Start: n-dimensional weight vectors mwww ,...,, 21  for the 

m computing units are selected at random. An initial radius of 

the neighborhood r , a learning constant  , and a 

neighborhood function   are selected. The neighborhood 

function ),( ki is defined as: 
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Where i  is the position of the 
thi unit and k is the position of 

the unit with the maximum excitation. The neighborhood 

function   changes according to a schedule, producing larger 

corrections at the beginning of the training that at the end. 

 

 Step 1: Select an input vector y using the desired 

probability distribution over the input space. 

 Step 2: The unit k with the maximum excitation is selected 

(that is, for which the Euclidean distance between iw  and 

y  is minimal, mi ,...,2,1 ). 

 Step 3: The weight vectors are updated using the 

neighborhood function  and the following rule: 

 

   iii wykiww  ,  for mi ,...,2,1   (9) 

 

 Step 4: Stop if the maximum number of iterations has been 

reached; otherwise modify   and   as scheduled and 

continue with step 1. 
 

By repeating this process several times, it is expected to 

arrive to a uniform distribution of weight vectors for the input 

space. We perform 3000 iterations, at each one the complete 

set of training vectors is entered into the network once. The 

result is a nonlinear projection of the input space onto a map 

(Figure 1). A main property of the map is that, the distance 

relationships between the input data are preserved by their 

images in the map as faithfully as possible. However, a 

mapping from a high-dimensional space to a lower-

dimensional one will usually distort most distances and only 

preserve the most important neighborhood relationships 

between data items. Figure 1 shows the SOM map after 

training and the 95 quantization points generated as gray dots. 

The size of the dots represents the amount of input vectors 

captured by weight vectors. For instance, 36w  at coordinates 

)4,6( captures more inputs than 18w  at )2,8( . Within a 

quantization point the news are spatially related; therefore, a 

quantization point is by itself a group and represents a sub-set 

of input vectors.  

Convergence of the network is evaluated empirically; it 

gets stable state after 3000 iterations, at this stage the map 

doesn’t change and weight vectors experiment very small 

updates. 

The obtained SOM mainly reflects metric distance 

relations between input vectors. In order to give a semantic-

meaningful component to the map, we present, after the 

spatial training the context where the input data may be 

located, in that way the map reflects logic or semantic 

similarities. Context is a background, environment, 

framework, setting, or situation surrounding an event or 

occurrence. In linguistic it is defined as words and sentences 

that occur before or after a word or sentence and imbue it with 

a particular meaning. 

 



 
Figure 1. SOM map after training and the 95 quantization points 

generated as gray dots. The size of the dots represents the amount of 

input vectors captured by weight vectors. Most frequent words are 

mapped to give a semantic characteristic to the discovered structure. 
 

 

We assume that the most frequent words have strong 

correlations with contexts that surround events described in 

our set of news. Hence we choose to represent each most 

frequent k-th word by a n-dimensional vector, whose k-th 

component has a fixed value equal to k-th word’s total 

frequency and whose remaining components are zero. Each 

vector then is compressed by equation (7) that reduces their 

dimensionality by using l principal components. The words 

are presented to  the network  and the strongest  responsive 

units are detected and labeled with the words. The responses 

on the map show how the network captured the spatial 

relations among the news. News related to earthquake-

tsunami in Japan are distributed on the left side, while those 

related to Middle East and Libya on the right. Middle units 

captured a variety of topics, unit 6w  at )1,6( for example, 

captured several news related to crime. 

Earthquake-tsunami news are differentiated in sub-

categories, corresponding to more specialized items such as 

radiation, health, energy, etc. The labels uncover the semantic 

relation between items; they show the contexts where the 

news items are located. Each news incorporates frequent 

words in its representation as vector; with a sufficient amount 

of training the inputs leave memory traces on the same units 

at which later the words individually converge. 

Therefore, a meaningful topographic spatial map is 

obtained by adding 100 most frequent words, showing logical 

similarities among inputs. It is possible to add more words 

which will enrich the map and will add more details to the 

semantic relations, but for simplicity and good visualization, 

we chose only 100 words.   

 

4. Temporal Learning: 

 

Previous section described how SOM’s units stored 

spatial patterns. At this section temporal dependency analysis 

is performed to find significant temporal associations between 

data items or events.  The main idea is to identify temporal 

sequences of spatial patterns that are likely to occur one after 

another. 

Our spatially-trained SOM is fed once more with the 

input data set and temporal sequences of activated units are 

monitored and stored in a time-dependent matrix. The 

temporal aspect comes from movements or changes of the 

input data. Every time a unit k fires, our model creates a 

vector d of dimension m, where m is the total amount of SOM 

units. The element d(k) has a fixed value equal to 1 and the 

remaining components are zero. Vectors d are the inputs of 

the time-dependent matrix denoted as T. 

