
Spatial-Temporal Clustering of a Self-Organizing Map
Carlos Enrique Gutierrez

1
 , Prof. Mohamad Reza Alsharif

1
, Prof. Katsumi Yamashita

2

Rafael Villa
3
, He Cuiwei

1
, Prof. Hayao Miyagi

1

1Department of Information Engineering. Univ. of the Ryukyus. Okinawa, Japan.

carlosengutierrez@yahoo.com.ar, asharif@ie.u-ryukyu.ac.jp, hecuiwei0924@gmail.com, miyagi@ie.u-ryukyu.ac.jp
2Graduate School of Engineering. Osaka Prefecture University. Osaka, Japan. yamashita@eis.osakafu-u.ac.jp

3Regional Public Goods. InterAmerican Development Bank. Washington DC. USA. rafaelv@iadb.org

Abstract - In this paper we explore the spatial and temporal

properties of a set of news published after a natural disaster

by using SOM (Self-organizing Maps). SOM develops a low-

dimensional representation of the input data space by

mapping high dimensional vectors into a 2-dimensional grid.

Training stage produces a visual representation and a set of

quantization points that can be considered as groups of

spatially related news. Temporal dependency is detected by

analyzing SOM units’ activation over the time, discovering

temporal associations between data items. Our SOM stores

information throughout its grid in a way such that space and

time structures of the input data set are discovered and stored.

First it has no knowledge, but after learning it develops

spatial-temporal representations.

Spatial-Temporal relations can be used for predictive

modeling, search of sequential patterns, and mostly used for

understanding. In our case, discovered dependencies describe

the causes or context that precede a topic, showing how it

evolved and moved over the time.

Keywords:, neural networks, self-organizing map, temporal

clustering, principal component analysis.

1. Introduction

Data mining can be applied on various sources of data

such as on-line newspapers, social networks, blogs, etc; to

discover groups or clusters of related events, having as

disadvantage that it implies to manage high-dimensional data.

If we take in account that each single word represents a

variable, it is very complex to process the full set of variables

and visualize events’ relationships, fortunately, groups of

variables often move together in time and space; one reason

for this is that more than one variable might be measuring the

same driving principle governing the system’s behavior.

But besides the events’ relationships that can be found

by a computation of a “distance” between vectors; one of the

most interesting problem is to find an effective and simple

method able to discover temporal relations as well.

The purpose of this paper is to create a practical method

based on artificial neural networks, to find spatial-temporal

representations within raw data. In particular, we use a type of

self-organizing map (SOM) called Kohonen’s network, which

is applied to uncover and visualize the inherent structure and

topology of a set of news. If the data form clusters in the input

space, i.e. if there are regions with very frequent and at the

same time very similar data, the self-organizing process will

ensure that the data of a cluster are mapped to a common

localized domain in the map. Moreover, the process will

arrange the mutual placement of domains in such a way as to

capture as much of the overall topology of the cluster

arrangement as possible. In this way, even hierarchical

clustering can be achieved. The temporal factor is added to

the map by the analysis of temporal dependencies between

units, with the introduction of a time-dependent matrix that

stores unit-to-unit and neighborhood-to-unit temporal

relations.

In our work, a set of news published between March

11th and March 18th 2011 (March 11th is sadly remembered

as the day where multiple earthquakes triggered a huge

tsunami in Japan) are encoded as numeric vectors by using

PCA. Secondly, a SOM is trained to build an organized

representation of the input space. Next, a second training

stage is applied to find temporal clusters. Finally, temporal

representations are interpreted and analyzed, showing topics

evolving over the time.

2. Input Data Encoding

Our data set contains 421 text files (news available at

CNN web site). At this step, our aim is to develop a suitable

representation of the input data as a numerical matrix. An

implementation in C++ was developed to extract from each

file the words, create a dictionary and compute words

frequency. Special characters, numbers, symbols, and

meaningless words such as conjunctions, prepositions and

adverbs were removed. In addition, our implementation

includes a Porter stemming algorithm [10]. Stemming is the

process for reducing inflected (or sometimes derived) words

to their stem, base or root form. The general idea underlying

stemming is to identify words that are the same in meaning

but different in form by removing suffixes and endings; for

instance, words such as "expanded”, "expanding", "expand",

and "expands" are reduced to the root word, "expand ". The

output was a dictionary of words (vector I of 9961 elements)

and a matrix X of 421x9961 (news x words), where each

mailto:carlosengutierrez@yahoo.com.ar
mailto:asharif@ie.u-ryukyu.ac.jp
mailto:hecuiwei0924@gmail.com
mailto:miyagi@ie.u-ryukyu.ac.jp
mailto:yamashita@eis.osakafu-u.ac.jp
mailto:rafaelv@iadb.org

element jix , is a number equal to the frequency of
jword at

news i . As expected, the result is a high-dimensional matrix.

