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Abstract—Light Detection and Ranging (LiDAR) can gener-
ate 3D point data of terrains with high resolution and accuracy,
enabling automated detection of important hydrologic features.
This paper describes a method for detecting sinkholes in LiDAR
data. Current methods of sinkhole detection are lengthy and
labor intensive, requiring hours or days of manual work. The
method demonstrated in this study can locate sinkholes in the
same LiDAR data within minutes with no need for human
intervention.

I. INTRODUCTION

Automated detection of hydrologic features has become
increasingly important for geologists. The ability to acquire
high-resolution LiDAR data for large swaths of land means
that much more data is available for analysis. The increased
detail of LiDAR data over USGS topographic maps poten-
tially allow up to 30% more sinkholes to be identified[8].
Unfortunately, traditional, mostly manual methods for land-
form analysis do not scale well. Sinkhole identification is
an operation of particular interest, as sinkholes cause safety
hazards to those living and working in areas exhibiting
the potential for such formations. This is because sinkholes
serve as a direct conduit to the underlying bedrock aquifer
in the region creating a high potential for groundwater
contamination[7].

II. PREVIOUS WORK

Sinkhole detection and cataloging has been an important
problem for decades. Previous methods have used seismic
and acoustic emission/ microseismic(AE/MS) techniques[1],
topographic maps, aerial photos[2], contouring[3], and Li-
DAR data visually inspected for sinkholes. A common ap-
proach to identifying sinkholes is to locate closed depression
contours[8]. Even when computers are used for the contour-
ing or slope analysis, people are still needed to accurately
locate the sinkholes by hand.

A study by Young[5] has attempted to use LiDAR to
ocate sinkholes in Jefferson County, West Virginia. He has
created a DEM from the data and used a modification of
the Terrain Shape Index to attempt to locate sinkholes. His
algorithm found 94 sites. They were able to visit 55 of
these to determine accuracy. Of these, 16.4% were definitely
a sinkhole, 43.6% were probably a sinkhole, 25.5% were
depressions, and 14.5% were not sinkholes. The geologists
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desired greater accuracy then this and when we tried a similar
technique, our results were poorer.

While LiDAR data has been effectively used to segment
many urban features[4], identifying landforms in LiDAR data
has not been researched extensively.

III. HYDROLOGIC FEATURES

Sinkholes are one of the most studied hydrologic land
features. They are formed when ground below the surface
erodes away causing the land to collapse. This erosion is
due to ground water slowly dissolving and washing away
the underlying bedrock which is typically limestone or other
carbonate rock. Sinkholes can vary in size dramatically from
less than a foot deep to thousands of feet across. Shapes
vary from circular to elongated to completely irregular. When
first formed, the sides tend to be very steep and cylindrical.
Over time, erosion cause the sinkholes to flatten out into
more of a cone shape. Tools for automatic identification of
sinkholes must be sophisticated in order to accurately analyze
the immense variety of formations.

IV. METHODS

Testing was done on a tract of land 20,000 by 35,000 feet
in Waterloo, IL. This area is characterized by thousands of
sinkholes. The LiDAR data was acquired by the Illinois State
Geological Survey in April 2011. The sampling method had
the contractor flying over the same area twice, once with
a density of at least 1pt/m2, and once at a lower altitutde
with a point density of at least 4pts/m2. This was to achieve
improved vegetation penetration. LiDAR Class 2 points are
classified as ground points. LiDAR Class 8 points are derived
from LiDAR Class 2 points and are an interpolation of the
key points. A combination of Class 2 and Class 8 points were
the basis of the data used for our algorithm.

A digital elevation map (DEM) was created from this
data at 1

10 resolution. This operation effectively generated
a regular spatial clustering of the original set of points and
enabled interpolation within sparse areas.

As seen in Algorithm 1, an iterative process then seg-
mented out all of the points that were in the lowest 1% of
the heights. We created sets of points that were touching.
If this set contained more than 20 cells it was temporarily
labeled as a sinkhole. The exclusion of the smaller sinkholes
prevented noise from the LiDAR data being counted as a
sinkhole. The process was then repeated, segmenting out the
lowest 2% of ground heights. This time the new sinkholes are
compared to the old sinkholes. If one of the new sinkholes
covers 2 or more old sinkholes that are larger than 100 cells,
it is discarded. If the new sinkhole covers multiple sinkholes
that are smaller than 100 cells, the smaller old sinkholes
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Fig. 1. Time vs Problem Size

are discarded, allowing the newer larger one to effectively
absorb them. This value of 100 cells was used to mirror the
manual process of segmenting sinkholes as performed by
geologists. If a new sinkhole covers only one old sinkhole,
the old sinkhole is replaced with the new one. If a new
sinkhole does not cover an old sinkhole, it is simply added
to the temporary list of sinkholes. This process is repeated
up until 99% of the lowest elevation points in the DEM are
segmented out and checked for sinkholes.

