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Abstract - The class imbalance problem in two-class data 
sets is one of the most important problems. When examples of 
one class in a training data set vastly outnumber examples of 
the other class, standard machine learning algorithms tend to 
be overwhelmed by the majority class and ignore the minority 
class.  There are several algorithms to alleviate the problem 
of class imbalance in literature. In this paper the existing 
RUSBoost, EasyEnsemble and BalanceCascade algorithms 
have been compared with each other using different 
classifiers like C4.5, SVM, and KNN as the base learners. 
Several experiments have been done in order to find the best 
base learner and the algorithm which has the best 
performance according to the class distribution. 

Keywords: Class imbalance, binary classification, re-
sampling, boosting.  

 

1 Introduction 
 When learning from imbalanced data sets, machine 
learning algorithms tend to produce high predictive accuracy 
over the majority class, but poor predictive accuracy over the 
minority class [1]. In addition, generally the minority class is 
the class of interest. 

There exist techniques to develop better performing 
classifiers with imbalanced data sets, which are generally 
called Class Imbalance Learning methods [2]. These 
methods divided into two categories, data level and 
algorithm level. Data level, involve preprocessing of training 
data sets in order to make them balanced. Preprocessing can 
be implemented in two ways: re-weighting or re-balancing. 
For example, for data-level methods can be given re-
sampling, boosting and bagging. Data re-sampling has 
received much attention in research related to class 
imbalance. Data re-sampling attempts to overcome 
imbalanced class distributions by adding examples to or 
removing examples from the data set. The second approach 
is algorithm level, develops new algorithms that can handle 
class imbalance efficiently to improve the classification 
performance. This category includes cost-sensitive learning 
[3], kernel-based algorithms [4] and recognition based 
algorithms [5]. 

Re-sampling technique can be categorized into three groups 
to balance the training data sets. First, the over-sampling the 
minority class examples, second, the under-sampling the 
examples of the majority class and the third, hybrid methods 
that combine both sampling methods mentioned above. 
Under-sampling methods create a subset of the original data 
set by eliminating some examples from majority class 
instances; over-sampling methods, create a superset of the 
original data set by replicating some examples or creating 
new examples from existing ones.  

Boosting is the preferred algorithm when class is 
imbalanced. Boosting method increases the performance of 
classification by focusing on examples that are difficult to 
classify. The examples which are misclassified currently will 
be assigned larger weight, in order to be more likely to be 
chosen as a member of training subset during re-sampling at 
next round. A final classifier is formed using a weighted 
voting scheme; the weight of each classifier depends on its 
performance on the training set used to build it. 

In this paper, the existing RUSBoost, BalanceCascade and 
EasyEnsemble algorithms at data level will be analyzed to 
alleviate the problem of class imbalance. 

This paper is organized as follows. Section 2 reviews related 
works and in Section 3, the algorithms used in the 
comparison are described. Section 4 presents the 
experimental setting while in Section 5 experimental results 
obtained by different existing algorithms and finally, in 
Section 6 the paper is concluded.  

2 Related Work 
  Many techniques have been proposed in literature to 
alleviate the problem of class imbalance. One of the newest 
algorithms was presented by K.Nageswara Rao et al [2]. This 
is a new hybrid subset filtering approach for learning from 
skewed training data. An easy way to sample a dataset is by 
selecting examples randomly from all classes. However, 
sampling in this way can break the dataset in an unequal 
priority way and more number of examples of the same class 
may be chosen in sampling. To resolve this problem and 
maintain uniformity in example, they proposed a sampling 
strategy called weighted component sampling. Before 
creating multiple subsets, they created the number of 



majority subsets depending upon the number of minority 
instances. The ratio of majority and minority examples in the 
imbalanced data set is used to decide the number of subset of 
majority examples to be created. Subsets of majority 
examples are combined with minority subset and multiple 
balanced subsets are formed. Correlation based Feature 
Subset (CFS) filters is applied to reduce the class imbalance 
effects. 