By using principal component analysis is it possible to

transform a set of observations of possibly correlated

variables into a set of values of linearly uncorrelated variables

called principal components. Each principal component is a

linear combination of the original variables, and all of them

are orthogonal to each other, so there is no redundant

information. By this method it is possible to compress the

data by reducing the number of dimensions, without much

loss of information [8]. Let X and Y be nm matrices

related by a linear transformation P (nn); m indicates the

observation number with n variables; X is the initial data set

and Y is a re-representation of X . PCA re-express the initial

data as a linear combination of its basis vectors:

 XPY (1)

ip are column vectors of P .

ix are row vectors of X .

Each row of Y has the form:

 niii pxpxy 1 (2)

We recognize that each coefficient of iy is a dot product

of ix with the corresponding column in P , in other words, the

thj coefficient of iy is a projection on to the
thj column

of P . By assuming linearity, the problem reduces to find the

appropriate change of basis, the columns vectors ip of P ,

also known as the principal components of X .

But first, let’s define xS as the covariance matrix of X .

xS is a simple way to quantify redundancy by calculating the

spread between variables. X is in mean deviation form

because the means have been subtracted off or are zero.

 XX
n

S T

x
1

1

 (3)

 xS is a square symmetric nn matrix. Its diagonal

terms are the variance of particular variables. The off-

diagonal terms are the covariance between variables. From

xS the eigenvectors with their corresponding eigenvalues are

calculated. Eigenvectors are a special set of vectors associated

with a linear system of equations (i.e., a matrix equation), also

known as characteristic vectors, proper vectors, or latent

vectors [11]. Each eigenvector is paired with a corresponding

factor so-called eigenvalue by which the eigenvector is scaled

when multiplied by its matrix. A non-zero vector ip is an

eigenvector of the covariance matrix xS if there is a factor

i such that:

 iiix ppS (4)

Generalizing:

 PPSx (5)

The full set of eigenvectors is as large as the original set

of variables. In PCA, the eigenvectors of xS are the principal

components of X . Matrix P (nn) contains n

eigenvectors, arranged in a way such as 1p is the principal

component with the largest variances (the most important, the

most “principal”); 2p is the 2
nd

 most important, and so on. In

addition, the eigenvalues contained in diagonal matrix are

arranged in descending order n 21 and they

represent the variance of X captured by the principal

components. This last relation is used for dimensionality

reduction.

 iiix ppS 2 with
22

2

2

1 n (6)

From matrix X , after subtracting off the mean for each

variable, the covariance matrix and its principal component

are computed. As result, the full set of 9961 principal

components, matrix P , and the corresponding 9961

eigenvalues, diagonal matrix , are obtained.

Principal components with larger associated variances

have important dynamics; while those with lower variances

represent noise. It is common to consider only the first few

principal components whose variances exceed 80% of the

total variance of the original data. In our case, the first 362

principal components (out of 9961) describe almost all the

variability of the data set. Let’s take, for instance, the

362l largest eigenvalues l 21 ,)(nl ; and

truncate the matrix P at column l . That means, we are taking

only the first l principal components of P . It implies a strong

dimensionality reduction, in the order of 96%. This reduced

(ln) matrix is called

P . The original data set X (nm)

is re-expressed then as Y (lm) by using matrix

P (ln):

 PXY (7)

 Equation (7), as a dot product, shows how

matrix Y compresses X and contains the distribution of the

news along the most important l components. Rows of matrix

Y will be the input vectors of the Self-Organized Map used

to discover spatial-temporal relations.

3. Spatial Relations Uncovering by Self-

organizing maps (SOM).

At this stage, our work seeks to generate an

understandable spatial map of the input space. To achieve it,

we use matrix Y to feed a 2-dimensional 10x10 SOM

network; each row iy of Y represents a news. Considering

the 421 training vectors, we assume that a grid of 100 units

may produce a reasonable amount of quantization points and

a suitable visualization. Generally, in SOM, variables are

normalized by dividing each column of Y by its standard

deviation, however, in our case; we consider that

representation by PCA has homogenized the input data.

