
Alleviating the Class Imbalance problem in Data Mining

A. Sarmanova1 and S. Albayrak2
1Computer Engineering, Yildiz Technical University, Istanbul, Turkey
2 Computer Engineering, Yildiz Technical University, Istanbul, Turkey

Abstract - The class imbalance problem in two-class data
sets is one of the most important problems. When examples of
one class in a training data set vastly outnumber examples of
the other class, standard machine learning algorithms tend to
be overwhelmed by the majority class and ignore the minority
class. There are several algorithms to alleviate the problem
of class imbalance in literature. In this paper the existing
RUSBoost, EasyEnsemble and BalanceCascade algorithms
have been compared with each other using different
classifiers like C4.5, SVM, and KNN as the base learners.
Several experiments have been done in order to find the best
base learner and the algorithm which has the best
performance according to the class distribution.

Keywords: Class imbalance, binary classification, re-
sampling, boosting.

1 Introduction
 When learning from imbalanced data sets, machine
learning algorithms tend to produce high predictive accuracy
over the majority class, but poor predictive accuracy over the
minority class [1]. In addition, generally the minority class is
the class of interest.

There exist techniques to develop better performing
classifiers with imbalanced data sets, which are generally
called Class Imbalance Learning methods [2]. These
methods divided into two categories, data level and
algorithm level. Data level, involve preprocessing of training
data sets in order to make them balanced. Preprocessing can
be implemented in two ways: re-weighting or re-balancing.
For example, for data-level methods can be given re-
sampling, boosting and bagging. Data re-sampling has
received much attention in research related to class
imbalance. Data re-sampling attempts to overcome
imbalanced class distributions by adding examples to or
removing examples from the data set. The second approach
is algorithm level, develops new algorithms that can handle
class imbalance efficiently to improve the classification
performance. This category includes cost-sensitive learning
[3], kernel-based algorithms [4] and recognition based
algorithms [5].

Re-sampling technique can be categorized into three groups
to balance the training data sets. First, the over-sampling the
minority class examples, second, the under-sampling the
examples of the majority class and the third, hybrid methods
that combine both sampling methods mentioned above.
Under-sampling methods create a subset of the original data
set by eliminating some examples from majority class
instances; over-sampling methods, create a superset of the
original data set by replicating some examples or creating
new examples from existing ones.

Boosting is the preferred algorithm when class is
imbalanced. Boosting method increases the performance of
classification by focusing on examples that are difficult to
classify. The examples which are misclassified currently will
be assigned larger weight, in order to be more likely to be
chosen as a member of training subset during re-sampling at
next round. A final classifier is formed using a weighted
voting scheme; the weight of each classifier depends on its
performance on the training set used to build it.

In this paper, the existing RUSBoost, BalanceCascade and
EasyEnsemble algorithms at data level will be analyzed to
alleviate the problem of class imbalance.

This paper is organized as follows. Section 2 reviews related
works and in Section 3, the algorithms used in the
comparison are described. Section 4 presents the
experimental setting while in Section 5 experimental results
obtained by different existing algorithms and finally, in
Section 6 the paper is concluded.

2 Related Work
 Many techniques have been proposed in literature to
alleviate the problem of class imbalance. One of the newest
algorithms was presented by K.Nageswara Rao et al [2]. This
is a new hybrid subset filtering approach for learning from
skewed training data. An easy way to sample a dataset is by
selecting examples randomly from all classes. However,
sampling in this way can break the dataset in an unequal
priority way and more number of examples of the same class
may be chosen in sampling. To resolve this problem and
maintain uniformity in example, they proposed a sampling
strategy called weighted component sampling. Before
creating multiple subsets, they created the number of

majority subsets depending upon the number of minority
instances. The ratio of majority and minority examples in the
imbalanced data set is used to decide the number of subset of
majority examples to be created. Subsets of majority
examples are combined with minority subset and multiple
balanced subsets are formed. Correlation based Feature
Subset (CFS) filters is applied to reduce the class imbalance
effects.

There are several algorithms specifically designed for
learning with minority classes. One of them is SMOTEBoost,
approach for learning from imbalanced data sets which was
presented by N.V. Chawla et al. [6]. The proposed
SMOTEBoost algorithm is based on the integration of the
SMOTE algorithm within the standard boosting procedure.
Unlike standard boosting where all misclassified examples
are given equal weights, SMOTEBoost creates synthetic
examples from the rare or minority class, thus indirectly
changing the updating weights and compensating for skewed
distributions. SMOTE was used for improving the prediction
of the minority classes.