There are several algorithms specifically designed for 
learning with minority classes. One of them is SMOTEBoost, 
approach for learning from imbalanced data sets which was 
presented by N.V. Chawla et al. [6]. The proposed 
SMOTEBoost algorithm is based on the integration of the 
SMOTE algorithm within the standard boosting procedure. 
Unlike standard boosting where all misclassified examples 
are given equal weights, SMOTEBoost creates synthetic 
examples from the rare or minority class, thus indirectly 
changing the updating weights and compensating for skewed 
distributions. SMOTE was used for improving the prediction 
of the minority classes. 

Hongyu Guo, Herna L Viktor [7] presented hybrid method, 
called DataBoost-IM, combining synthetic over-sampling 
and boosting. Compare to SMOTE-Boost, DataBoost-IM 
synthesize new examples for both majority and minority 
classes, but much more examples for the minority class. 
DataBoost-IM chooses the hard-to-learn examples to 
synthesize new examples. Initially, each example is assigned 
with an equal weight. In every iteration, the method first 
identifies the hard-to-learn examples based on their weights; 
then it generates synthetic data based on the set and also the 
class distributions; more minority synthetic examples are 
produced than majority ones such that new training sets are 
balanced after combing original data and synthetic data; 
next, the weak learner is applied to this new training set, and 
error rate and weight distribution are re-calculated 
accordingly.  

3 Algorithms Used in the Comparison 
 In this parer existing three algorithms: RUSBoost, 
EasyEnsemble and BalanceCascade, which are good at 
dealing with class imbalance problem, have been chosen and 
described in details below. 

3.1 RUSBoost 
 C. Seiffert et al. [8] present hybrid sampling/boosting 
algorithm, called RUSBoost, for learning from skewed 
training data. This algorithm provides a simpler and faster 
alternative and they utilized boosting by re-sampling, which 
resamples the training data according to the examples’ 
assigned weights. It is this re-sampled training data set that 
is used to construct the iteration’s model.  

RUSBoost applies RUS, which is a technique that randomly 
removes examples from the majority class. The motivations 
for introducing RUS into the boosting process are simplicity, 
speed, and performance. RUS decreases the time required to 
construct a model, which is a key benefit particularly when 
creating an ensemble of models, which is the case in 
boosting. The loss of information, which is the main 
drawback of RUS, is greatly overcome by combining it with 
boosting. 

In first step, the weights of each example are initialized to 
1/m, where m is the number of examples in the training data 
set. In second step, T (number of classifiers in the ensemble) 
weak hypotheses are iteratively trained. RUS is applied to 
remove the majority class examples. For example, if the 
desired class ratio is 50: 50, then the majority class examples 
are randomly removed until the numbers of majority and 
minority class examples are equal. As a result, S't will have a 
new weight distribution D't. S't and D't are passed to the base 
learner, WeakLearn, which creates the weak hypothesis ht. 
The pseudo loss Ɛt (based on the original training data set S 
and weight distribution Dt) is calculated. The weight update 
parameter α is calculated as Ɛt/ (1 − Ɛt). Next, the weight 
distribution for the next iteration Dt+1 is updated and 
normalized. After T iterations, the final hypothesis H(x) is 
returned as a weighted vote of the T weak hypotheses. [8] 

3.2 BalanceCascade 
 Under-sampling is an efficient strategy to deal with 
class imbalance. However, the drawback of under-sampling 
is that it throws away many potentially useful data. Xu-Ying 
Liu et al. [9] proposed two strategies to explore the majority 
class examples ignored by undersampling: BalanceCascade 
and EasyEnsemble. 