A SOM consists of components called units, cells or

neurons. Associated with each unit there is a weight vector of

the same dimension as the input data and a position vector in

the map space. In learning stage an input vector is presented

to the SOM at each step. These vectors constitute the

“environment” of the network. SOM includes a competitive

and unsupervised learning able to find clusters from the input

data. Competitive learning means that a number of units are

comparing the same input signals with their internal

parameters, and the unit with the best match, the winner, is

tuned itself to that input affecting also its neighbors.

Therefore, different units learn different aspects from the

input.

Some requirements are needed for self-organization: i)

the units are exposed to a sufficient number of different

inputs; ii) for each input, the synaptic input connections to the

exited group of units are only affected; iii) similar updating is

imposed on many adjacent neurons; iv) the resulting

adjustment is such that it enhances the same responses to a

subsequent, sufficiently similar input.

The most popular model of SOM is the model proposed

by Teuvo Kohonen[5] called Kohonen network. Kohonen

algorithm introduces a model that is composed of two

interacting subsystems. One of these subsystems is a

competitive neural network that implements the winner-take-

all function. The other subsystem modifies the local synaptic

plasticity of the neurons in learning [6]. Kohonen learning

uses a neighborhood function , whose value),(ki

represents the strength of the coupling between unit i and unit

k during the training process. The learning algorithm is as

follows [6]:

 Start: n-dimensional weight vectors mwww ,...,, 21 for the

m computing units are selected at random. An initial radius of

the neighborhood r , a learning constant , and a

neighborhood function are selected. The neighborhood

function),(ki is defined as:

r

ki
ki

2

exp),((8)

Where i is the position of the
thi unit and k is the position of

the unit with the maximum excitation. The neighborhood

function changes according to a schedule, producing larger

corrections at the beginning of the training that at the end.

 Step 1: Select an input vector y using the desired

probability distribution over the input space.

 Step 2: The unit k with the maximum excitation is selected

(that is, for which the Euclidean distance between iw and

y is minimal, mi ,...,2,1).

 Step 3: The weight vectors are updated using the

neighborhood function and the following rule:

 iii wykiww , for mi ,...,2,1 (9)

 Step 4: Stop if the maximum number of iterations has been

reached; otherwise modify and as scheduled and

continue with step 1.

By repeating this process several times, it is expected to

arrive to a uniform distribution of weight vectors for the input

space. We perform 3000 iterations, at each one the complete

set of training vectors is entered into the network once. The

result is a nonlinear projection of the input space onto a map

(Figure 1). A main property of the map is that, the distance

relationships between the input data are preserved by their

images in the map as faithfully as possible. However, a

mapping from a high-dimensional space to a lower-

dimensional one will usually distort most distances and only

preserve the most important neighborhood relationships

between data items. Figure 1 shows the SOM map after

training and the 95 quantization points generated as gray dots.

The size of the dots represents the amount of input vectors

captured by weight vectors. For instance, 36w at coordinates

)4,6(captures more inputs than 18w at)2,8(. Within a

quantization point the news are spatially related; therefore, a

quantization point is by itself a group and represents a sub-set

of input vectors.

Convergence of the network is evaluated empirically; it

gets stable state after 3000 iterations, at this stage the map

doesn’t change and weight vectors experiment very small

updates.

The obtained SOM mainly reflects metric distance

relations between input vectors. In order to give a semantic-

meaningful component to the map, we present, after the

spatial training the context where the input data may be

located, in that way the map reflects logic or semantic

similarities. Context is a background, environment,

framework, setting, or situation surrounding an event or

occurrence. In linguistic it is defined as words and sentences

that occur before or after a word or sentence and imbue it with

a particular meaning.

Figure 1. SOM map after training and the 95 quantization points

generated as gray dots. The size of the dots represents the amount of

input vectors captured by weight vectors. Most frequent words are

mapped to give a semantic characteristic to the discovered structure.