Hongyu Guo, Herna L Viktor [7] presented hybrid method,
called DataBoost-IM, combining synthetic over-sampling
and boosting. Compare to SMOTE-Boost, DataBoost-IM
synthesize new examples for both majority and minority
classes, but much more examples for the minority class.
DataBoost-IM chooses the hard-to-learn examples to
synthesize new examples. Initially, each example is assigned
with an equal weight. In every iteration, the method first
identifies the hard-to-learn examples based on their weights;
then it generates synthetic data based on the set and also the
class distributions; more minority synthetic examples are
produced than majority ones such that new training sets are
balanced after combing original data and synthetic data;
next, the weak learner is applied to this new training set, and
error rate and weight distribution are re-calculated
accordingly.

3 Algorithms Used in the Comparison
 In this parer existing three algorithms: RUSBoost,
EasyEnsemble and BalanceCascade, which are good at
dealing with class imbalance problem, have been chosen and
described in details below.

3.1 RUSBoost
 C. Seiffert et al. [8] present hybrid sampling/boosting
algorithm, called RUSBoost, for learning from skewed
training data. This algorithm provides a simpler and faster
alternative and they utilized boosting by re-sampling, which
resamples the training data according to the examples’
assigned weights. It is this re-sampled training data set that
is used to construct the iteration’s model.

RUSBoost applies RUS, which is a technique that randomly
removes examples from the majority class. The motivations
for introducing RUS into the boosting process are simplicity,
speed, and performance. RUS decreases the time required to
construct a model, which is a key benefit particularly when
creating an ensemble of models, which is the case in
boosting. The loss of information, which is the main
drawback of RUS, is greatly overcome by combining it with
boosting.

In first step, the weights of each example are initialized to
1/m, where m is the number of examples in the training data
set. In second step, T (number of classifiers in the ensemble)
weak hypotheses are iteratively trained. RUS is applied to
remove the majority class examples. For example, if the
desired class ratio is 50: 50, then the majority class examples
are randomly removed until the numbers of majority and
minority class examples are equal. As a result, S't will have a
new weight distribution D't. S't and D't are passed to the base
learner, WeakLearn, which creates the weak hypothesis ht.
The pseudo loss Ɛt (based on the original training data set S
and weight distribution Dt) is calculated. The weight update
parameter α is calculated as Ɛt/ (1 − Ɛt). Next, the weight
distribution for the next iteration Dt+1 is updated and
normalized. After T iterations, the final hypothesis H(x) is
returned as a weighted vote of the T weak hypotheses. [8]

3.2 BalanceCascade
 Under-sampling is an efficient strategy to deal with
class imbalance. However, the drawback of under-sampling
is that it throws away many potentially useful data. Xu-Ying
Liu et al. [9] proposed two strategies to explore the majority
class examples ignored by undersampling: BalanceCascade
and EasyEnsemble.

BalanceCascade trains the learners sequentially, as new
learners are built on examples that are filtered by previous
learners. Initially, this method builds the first learner on a
sampled subset containing partial majority class and the
whole minority class; then a new sampled subset from
majority class is filtered by such that the correct examples
are removed and only incorrect ones are kept; with this
refined majority subset and the minority set, a new ensemble
learner is built. Iteratively, more learners are created on
filtered sampling data set, and finally all learners are
combined together. The BalanceCascade assumes the
examples that have been correctly modeled are no longer
useful on subsequent classifier construction. [9]

3.3 EasyEnsemble
 EasyEnsemble samples several subsets from the
majority class, trains a learner using each of them, and
combines the outputs of those learners.

Given the minority training set P and the majority training
set N, the under-sampling method randomly samples a subset
N' from N, where |N'| < |N |. In this method, they
independently sampled several subsets N1, N2, ..., NT from N.
For each subset Ni (1≤ i ≤ T), a classifier Hi is trained using
Ni and all of P. All generated classifiers are combined for the
final decision. AdaBoost [10] is used to train the classifier Hi.
[9]

4 Experimental Study
 The experiments were conduct using eight real world
benchmark data sets taken from the UCI Machine Learning
Repository. The details of these datasets used in this study
are shown in Table I. The experiments have been done using
Matlab and WEKA. C4.5 (denoted J48 in WEKA) decision
tree, support vector machine (SVM, denoted SMO in
WEKA) and k-nearest neighbor (KNN, denoted Ibk in
WEKA) algorithms are used as the base learners to validate
the compared algorithms.