BalanceCascade trains the learners sequentially, as new 
learners are built on examples that are filtered by previous 
learners. Initially, this method builds the first learner on a 
sampled subset containing partial majority class and the 
whole minority class; then a new sampled subset from 
majority class is filtered by such that the correct examples 
are removed and only incorrect ones are kept; with this 
refined majority subset and the minority set, a new ensemble 
learner is built. Iteratively, more learners are created on 
filtered sampling data set, and finally all learners are 
combined together. The BalanceCascade assumes the 
examples that have been correctly modeled are no longer 
useful on subsequent classifier construction. [9] 

3.3 EasyEnsemble 
 EasyEnsemble samples several subsets from the 
majority class, trains a learner using each of them, and 
combines the outputs of those learners.  



Given the minority training set P and the majority training 
set N, the under-sampling method randomly samples a subset 
N' from N, where |N'| < |N |. In this method, they 
independently sampled several subsets N1, N2, ..., NT from N. 
For each subset Ni (1≤ i ≤ T), a classifier Hi is trained using 
Ni and all of P. All generated classifiers are combined for the 
final decision. AdaBoost [10] is used to train the classifier Hi. 
[9] 

4 Experimental Study  
 The experiments were conduct using eight real world 
benchmark data sets taken from the UCI Machine Learning 
Repository. The details of these datasets used in this study 
are shown in Table I. The experiments have been done using 
Matlab and WEKA. C4.5 (denoted J48 in WEKA) decision 
tree, support vector machine (SVM, denoted SMO in 
WEKA) and k-nearest neighbor (KNN, denoted Ibk in 
WEKA) algorithms are used as the base learners to validate 
the compared algorithms. 

This paper uses three different performance metrics to 
evaluate the algorithms compared for our experiments, all of 
which are more suitable than the overall accuracy when 
dealing with class imbalance. In general, for binary class 
problems the performances of classifiers are evaluated by a 
confusion matrix (Table II). Based on the confusion matrix, 
three popular measures have been proposed: AUC, F-
measure and G-mean. In our experiment these three 
evaluation measures are used to validate the compared 
methods. The classification methods are repeated ten times 
considering that the re-sampling of subsets introduces 
randomness. The AUC, F-measure and G-mean are averaged 
from these ten runs. These well known and widely used 
measures are defined in the Table III: 

TABLE I.  DATA SETS  

Datasets Size Atribute Majority Minority 
breast 699 10 458 241 
bupa 345 7 200 145 

haberman 306 4 225 81 
hepatitis 155 18  123 32 

ionosphere 351 35 225 126 
pima 768 9 500 268 

transfusion 748 5 570 178 
wpbc 198 35 151 47 

TABLE II.  CONFUSION MATRIX 

 Predicted class (Positive) Predicted class (Negative) 
Actual  
class (Positive) 

True Positives 
TP 

False Negatives 
FN 

Actual  
class (Negative) 

False Positives 
FP 

True Negatives 
TN 

TABLE III.  EVALUATION MEASURES 

False Positive Rate FPRATE (fpr ) = FP/(FP+TN) 
True Positive Rate TPRATE (Acc+) = TP/(TP+FN) 
True Negative Rate TNRATE (Acc−) = TN/(TN+FP) 

AUC AUC = (1+TPRATE- FPRATE)/2 
G-mean  G− mean =√Acc+ × Acc− 
Precision Precision = TP/(TP+FP) 
Recall Recall = Acc+ 
F−measure F-measure = (2×Precision×Recall)/(Precision+Recall) 

 
5 Experimental Results  
 In this section the several experiments have been done 
using RUSBoost, BalanceCascade and EasyEnsemble 
algorithms. In subsection 5.1 the experiments have been 
done in order to find the best base learner among the C4.5, 
SVM and KNN and the best performed algorithm has tried to 
be found in subsection 5.2. In subsection 5.3 the experiments 
have been done with good performed algorithm according to 
the different class distribution. 

5.1 Base Learners Performance 
 This section presents the results of our experiments 
with RUSBoost, BalanceCascade and EasyEnsemble. We 
investigated the performance of these techniques by different 
learners when classification models are trained using C4.5, 
SVM and KNN. We used AUC, F-measure, G-mean to 
evaluate the compared algorithms. The best results for the 
three algorithms have been obtained when the C4.5 is used 
as the base learner which we can observe from Fig. 1-9. The 
details are given below. 