We assume that the most frequent words have strong

correlations with contexts that surround events described in

our set of news. Hence we choose to represent each most

frequent k-th word by a n-dimensional vector, whose k-th

component has a fixed value equal to k-th word’s total

frequency and whose remaining components are zero. Each

vector then is compressed by equation (7) that reduces their

dimensionality by using l principal components. The words

are presented to the network and the strongest responsive

units are detected and labeled with the words. The responses

on the map show how the network captured the spatial

relations among the news. News related to earthquake-

tsunami in Japan are distributed on the left side, while those

related to Middle East and Libya on the right. Middle units

captured a variety of topics, unit 6w at)1,6(for example,

captured several news related to crime.

Earthquake-tsunami news are differentiated in sub-

categories, corresponding to more specialized items such as

radiation, health, energy, etc. The labels uncover the semantic

relation between items; they show the contexts where the

news items are located. Each news incorporates frequent

words in its representation as vector; with a sufficient amount

of training the inputs leave memory traces on the same units

at which later the words individually converge.

Therefore, a meaningful topographic spatial map is

obtained by adding 100 most frequent words, showing logical

similarities among inputs. It is possible to add more words

which will enrich the map and will add more details to the

semantic relations, but for simplicity and good visualization,

we chose only 100 words.

4. Temporal Learning:

Previous section described how SOM’s units stored

spatial patterns. At this section temporal dependency analysis

is performed to find significant temporal associations between

data items or events. The main idea is to identify temporal

sequences of spatial patterns that are likely to occur one after

another.

Our spatially-trained SOM is fed once more with the

input data set and temporal sequences of activated units are

monitored and stored in a time-dependent matrix. The

temporal aspect comes from movements or changes of the

input data. Every time a unit k fires, our model creates a

vector d of dimension m, where m is the total amount of SOM

units. The element d(k) has a fixed value equal to 1 and the

remaining components are zero. Vectors d are the inputs of

the time-dependent matrix denoted as T.

In order to analyze the temporal proximity of units, the

matrix T is created with m rows and m columns and its

elements are initialized to 0. Rows correspond to units

activated at time (t-1) and columns to the units at time (t). Our

model memorizes the previously activated unit, in a way such

that for an input d at time t, the matrix T is updated by

increasing T(i,j) an amount equal to a, where i is the unit

fired on time (t-1), and j is the unit fired on time (t). The value

added to T(i,j) corresponds to a transition value from the past

unit to the current unit. Neighbors of unit i are also considered,

the reasoning is that if unit j is frequently followed by unit i,

the model considers that there is a high probability that

neighbors of i follow unit j as well. For this last case, matrix T

is updated by a scale down increment (a* β) in elements

T(Ni,j), where Ni denotes neighbors of i.

In that way time-dependent matrix T receives inputs and

learns temporal relations among units over the time (Figure 2).

Figure 2. After spatial training, units activated are represented as

vectors. They are the inputs of a time-dependent matrix T that learns

over the time temporal relations among units

5. Temporal Clustering:

After T is built, the process continues by clustering

matrix T. The aim is to generate coherent clusters, which

means, we seek to detect clusters where the units have high

probability to follow each other through the time; these

clusters are called temporal clusters and they contain groups

of units that are likely to represent the evolution on time of a

certain topic or event.

Vector C of dimension m, where m is the total amount of

SOM units, stores the number of news pooled for each unit of

the SOM. C and matrix T are used by the algorithm described

below to detect temporal clusters. Figure 3, in addition,

illustrates the process:

 Step1: Find from vector C the most frequent unit that is

not yet part of a cluster. The most frequent unit is the one with

the highest corresponding value in C.

 Step 2: Pick the unit that is most-connected to the most

frequent unit. The model finds the most-connected unit by

finding the highest value in the column of matrix T that

corresponds to the current unit. Add the most connected unit

to the cluster only if it is not part of a cluster.

 Step 3: Repeat step 2 for the most connected unit. Then

recursively computes step 2 on its most connected unit, and so

on, until no new unit is added.

 Step 4: All these units are added to a new temporal cluster.

 Step 5: Go to step 1 and find the most frequent unit that is

not yet part of a cluster.

Figure 3. Temporal clustering example. 1st cluster start with column

i (most frequent unit), taking most-connected unit j after 1st loop.

During 2nd loop unit j takes unit 3. This last unit takes unit i at 3rd

loop, but it is already in the cluster, therefore cluster 1 is closed.

Once temporal clusters are formed, they are interpreted

as frequent news topics and events evolving over the time.