This paper uses three different performance metrics to
evaluate the algorithms compared for our experiments, all of
which are more suitable than the overall accuracy when
dealing with class imbalance. In general, for binary class
problems the performances of classifiers are evaluated by a
confusion matrix (Table II). Based on the confusion matrix,
three popular measures have been proposed: AUC, F-
measure and G-mean. In our experiment these three
evaluation measures are used to validate the compared
methods. The classification methods are repeated ten times
considering that the re-sampling of subsets introduces
randomness. The AUC, F-measure and G-mean are averaged
from these ten runs. These well known and widely used
measures are defined in the Table III:

TABLE I. DATA SETS

Datasets Size Atribute Majority Minority
breast 699 10 458 241
bupa 345 7 200 145

haberman 306 4 225 81
hepatitis 155 18 123 32

ionosphere 351 35 225 126
pima 768 9 500 268

transfusion 748 5 570 178
wpbc 198 35 151 47

TABLE II. CONFUSION MATRIX

 Predicted class (Positive) Predicted class (Negative)
Actual
class (Positive)

True Positives
TP

False Negatives
FN

Actual
class (Negative)

False Positives
FP

True Negatives
TN

TABLE III. EVALUATION MEASURES

False Positive Rate FPRATE (fpr) = FP/(FP+TN)
True Positive Rate TPRATE (Acc+) = TP/(TP+FN)
True Negative Rate TNRATE (Acc−) = TN/(TN+FP)

AUC AUC = (1+TPRATE- FPRATE)/2
G-mean G− mean =√Acc+ × Acc−
Precision Precision = TP/(TP+FP)
Recall Recall = Acc+
F−measure F-measure = (2×Precision×Recall)/(Precision+Recall)

5 Experimental Results
 In this section the several experiments have been done
using RUSBoost, BalanceCascade and EasyEnsemble
algorithms. In subsection 5.1 the experiments have been
done in order to find the best base learner among the C4.5,
SVM and KNN and the best performed algorithm has tried to
be found in subsection 5.2. In subsection 5.3 the experiments
have been done with good performed algorithm according to
the different class distribution.

5.1 Base Learners Performance
 This section presents the results of our experiments
with RUSBoost, BalanceCascade and EasyEnsemble. We
investigated the performance of these techniques by different
learners when classification models are trained using C4.5,
SVM and KNN. We used AUC, F-measure, G-mean to
evaluate the compared algorithms. The best results for the
three algorithms have been obtained when the C4.5 is used
as the base learner which we can observe from Fig. 1-9. The
details are given below.

RUSBoost. When we calculated AUC (Fig.1) C4.5 has
performed well on tree data sets and SVM has outperformed
for four of eight data sets and KNN on one data sets. From
Fig.2-3, we can see the results of RUSBoost in terms of F-
measure and G-mean. When the C4.5 is used as the base
learner it has outperformed for four of eight data sets, SVM
has performed well on tree data sets and KNN on one data
set.

AUC (RUSBoost)

0

0.2

0.4

0.6

0.8

1

1.2

breast haberman ionosphere transfusion

SVM KNN C4.5

Fig. 1. AUC results of RUSBoost algorithm

F-measure (RusBoost)

0

0.2

0.4

0.6

0.8

1

1.2

breast haberman ionosphere transfusion

SVM KNN C4.5

Fig. 2. F-measure result of RUSBoost algorithm

G-mean (RusBoost)

0

0.2

0.4

0.6

0.8

1

1.2

breast haberman ionosphere transfusion

SVM KNN C4.5

Fig. 3. G-mean results of RUSBoost algorithm

BalanceCascade. From Fig.4, we can observe the results of
BalanceCascade algorithm in terms of AUC. When the C4.5
is used as the base learner the good results have been
obtained in six out of eight data sets. When SVM is taken as
the base learner it has been successful on two data sets. F-
measure and G-mean (Fig.5-6) using C4.5 have been
performed well over all data set. SVM and KNN are not
performed well when they were used as the base learners.

AUC (BalanceCascde)

0

0.2

0.4

0.6

0.8

1

1.2

breast bupa haberman hepatitis ionosphere pima transfusion wpbc

SVM KNN C4.5

Fig. 4. AUC results of BalanceCascade algorithm

F-measure (BalanceCascade)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

breast bupa haberman hepatitis ionosphere pima transfusion wpbc

SVM KNN C4.5

Fig. 5. F-measure results of BalanceCascade algorithm

G-mean (BalanceCascade)

0

0.2

0.4

0.6

0.8

1

1.2

breast bupa haberman hepatitis ionosphere pima transfusion wpbc

SVM KNN C4.5

Fig. 6. G-mean results of BalanceCascade algorithm

EasyEnsemble. Fig. 7, 9 show the performance of
EasyEnsemble algorithm as measured using AUC and G-
mean. C4.5 has performed well in six out of eight data sets
and SVM in two data sets. When using F-measure (Fig.8) to
measure the performance using C4.5 it has been successful
on five data sets and SVM on tree data sets. When KNN is
selected as the base learner it has not performed well.