Algorithm 1 Find Sinkholes
Input: DEM
Output: List of sinkholes

1: Initialize SINKHOLES to empty list
2: for i = 0.01; i < 1; i+ = 0.01 do
3: Flood DEM at i
4: Add potential sinkholes to SINKHOLES
5: if new sinkhole overlaps old sinkhole then
6: if old sinkhole is smaller than 100 cells then
7: remove old sinkhole
8: else if new sinkhole overlaps 2 or more old sink-

holes then
9: remove new sinkhole

10: end if
11: end if
12: end for
13: return SINKHOLES

The algorithm is scalable, requiring linear time in the
number of cells in the DEM. This theoretical time-bound has
been verified from experimental timings, as seen in Figure 1.

V. MAIN RESULTS

Our algorithm found 2564 sinkholes in the LiDAR data.
The LiDAR data consists of 56 las files creating a total of
15.2 GB of data. The program takes under 10 minutes to
complete running serially on a 2.00GHz Intel Xeon CPU with
126GB of memory. Figure 2 shows these sinkholes overlayed
on the DEM we created. Segmenting the same data set by
hand would require days.

To verify our results, we obtained shapefiles from geolo-
gists at ISGS that contained data for 2451 sinkholes found

Fig. 2. Detected Sinkholes

using the same LiDAR data. In comparison, this data took
them several days to manually generate. To compare our
results to the geologists’, we filtered out the sinkholes that
they found with a bounding box less than 2000ft2. This is so
they would be comparable to the sinkholes we found which
only includes sinkholes that cover at least 20 DEM cells. It
is necessary to have this lower bound to prevent larger error
rates due to differences in interpolation between the LiDAR
points. Using this method 83% of the sinkholes identified by
the geologists were found with our algorithm. Furthermore,
96% of the sinkholes we found were sinkholes that geologist
also found. Further refinement needs to be done in tandem
with the geologists to clarify the properties of sinkholes and
determine if our algorithm needs to be more or less selective.

VI. FURTHER FILTERING

After reviewing our sinkholes, we learned that our algo-
rithm was identifying sections of streambed as sinkholes. We



determined that one characteristic differentiating streambed
from actual sinkholes is aspect ratio, because thin, long
depressions are more frequently streambeds. A second differ-
entiating metric is the fraction of the bounding box around
the sinkhole is filled, with curving streambed depressions
filling less of their bounding box. These metrics are scale-
invariant, allowing them to be applied generally to the initial
set of detected hydrologic features.

To employ these metrics as filters, we needed to determine
threshold values for each that differentiate sinkholes from
streambed. To do this, we manually created a training dataset
with sinkholes and streambeds labeled and fed this data into
Weka’s[6] decision tree algorithm. We used the decision tree
to determine the cutoff points for each of these ratios, and
then used the learned ratios to perform streamed filtering
on the rest of the data. The filtering algorithm proved
quite effective, with a sampling of our results before and
after streambed filtering shown in Figure 3 and Figure 4
respectively. This brought our false positives from 3.9% to
2.7%. However, this filtering also lowered the number of
professionally identified sinkholes that our algorithm found
from 84.5% to 83.3%.

Table I shows which of the sinkholes our algorithm found
were also identified by the geologists with varying filters.
The first is with no filtering. The second is with filtering
out sinkholes that are smaller than 20 DEM cells. The
third is with the same filter and the streambed filter. These
are the same filters represented in Tables II, III, and IV.
These three tables represent how many of the geologists
sinkholes were found with our algorithm. Table II shows
this data in reference to all of the geolgists’ sinkholes.
Table III represents only the geologists’ sinkholes that have
a bounding box greater than 2000m2. Table IV shows only
the geologists’ sinkholes that have a bounding box greater
than 4000m2.