Each unit captures a subset of news; therefore, the five most

frequent words are taken from each unit as a description of

the unit’s topic, results are shown in table below:

Temporal

Cluster (Units

coordinates

frequently activated,

in temporal order)

5 most frequent words for each unit in

temporal order

(5,7), (6,2), (6,1) 'lodg', 'sweat', 'trial', 'particip', 'ray'

'court','charg', 'attorney', 'case', 'judg'

'polic', 'investig', 'depart', 'alleg', 'suspect'

(2,9), (1,9), (6,7) 'tokyo', 'earthquak', 'power', 'japan', 'quak'

'tsunami', 'japan', 'earthquak', 'warn', 'area'

'moon', 'year', 'last', 'look', 'zune'

(6,8), (5,10) 'seavey', 'bike', 'week', 'appl', 'kate'

'your', 'like', 'want', 'peopl', 'just'

(5,1), (10,10) 'investig', 'crash', 'driver', 'polic', 'william'
'aristid', 'haiti', 'spend', 'return', 'elect'

(9,1), (1,1), (6,3), (6,4) 'bahrain', 'forc', 'govern', 'secur', 'saudi'

'reactor', 'plant', 'radiat', 'fuel', 'nuclear'
'yale', 'school', 'clark', 'polic', 'sentenc'

'polic', 'accord', 'offic', 'baghdad', 'video'

(10,2), (2,4), (3,8),
(10,4), (9,7), (10,3)

'zone', 'gadhafi', 'council', 'unit', 'resolut'
'nuclear','plant', 'power', 'japan', 'disast'

'earthquak', 'japan', 'school', 'might', 'peopl'
'gadhafi', 'govern', 'libyan', 'presid', 'libya'

'state', 'unit', 'hispan', 'medic', 'marijuana'

'gadhafi', 'zone', 'forc', 'libyan', 'libya'

(7,1), (4,1), (3,1),

(10,6)

'palestinian', 'isra', 'author', 'hama', 'gaza'

'reactor', 'meltdown', 'nuclear', 'possibl', 'radiat'

'reactor', 'plant', 'nuclear', 'explos', 'tuesday'
'afghanistan', 'diplomat', 'petraeus', 'pakistan',

'court'

(1,6), (1,3) 'radiat', 'japan', 'airlin', 'nuclear', 'flight'
'nuclear', 'plant', 'power', 'energi', 'reactor'

(3,2), (8,1), (9,3) 'plant', 'reactor', 'nuclear', 'japan', 'agenc'

'protest', 'forc', 'govern', 'demonstr', 'secur'
'forc', 'bahrain', 'govern', 'gadhafi', 'intern'

(2,2), (1,7) 'power', 'nuclear', 'reactor', 'plant', 'daiichi'

'japan', 'food', 'govern', 'japanes', 'spaniard'

(2,1), (7,4) 'reactor', 'plant', 'japanes', 'report', 'nuclear'

'offici', 'defens', 'peopl', 'rain', 'civil'

(8,6), (7,6) 'releas', 'record', 'anonym', 'execut', 'donat'
'right', 'inmat', 'maryland', 'bill', 'california'

(8,9), (8,7) 'head', 'earli', 'educ', 'start', a'childhood'

'obama', 'conyer', 'presid', 'kenni', 'critic'

(7,3), (4,10) 'lucia', 'attack', 'accord', 'anti', 'baker'

'citi','just','parad', 'your', 'peopl'

Table 1. Main temporal clusters detected by proposed model.

Temporal clusters represent a high-level perception of

meaning, knowledge, logic, etc, over the time. They can be

interpreted as an image or memory of frequent sequences of

topics. Main topics, those that remain in the time, come to

light, while volatile topics are not displayed. For instance,

temporal cluster of units (1,6), (1,3) shows that topic ('radiat',

'japan', 'airlin', 'nuclear', 'flight') follows frequently to topic

('nuclear', 'plant', 'power', 'energi', 'reactor'). We can infer that,

during the disaster, there was a transition from issue “nuclear-

radiation-flights” to issue “energy-power-reactor”, and that

transition was frequently mentioned.

Our SOM developed automatically the formation of a

spatial-temporal “memory” in a way that its layout forms an

image of the most important relations.

6. Conclusion and future work

Our application demonstrates that plain text sources can

be represented as a numerical matrix, compressed and

transformed to serve as input data for a SOM network. A

SOM has been trained producing a spatial representation of

the news set into a 2 dimensional map. This representation is

a finite number of quantization points that group similar input

vectors. Frequent words on map enabled to form a semantic

structure. Time dimension was considered on SOM temporal

learning, where groups of units were discovered having a high

time-dependency. Temporal clusters detection was possible

by the utilization of a time-dependent matrix that stores the

transitions from a SOM unit to another; this matrix is the

model’s perception of frequent events over the time.