In order to analyze the temporal proximity of units, the 

matrix T is created with m rows and m columns and its 

elements are initialized to 0. Rows correspond to units 

activated at time (t-1) and columns to the units at time (t). Our 

model memorizes the previously activated unit, in a way such 

that for an input d at time t, the matrix T is updated by 

increasing T(i,j) an amount equal to a,  where i is the unit 

fired on time (t-1), and j is the unit fired on time (t). The value 

added to T(i,j) corresponds to a transition value from the past 

unit to the current unit. Neighbors of unit i are also considered, 

the reasoning is that if unit j is frequently followed by unit i, 

the model considers that there is a high probability that 

neighbors of i follow unit j as well. For this last case, matrix T 

is updated by a scale down increment (a* β) in elements 

T(Ni,j), where Ni denotes neighbors of i. 

In that way time-dependent matrix T receives inputs and 

learns temporal relations among units over the time (Figure 2).    

 

 

 

 

 



 



 
 

Figure 2. After spatial training, units activated are represented as 

vectors. They are the inputs of a time-dependent matrix T that learns 

over the time temporal relations among units 

 

 

5. Temporal Clustering: 

 

After T is built, the process continues by clustering 

matrix T. The aim is to generate coherent clusters, which 

means, we seek to detect clusters where the units have high 

probability to follow each other through the time; these 

clusters are called temporal clusters and they contain groups 

of units that are likely to represent the evolution on time of a 

certain topic or event. 

Vector C of dimension m, where m is the total amount of 

SOM units, stores the number of news pooled for each unit of 

the SOM.  C and matrix T are used by the algorithm described 

below to detect temporal clusters. Figure 3, in addition, 

illustrates the process: 

 

 Step1: Find from vector C the most frequent unit that is 

not yet part of a cluster. The most frequent unit is the one with 

the highest corresponding value in C. 

 Step 2: Pick the unit that is most-connected to the most 

frequent unit. The model finds the most-connected unit by 

finding the highest value in the column of matrix T that 

corresponds to the current unit. Add the most connected unit 

to the cluster only if it is not part of a cluster.  

 Step 3: Repeat step 2 for the most connected unit. Then 

recursively computes step 2 on its most connected unit, and so 

on, until no new unit is added. 

 Step 4: All these units are added to a new temporal cluster. 

 Step 5: Go to step 1 and find the most frequent unit that is 

not yet part of a cluster. 

 

 

 

 
 

Figure 3. Temporal clustering example. 1st cluster start with column 

i (most frequent unit), taking most-connected unit j after 1st loop. 

During 2nd loop unit j takes unit 3. This last unit takes unit i at 3rd 

loop, but it is already in the cluster, therefore cluster 1 is closed. 

 

 

Once temporal clusters are formed, they are interpreted 

as frequent news topics and events evolving over the time. 

Each unit captures a subset of news; therefore, the five most 

frequent words are taken from each unit as a description of 

the unit’s topic, results are shown in table below: 

 
Temporal 

Cluster (Units 

coordinates 

frequently activated, 

in temporal order) 

5 most frequent words for each unit in 

temporal order 

(5,7), (6,2), (6,1)  'lodg', 'sweat', 'trial', 'particip', 'ray' 

'court','charg', 'attorney', 'case', 'judg' 

'polic', 'investig', 'depart', 'alleg', 'suspect' 

(2,9), (1,9), (6,7) 'tokyo', 'earthquak', 'power', 'japan', 'quak' 

'tsunami', 'japan', 'earthquak', 'warn', 'area' 

'moon', 'year', 'last', 'look', 'zune' 

(6,8), (5,10) 'seavey', 'bike', 'week', 'appl', 'kate' 

'your', 'like', 'want', 'peopl', 'just' 

(5,1), (10,10) 'investig', 'crash', 'driver', 'polic', 'william' 
'aristid', 'haiti', 'spend', 'return', 'elect' 

(9,1), (1,1), (6,3), (6,4) 'bahrain', 'forc', 'govern', 'secur', 'saudi' 

'reactor', 'plant', 'radiat', 'fuel', 'nuclear' 
'yale', 'school', 'clark', 'polic', 'sentenc' 

'polic', 'accord', 'offic', 'baghdad', 'video' 

(10,2), (2,4), (3,8), 
(10,4), (9,7), (10,3) 

'zone', 'gadhafi', 'council', 'unit', 'resolut' 
'nuclear','plant', 'power', 'japan', 'disast' 

'earthquak', 'japan', 'school', 'might', 'peopl' 
'gadhafi', 'govern', 'libyan', 'presid', 'libya' 

'state', 'unit', 'hispan', 'medic', 'marijuana' 

'gadhafi', 'zone', 'forc', 'libyan', 'libya' 