AUC (EasyEnsemble)

0

0.2

0.4

0.6

0.8

1

1.2

breast bupa haberman hepatitis ionosphere pima transfusion wpbc

SVM KNN C4.5

Fig. 7. AUC results of EasyEnsemble algorithm

F-measure (EasyEnsemble)

0

0.2

0.4

0.6

0.8

1

1.2

breast bupa haberman hepatitis ionosphere pima transfusion wpbc

SVM KNN C4.5

Fig. 8. F-measure results of EasyEnsemble algorithm

G-mean (EasyEnsemble)

0

0.2

0.4

0.6

0.8

1

1.2

breast bupa haberman hepatitis ionosphere pima transfusion wpbc

SVM KNN C4.5

Fig. 9. G-mean results of EasyEnsemble algorithm

Tables IV-VI show the performance of C4.5, SVM and KNN
using RUSboost, BalanceCascade and EasyEnsemble
algorithms according to AUC, F-measure and G-mean,
which are averaged over all data sets.

Table IV shows that the RUSBoost algorithm has got good
results according to F-measure and G-mean using C4.5 and
good AUC result using SVM.

Tables V, VI show that the BalanceCascade and
EasyEnsemble algorithms have got good results according to
AUC, F-measure and G-mean using C4.5.

According to these tables we can see that when C4.5 is used
as the base learner these evaluation measures are obtained
more successful results than SVM and KNN.

TABLE IV. MEAN VALUE FOR RUSBOOST

Algorithm Base
learners

AUC F-
measur
e

G-
mean

C4.5 0.7483 0.6366 0.7345
SVM 0.7625 0.6234 0.7269

RUSBoost

KNN 0.7266 0.5863 0.6979

TABLE V. MEAN VALUE FOR BALANCECASCADE

Algorithm Base
learners

AUC F-
measure

G-
mean

C4.5 0.814 0.644 0.752
SVM 0.792 0.619 0.728

Balance
Cascade

KNN 0.723 0.567 0.678

TABLE VI. MEAN VALUE FOR EASYENSEMBLE

Algorithm Base
learners

AUC F-
measure

G-
mean

C4.5 0.808 0.636 0.747
SVM 0.797 0.628 0.735

Easy
Ensemble

KNN 0.741 0.576 0.689

5.2 Algorithm Performance
 According to our prior experiment all three algorithms
have produced good results when C4.5 is used as the base
learner. Our aim is to find out which algorithm is better than
the others according to the C4.5 as the base learner.

Table VII show the performance of RUSBoost,
BalanceCascade and EasyEnsemble algorithms according to
AUC, F-measure and G-mean. When AUC was calculated
EasyEnsemble and BalanceCascade has performed well on
four data sets, RUSBoost has not performed well. When F-
measure and G-mean was calculated, EasyEnsemble has
performed better than RUSBoost and BalanceCascade on
four data sets. RUSBoost and BalanceCascade algorithms
have been successful on two data sets.

The experiments show that the EasyEnsemble performs
better than RUSBoost and BalanceCascade when C4.5 is
used as the base learner.

5.3 Class Distribution Analysis
 EasyEnsemble has been found as more successful
algorithm according to our prior experiments. In
EasyEnsemble there were given the minority training set P
and the majority training set N, the under-sampling method
has randomly sampled a subset N' from N, where |N'| <|N|. In
our previous experiments, examples of P minority and N
majority class were resampled equally (50-50). In this
section, the experiments have been done like the distribution
of majority and minority class examples are 55-45, 60-40
and 65-35. We can see the experimental results from Table
VIII. According to the results EasyEnsemble has produced
more successful results when the distribution of majority and
minority class examples was 55-45.