TABLE I
ACCURACY OF SINKHOLES

Filters Total Ours Verified False Positives Percent Accurate
None 2636 2315 321 87.8
> 20 2162 2077 85 96.1

> 20 & SF 2113 2056 57 97.3

TABLE II
COMPLETENESS OF ALL SINKHOLES

Filters Found Total Percent Found
None 1837 2283 80.5
> 20 1658 2283 72.6

> 20 & SF 1628 2283 71.3

VII. MOVING TOWARDS SINKHOLE CHARACTERIZATION

The ability to identify sinkholes in LiDAR data effectively
allows the creation of a digital catalog of sinkholes. A next
step is to look at what can be learned about sinkholes through

TABLE III
COMPLETENESS OF > 2000 SINKHOLES

Filters Found Total Percent Found
None 1703 1930 88.2
> 20 1630 1930 84.5

> 20 & SF 1608 1930 83.3

TABLE IV
COMPLETENESS OF > 4000 SINKHOLES

Filters Found Total Percent Found
None 1625 1807 89.9
> 20 1602 1807 88.6

> 20 & SF 1583 1807 87.6

analysis of such a catalog. Our software can compute some
basic geometric characteristics of sinkholes such as perimeter
and depth. We can also extract information about vegetation
locations from LiDAR data. With this data, one can define
multiple classes, such as dividing perimeter lengths into three
classes of small, medium, and large and similar classes for
depth. One interesting question is then how being in one class
influences the probability of being in another class. We chose
to use a Naive Bayesian Classifier to answer such questions.
Clearly, there may be confounding variables that spoil the
assumption of conditional independence. So, we must pro-
ceed understanding that high probabilities may be simply be
indicative of the existence of such a confounding variable.
The discovery of such a variable would be interesting in and
of itself, making the investigation a worthwhile pursuit.

As an initial inquiry, we examined the relationship be-
tween the maximum relative depth (distance from the lowest
point of the sinkhole to the top of the sinkhole) and the
perimeter using a set of 2366 sinkholes. The perimeter
characteristic is divided into three buckets: 0 - 60 feet is

Fig. 3. Before Streambed Filtering



Fig. 4. After Streambed Filtering

small, 60 to 95 is medium, and greater than 95 is large.
Depth is divided into the following buckets: 0 to 15 feet is
shallow, 15 to 22 is moderate, and greater than 22 meters
is deep. We then calculate the likelihood of a certain depth
given the perimeter, producing the results in Table V.

TABLE V
PROBABILITY OF DEPTH GIVEN THE PERIMETER

Small Perimeter Medium Perimeter Large Perimeter
Shallow 0.640083 0.376623 0.327273
Medium 0.287795 0.345083 0.246753

Deep 0.072122 0.278293 0.4259744

The table shows that some generalizations can be made
about the geometric structure of sinkholes. A shallow depth
is most likely for a sinkhole with a small perimeter, while
deep is the least likely. The depth probabilities for a medium
perimeter sinkhole are much less pronounced. Shallow and
moderate depths are more likely than deep, but not by as
much as it was for small perimeter sinkholes. A sinkhole
with a large perimeter is most likely deep, and least likely
of moderate depth, but like medium perimeter, the results
are not as pronounced as the depth likelihoods for small
perimeters.

A more intriguing exercise is to look at the relationship
between vegetation and sinkholes. As part of pre-classified
LiDAR data, points that are determined to be vegetation
are divided into three categories: low, medium, and high.
These vegetation points occur above points that are classified
as bare earth. By projecting vegetation points to the bare
earth level, we can determine if that vegetation is covering
a sinkhole.

The results in Table VI show that vegetation of every type
is more likely on a sinkhole than it is on other land. An
overlay image of vegetation and sinkholes, seen in Figure

TABLE VI
PROBABILITY OF VEGETATION LEVEL GIVEN SINKHOLE EXISTENCE

Over Sinkhole Not Over Sinkhole
Low Vegetation 0.965995 0.888883

Medium Vegetation 0.987562 0.926441
High Vegetation 0.995783 0.939347

Fig. 5. Sinkholes with Detected Vegetation Overlaid

5 shows a portion of the analyzed area. It implies that this
strong relationship stems from land without sinkholes being
more often cleared for development.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

The algorithm presented in this paper provides an accurate,
efficient, and automated way of identifying sinkholes from
LiDAR data. This allows sinkholes to be cataloged and
monitored, providing important information for land plan-
ning strategies. Future work will attempt to characterize the
risk of sinkhole formation in an area through correlations
between sinkholes and soil type. It may also be possible that
the geometric pattern of emergent sinkholes, by exposing
underlying geological lineation, can be used to predict where
new sinkholes are likely to form.
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