(7,1), (4,1), (3,1), 

(10,6) 

'palestinian', 'isra', 'author', 'hama', 'gaza' 

'reactor', 'meltdown', 'nuclear', 'possibl', 'radiat' 

'reactor', 'plant', 'nuclear', 'explos', 'tuesday' 
'afghanistan', 'diplomat', 'petraeus', 'pakistan', 

'court' 

(1,6), (1,3) 'radiat', 'japan', 'airlin', 'nuclear', 'flight' 
'nuclear', 'plant', 'power', 'energi', 'reactor' 



(3,2), (8,1), (9,3) 'plant', 'reactor', 'nuclear', 'japan', 'agenc' 

'protest', 'forc', 'govern', 'demonstr', 'secur' 
'forc', 'bahrain', 'govern', 'gadhafi', 'intern' 

(2,2), (1,7) 'power', 'nuclear', 'reactor', 'plant', 'daiichi' 

'japan', 'food', 'govern', 'japanes', 'spaniard' 

(2,1), (7,4) 'reactor', 'plant', 'japanes', 'report', 'nuclear' 

'offici', 'defens', 'peopl', 'rain', 'civil' 

(8,6), (7,6) 'releas', 'record', 'anonym', 'execut', 'donat' 
'right', 'inmat', 'maryland', 'bill', 'california' 

(8,9), (8,7) 'head', 'earli', 'educ', 'start', a'childhood' 

'obama', 'conyer', 'presid', 'kenni', 'critic' 

(7,3), (4,10) 'lucia', 'attack', 'accord', 'anti', 'baker' 

'citi','just','parad', 'your', 'peopl' 

Table 1. Main temporal clusters detected by proposed model. 

 

Temporal clusters represent a high-level perception of 

meaning, knowledge, logic, etc, over the time. They can be 

interpreted as an image or memory of frequent sequences of 

topics.  Main topics, those that remain in the time, come to 

light, while volatile topics are not displayed. For instance, 

temporal cluster of units (1,6), (1,3) shows that topic ('radiat', 

'japan', 'airlin', 'nuclear', 'flight') follows frequently to topic 

('nuclear', 'plant', 'power', 'energi', 'reactor'). We can infer that, 

during the disaster, there was a transition from issue “nuclear-

radiation-flights” to issue “energy-power-reactor”, and that 

transition was frequently mentioned. 

Our SOM developed automatically the formation of a 

spatial-temporal “memory” in a way that its layout forms an 

image of the most important relations.   

 

 

6. Conclusion and future work 

 

Our application demonstrates that plain text sources can 

be represented as a numerical matrix, compressed and 

transformed to serve as input data for a SOM network. A 

SOM has been trained producing a spatial representation of 

the news set into a 2 dimensional map. This representation is 

a finite number of quantization points that group similar input 

vectors. Frequent words on map enabled to form a semantic 

structure. Time dimension was considered on SOM temporal 

learning, where groups of units were discovered having a high 

time-dependency. Temporal clusters detection was possible 

by the utilization of a time-dependent matrix that stores the 

transitions from a SOM unit to another; this matrix is the 

model’s perception of frequent events over the time. 

Although our data set was relatively small, the proposed 

model was able to discover temporal dependencies. We 

believe that results are improved and determined largely by 

what model is exposed to. Enough input must change and 

flow continuously through time for a suitable learning. The 

model can be scaled exponentially with diverse input data 

without complexity due its finite set of quantization points. 

SOM also can be modified as a self-growing map working 

“on demand”.  

Our time-dependent matrix also can be modified 

assigning a memory to it, in a way that it doesn’t remember 

only the last fired unit at time (t-1), but the last k units fired at 

times (t-1), (t-2), (t-3), …, (t-k) , expanding its ability to detect 

unknown temporal relations. Another improvement to 

consider is that neighbors of unit i fired at time (t-1) that 

follow unit j fired at time (t) are considered, but we do not 

evaluate the potential temporal relation among neighbors of i 

with neighbors of j. 

In addition, when matrix T is updated by a scale down 

increment (a*β) in elements T(Ni,j), where Ni denotes 

neighbors of i, we assign empirical amounts to transition 

value a and parameter β. If a memory is provided to matrix T, 

a and β should vary on time. Temporal clustering algorithm 

also can be improved considering, for example, not only the 

most-connected unit, but the 2
nd

 most-connected, the 3
rd

 most-

connected.  

Temporal clusters can be used to make predictions. The 

model computes for a new input x a spatial distribution on its 

m units, and a temporal distribution on its c temporal clusters.  

Our application emphasizes the spatial-temporal 

arrangement of the units and the segregation of the 

information into separate areas. Temporal clusters give an 

idea of how frequent events evolve over the time, although in 

a high level it does completely on unsupervised way. 
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