TABLE VII. THE AUC, F-MEASUE AND G-MEAN RESULTS OF RUSBOOST, EASYENSEMBLE AND BALANCECASCADE ALGORITHMS USING C4.5

 AUC F-measure G-mean
 RUSBoost Balance

Cascade
Easy
Ensembl
e

RUSBoost Balance
Cascade

Easy
Ensembl
e

RUSBoost Balance
Cascade

Easy
Ensembl
e

Breast 0.9569 0.987 0.993 0.9380 0.951 0.961 0.9567 0.969 0.975
Bupa 0.6807 0.745 0.738 0.6362 0.626 0.636 0.6778 0.673 0.672
Haberman 0.6303 0.677 0.674 0.4487 0.454 0.468 0.5889 0.612 0.623
Hepatitis 0.7353 0.852 0.862 0.5375 0.597 0.573 0.7242 0.797 0.789
Ionosphere 0.8845 0.961 0.963 0.8567 0.875 0.878 0.8808 0.897 0.904
Pima 0.7413 0.821 0.797 0.6634 0.666 0.644 0.7360 0.739 0.720
Transfusion 0.6598 0.712 0.741 0.4832 0.493 0.501 0.6254 0.668 0.674
Wpbc 0.6978 0.754 0.697 0.529 0.488 0.431 0.6858 0.657 0.618

 0/8 4/8 4/8 2/8 2/8 4/8 2/8 2/8 4/8

Number of the best performed data sets

TABLE VIII. PERFORMANCE OF EASYENSEMBLE AVERAGED OVER ALL
DATA SETS IN TERMS OF CLASS DISTRIBUTION

 Class distribution (majority – minority)
 50-50 55-45 60-40 65-35
AUC 0.794 0.801 0.788 0.79
F-measure 0.596 0.61 0.595 0.59
G-mean 0.733 0.738 0.724 0.716

6 Conclusion
 In this paper RUSBoost, BalanceCascade and
EasyEnsemble algorithms have been compared in order to
alleviate the problem of class imbalance, which is one of the
most important problems faced in data mining, according to
base learners performance and algorithm performance.
Experiments have been done on real-world data sets using
the C4.5, SVM and KNN as the base learners. The
performances of classifiers have been compared using AUC,
G-mean and F-measure. When C4.5 is used as the base
learner it has given better results than SVM and KNN
learners for all three algorithms. According to the results of
the experiment EasyEnsemble algorithm has been found as
the best algorithm to alleviate the problem of class imbalance
and with class distribution 55-45 (majority - minority).

7 References
[1] N. Japkowicz. “Learning from imbalanced data sets: A
comparison of various strategies, Learning from imbalanced
data sets”; The AAAI Workshop 10-15. Menlo Park, CA:
AAAI Press. Technical Report WS-00-05, 2000.

[2] K. Nageswara Rao, Prof. T. Venkateswara rao, Dr. D.
Rajya Lakshmi, “A Novel Class Imbalance Learning Method
using Subset Filtering”. International Journal of Scientific &
Engineering Research Volume 3, Issue 9, September-2012 1
ISSN 2229-5518.

[3] W. Fan, S. J. Stolfo, J. Zhang, “AdaCost:
misclassification cost-sensitive boosting,” Proc.Int. Conf.
Machine Learning, Bled, Slovenia, June, 1999, pp. 97-105.

[4] Yuchun Tang, Yan-Qing Zhang, N. V. Chawla, “SVMs
modeling for highly imbalanced classification,” IEEE Trans.
Syst., Man, and Cybern. - Part B, vol. 39, no. 1, pp. 281 -
288, Feb. 2009.

[5] Zhi-Qiang Zeng and Ji Gao, “Improving SVM
classification with imbalance data set,” Proc. 16th Int.Conf.
Neural Information Processing (ICoNIP 2009), Bangkok,
Thailand, 2009, pp. 389-398.

[6] N.V. Chawla, A. Lazarevic, L. O. Hall, and
K.W.Bowyer, “SMOTEBoost: Improving prediction of the
minority class in boosting,” in Proc. Knowl. Discov.
Databases, 2003, pp. 107–119.

[7] Hongyu Guo, Herna L Viktor, “Learning from
Imbalanced Data Sets with Boosting and Data Generation:
The DataBoost-IM Approach”, ACM SIGKDD Explorations
Newsletter, 2004.

[8] Seiffert C., Khoshgoftaar T. M., Van Hulse J., &
Napolitano A., “RUSBoost: A Hybrid Approach to
Alleviating Class Imbalance,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and
Humans, 40(1), 185-197, 2010.

[9] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou,
“Exploratory undersampling for class imbalance learning,”
IEEE Transactions on Systems, Man and Cybernetics,
39(2):539-550, 2009.

[10] R. E. Schapire, “A brief introduction to Boosting,” in
Proceedings of the 16th International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, 1999, pp. 1401–
1406.