RUSBoost. When we calculated AUC (Fig.1) C4.5 has 
performed well on tree data sets and SVM has outperformed 
for four of eight data sets and KNN on one data sets. From 
Fig.2-3, we can see the results of RUSBoost in terms of F-
measure and G-mean. When the C4.5 is used as the base 
learner it has outperformed for four of eight data sets, SVM 
has performed well on tree data sets and KNN on one data 
set. 
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Fig. 1. AUC results of RUSBoost algorithm 



F-measure (RusBoost)
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Fig. 2. F-measure result of RUSBoost algorithm 
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Fig. 3. G-mean results of RUSBoost algorithm 

BalanceCascade. From Fig.4, we can observe the results of 
BalanceCascade algorithm in terms of AUC. When the C4.5 
is used as the base learner the good results have been 
obtained in six out of eight data sets. When SVM is taken as 
the base learner it has been successful on two data sets. F-
measure and G-mean (Fig.5-6) using C4.5 have been 
performed well over all data set. SVM and KNN are not 
performed well when they were used as the base learners. 
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Fig. 4. AUC results of BalanceCascade algorithm 
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Fig. 5. F-measure results of BalanceCascade algorithm 
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Fig. 6. G-mean results of BalanceCascade algorithm 

EasyEnsemble. Fig. 7, 9 show the performance of 
EasyEnsemble algorithm as measured using AUC and G-
mean. C4.5 has performed well in six out of eight data sets 
and SVM in two data sets. When using F-measure (Fig.8) to 
measure the performance using C4.5 it has been successful 
on five data sets and SVM on tree data sets. When KNN is 
selected as the base learner it has not performed well. 
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Fig. 7. AUC results of EasyEnsemble algorithm 



F-measure (EasyEnsemble)
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Fig. 8. F-measure results of EasyEnsemble algorithm 
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Fig. 9. G-mean results of EasyEnsemble algorithm 

Tables IV-VI show the performance of C4.5, SVM and KNN 
using RUSboost, BalanceCascade and EasyEnsemble 
algorithms according to AUC, F-measure and G-mean, 
which are averaged over all data sets.  

Table IV shows that the RUSBoost algorithm has got good 
results according to F-measure and G-mean using C4.5 and 
good AUC result using SVM.  

Tables V, VI show that the BalanceCascade and 
EasyEnsemble algorithms have got good results according to 
AUC, F-measure and G-mean using C4.5. 

According to these tables we can see that when C4.5 is used 
as the base learner these evaluation measures are obtained 
more successful results than SVM and KNN. 

TABLE IV.  MEAN VALUE FOR RUSBOOST  

Algorithm Base 
learners 

AUC F-
measur
e 

G-
mean 

C4.5 0.7483 0.6366 0.7345 
SVM 0.7625 0.6234 0.7269 

 
RUSBoost 

KNN 0.7266 0.5863 0.6979 

TABLE V.  MEAN VALUE FOR BALANCECASCADE 

Algorithm Base 
learners 

AUC F-
measure 

G-
mean 

C4.5 0.814 0.644 0.752 
SVM 0.792 0.619 0.728 

Balance  
Cascade 

KNN 0.723 0.567 0.678 

TABLE VI.  MEAN VALUE FOR EASYENSEMBLE  

Algorithm Base 
learners 

AUC F-
measure 

G-
mean 

C4.5 0.808 0.636 0.747 
SVM 0.797 0.628 0.735 

Easy  
Ensemble 

KNN 0.741 0.576 0.689 
 

5.2 Algorithm Performance 
 According to our prior experiment all three algorithms 
have produced good results when C4.5 is used as the base 
learner. Our aim is to find out which algorithm is better than 
the others according to the C4.5 as the base learner.  