Although our data set was relatively small, the proposed

model was able to discover temporal dependencies. We

believe that results are improved and determined largely by

what model is exposed to. Enough input must change and

flow continuously through time for a suitable learning. The

model can be scaled exponentially with diverse input data

without complexity due its finite set of quantization points.

SOM also can be modified as a self-growing map working

“on demand”.

Our time-dependent matrix also can be modified

assigning a memory to it, in a way that it doesn’t remember

only the last fired unit at time (t-1), but the last k units fired at

times (t-1), (t-2), (t-3), …, (t-k) , expanding its ability to detect

unknown temporal relations. Another improvement to

consider is that neighbors of unit i fired at time (t-1) that

follow unit j fired at time (t) are considered, but we do not

evaluate the potential temporal relation among neighbors of i

with neighbors of j.

In addition, when matrix T is updated by a scale down

increment (a*β) in elements T(Ni,j), where Ni denotes

neighbors of i, we assign empirical amounts to transition

value a and parameter β. If a memory is provided to matrix T,

a and β should vary on time. Temporal clustering algorithm

also can be improved considering, for example, not only the

most-connected unit, but the 2
nd

 most-connected, the 3
rd

 most-

connected.

Temporal clusters can be used to make predictions. The

model computes for a new input x a spatial distribution on its

m units, and a temporal distribution on its c temporal clusters.

Our application emphasizes the spatial-temporal

arrangement of the units and the segregation of the

information into separate areas. Temporal clusters give an

idea of how frequent events evolve over the time, although in

a high level it does completely on unsupervised way.

7. References

[1] C.E. Gutierrez, M.R. Alsharif, H. Cuiwei, M. Khosravy, R. Villa,

K. Yamashita, H. Miyagi, Uncover news dynamic by principal

component analysis. Shanghai, China, ICIC Express Letters, vol.7,

no.4, pp.1245-1250, 2013.

[2] C.E. Gutierrez, M.R. Alsharif, H. Cuiwei, R. Villa, K. Yamashita,

H. Miyagi, K. Kurata, Natural disaster online news clustering by

self-organizing maps. Ishigaki, Japan, 27th SIP symposium, 2012.
[3] C.E. Gutierrez, M.R. Alsharif, R. Villa, K. Yamashita, H. Miyagi,

Data Pattern Discovery on Natural Disaster News. Sapporo, Japan,

ITC-CSCC, ISBN 978-4-88552-273-4/C3055, 2012.

[4] H. Ritter, T. Kohonen, Self-Organizing Semantic Maps.

Biological Cybernetics. Springer-Verlag 61, pp. 241-254, 1989.

[5] T. Kohonen, Self-Organization and Associative Memory. Berlin,

Springer, 1984.

[6] R. Rojas, Neural Networks. Berlin, Springer-Verlag, 1996.

[7] X. Wu, V. Kumar, J.R. Quinlan, Top 10 algorithms in data

mining. London , Springer-Verlag, 2007.

[8] L. I. Smith, A tutorial on Principal Components Analysis. 2002.

[9] J. Shlens, A tutorial on Principal Component Analysis:

Derivation, Discussion and Singular Value Decomposition. 2003.

[10] M.F. Porter, M.F. An algorithm for suffix stripping, Program,

vol.14, no.3, pp.130–137, 1980.

[11] M. Marcus and H. Minc, Introduction to linear algebra. New

York: Dover, pp.145-146, 1988.

[12] R. Yan and L. Kong, Timeline generation through evolutionary

trans-temporal summarization. Conference on Empirical Methods in

Natural Language Processing, Edinburg, Scotland, pp.433–443, 2011.

[13] Y. Zhang and L. E. Ghaoui, Large-Scale Sparse Principal

Component Analysis with Application to Text Data. Advances in

Neural Information Processing Systems (NIPS). 2011.

[14] O. Vikas, A. K. Meshram, G. Meena and A. Gupta, Multiple

document summarizations using principal component analysis

incorporating semantic vector space model. Computational

Linguistics and Chinese Language Processing. vol.13, no.2, pp.141-

156, 2008.