Table VII show the performance of RUSBoost, 
BalanceCascade and EasyEnsemble algorithms according to 
AUC, F-measure and G-mean. When AUC was calculated 
EasyEnsemble and BalanceCascade has performed well on 
four data sets, RUSBoost has not performed well. When F-
measure and G-mean was calculated, EasyEnsemble has 
performed better than RUSBoost and BalanceCascade on 
four data sets. RUSBoost and BalanceCascade algorithms 
have been successful on two data sets.  

The experiments show that the EasyEnsemble performs 
better than RUSBoost and BalanceCascade when C4.5 is 
used as the base learner. 

5.3 Class Distribution Analysis 
 EasyEnsemble has been found as more successful 
algorithm according to our prior experiments. In 
EasyEnsemble there were given the minority training set P 
and the majority training set N, the under-sampling method 
has randomly sampled a subset N' from N, where |N'| <|N|. In 
our previous experiments, examples of P minority and N 
majority class were resampled equally (50-50). In this 
section, the experiments have been done like the distribution 
of majority and minority class examples are 55-45, 60-40 
and 65-35. We can see the experimental results from Table 
VIII. According to the results EasyEnsemble has produced 
more successful results when the distribution of majority and 
minority class examples was 55-45. 

 

 



TABLE VII.  THE AUC, F-MEASUE AND G-MEAN RESULTS OF RUSBOOST, EASYENSEMBLE AND BALANCECASCADE ALGORITHMS USING C4.5 

 AUC F-measure G-mean 
 RUSBoost Balance 

Cascade 
Easy 
Ensembl
e 

RUSBoost Balance 
Cascade 

Easy 
Ensembl
e 

RUSBoost Balance 
Cascade 

Easy 
Ensembl
e 

Breast 0.9569 0.987 0.993 0.9380 0.951 0.961 0.9567 0.969 0.975 
Bupa 0.6807 0.745 0.738 0.6362 0.626 0.636 0.6778 0.673 0.672 
Haberman 0.6303 0.677 0.674 0.4487 0.454 0.468 0.5889 0.612 0.623 
Hepatitis 0.7353 0.852 0.862 0.5375 0.597 0.573 0.7242 0.797 0.789 
Ionosphere 0.8845 0.961 0.963 0.8567 0.875 0.878 0.8808 0.897 0.904 
Pima 0.7413 0.821 0.797 0.6634 0.666 0.644 0.7360 0.739 0.720 
Transfusion 0.6598 0.712 0.741 0.4832 0.493 0.501 0.6254 0.668 0.674 
Wpbc 0.6978 0.754 0.697 0.529 0.488 0.431 0.6858 0.657 0.618 
          
 0/8 4/8 4/8 2/8 2/8 4/8 2/8 2/8 4/8 

Number of the best performed data sets 

TABLE VIII.  PERFORMANCE OF EASYENSEMBLE AVERAGED OVER ALL 
DATA SETS IN TERMS OF CLASS DISTRIBUTION 

 Class distribution (majority – minority) 
 50-50 55-45 60-40 65-35 
AUC 0.794 0.801 0.788 0.79 
F-measure 0.596 0.61 0.595 0.59 
G-mean 0.733 0.738 0.724 0.716 

 

6 Conclusion 
 In this paper RUSBoost, BalanceCascade and 
EasyEnsemble algorithms have been compared in order to 
alleviate the problem of class imbalance, which is one of the 
most important problems faced in data mining, according to 
base learners performance and algorithm performance. 
Experiments have been done on real-world data sets using 
the C4.5, SVM and KNN as the base learners. The 
performances of classifiers have been compared using AUC, 
G-mean and F-measure. When C4.5 is used as the base 
learner it has given better results than SVM and KNN 
learners for all three algorithms. According to the results of 
the experiment EasyEnsemble algorithm has been found as 
the best algorithm to alleviate the problem of class imbalance 
and with class distribution 55-45 (majority - minority). 
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