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Abstract— In nuclear fission, a delayed neutron is 

a neutron emitted by one of the fission products any time 

from a few milliseconds to a few minutes after the fission 

event. The counts of delayed neutrons constitute a time 

series sequence. The analysis of such time series can prove 

to be very significant for purpose of predictive maintenance 

in nuclear power plants. In this paper we aim to identify 

anomalies in neutron counts, which may be generated due to 

possible leaks in the nuclear reactor channel. Real world 

case data comprising of readings from Delayed Neutron 

Monitors (DNM) has been analyzed. The time sequences 

formed by the delayed neutrons have first been symbolically 

represented using Symbolic Approximation Algorithm 

(SAX), then anomaly detection and pattern detection 

algorithms have been applied on them. 
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I.  INTRODUCTION 

In nuclear engineering, a delayed neutron is 

a neutron emitted after a nuclear fission event, by one of 

the fission products (or actually, a fission product daughter 

after beta decay), any time from a few milliseconds to a few 

minutes after the fission event. Neutrons born 

within  seconds of the fission are termed "prompt 

neutrons." 
If a nuclear reactor happened to be in critical state for 

prompt neutrons, the number of neutrons would increase 
exponentially at a high rate, and very quickly the reactor 
would become uncontrollable by means of cybernetics 

Delayed neutrons play an important role in nuclear reactor 
control and safety analysis [16]. The Nuclear reactors operate 
in subcritical state as far as only prompt neutrons are 
concerned. The delayed neutrons come a moment later, just in 
time to sustain the chain reaction when it is going to die out. 
In that regime, neutron production overall still grows 
exponentially, but on a time scale that is governed by the 
delayed neutron production, which is slow enough to be 
controlled (just as an otherwise unstable bicycle can be 
balanced because human reflexes are quick enough on the 
time scale of its instability). Thus, by widening the margins of 
non-operation and super criticality and allowing more time to 

regulate the reactor, the delayed neutrons are essential 
to inherent reactor safety and even in reactors requiring active 
control [16]. 

In nuclear reactors, the fuel is encased in metal rods which 
are mounted in groups in fuel assemblies which in turn are 
massed together to form the reactor core. Reactor coolant in 
the form of a fluid passed through the core to absorb heat 
generated by nuclear reactions in the fuel is typically 
circulated through several external heat transfer loops. The 
reactor coolant may be ordinary water, heavy water, a gas or 
any other material like liquid sodium [16].  

In any case, the cladding on the fuel rods is subjected to 
high temperatures and internal stresses generated as a result of 
the nuclear reactions in the fuel which can lead to failures in 
the cladding. Such breaches in the fuel rod cladding introduce 
fuel into the reactor coolant which carries the contamination 
throughout the heat transfer loops. Identifying and locating the 
breached fuel rod in a timely manner is important in order that 
appropriate action might be taken prior to the time that 
operational or safety problems are created by the failure [16]. 

The counts of delayed neutrons (obtained from Delayed 
Neutron Monitors in nuclear reactors) constitute a time series. 
Time series is a sequence of data points, measured typically at 
successive points in time spaced at uniform time intervals. 
Time series data have a natural temporal ordering. This makes 
time series analysis distinct from other common data analysis 
problems, in which there is no natural ordering of the 
observations.  

In this paper, we aim to identify anomalies in neutron 
counts generated due to possible leaks in the nuclear reactor 
channel or other reasons. Such situations are very critical and 
need continues monitoring and attention. The motivation of 
this study is to predict such conditions to avoid failures in the 
reactor and other unwanted events.  

Two real world datasets have been used for the present 
study. The dataset‟s comprises of readings taken from Delayed 
Neutron Monitor (DNM) over a period of five years ( 2005- 
2010). 

In order to find the anomalies and patterns in time series, 
we first convert our dataset into a symbolic representation. We 
have used symbolic aggregate approximation (SAX) algorithm 
for this purpose [1]. Then we apply anomaly detection and 
pattern finding algorithm on the symbolic representation 



The remainder of the paper is organized as follows. 
Section 2 describes the related work. It includes description of 
SAX algorithm and anomaly detection algorithm. Following 
section, section 3 details the framework of our project. Section 
4 describes the real world dataset that we have used. Next, 
section 5 describes the experimental results and discussions. 
Final conclusion is stated in section 6. 

II. RELATED WORK 

As with most problems in computer science, the suitable 
choice of representation of time series greatly affects the ease 
and efficiency of time series data mining. With this in mind, a 
great number of time series representations have been 
introduced, including the Discrete Fourier Transform (DFT) 
[8], the Discrete Wavelet Transform (DWT) [9], Piecewise 
Linear, and Piecewise Constant models (PAA) [11], (APCA) 
[12, 11], and Singular Value Decomposition (SVD) [11].  

All the above methods are similar in terms of indexing 
power [13]; however, the representations have other features 
that may act as strengths or weaknesses. As a simple example, 
wavelets have the useful multi resolution property, but are 
only defined for time series that are an integer power of two in 
length [9]. 

One important feature of all the above representations is 
that they are real valued. This limits the algorithms, data 
structures and definitions available for them. For example, in 
anomaly detection we cannot meaningfully define the 
probability of observing any particular set of wavelet 
coefficients, since the probability of observing any real 
number is zero [14]. Such limitations have lead researchers to 
consider using a symbolic representation of time series. One 
main disadvantage is none of the above techniques allows a 
distance measure those lower bounds a distance measure 
defined on the original time series. For this reason, the various 
generic time series data mining approaches are of little utility. 

We have used Symbolic Approximation Algorithm to 
represent out dataset in symbolic form. The main advantage of 
this algorithm is that it allows the lower bounding of the true 
distance. SAX also allows dimensionality/ numerosity 
reduction, and distance measures to be defined on the 
symbolic approach that lower bound corresponding distance 
measures defined on the original series. Now we can take 
advantage of the generic time series data mining model, and of 
a host of other algorithms, definitions and data structures 
which are only defined for discrete data, including hashing, 
Markov models, and suffix trees. The SAX algorithm is 
discussed in detail in section 2. 

For anomaly detection in most real valued time series 
problems such as motif discovery [15], longest common 
subsequence matching, sequence averaging, segmentation, 
indexing [13], etc. have approximate or exact analogues in the 
discrete world, and have been addressed by the text processing 
or bioinformatics communities. For identifying time series 
anomalies in discrete datasets, Heuristically Ordered Time 
series is the best algorithm. The algorithm is discussed in 
section 2. 

A. Symbollic Aggregate Approximation (SAX) 

Symbolic Aggregate Approximation (SAX) algorithm [1] 
produces symbolic representation of time series. This 
representation is unique because it allows 
dimensionality/numerosity reduction, and it also allows 
distance measures to be defined on the symbolic approach that 
lower bound corresponding distance measures defined on the 
original series.  

SAX allows time series of arbitrary length n to be 
converted into strings of length w such that w<=n. The 
alphabet size is also an integer a such that a >=2. Converting 
time series data into SAX representation is a two-step process. 
We first transform the data into the Piecewise Aggregate 
Approximation (PAA) [1] representation and then symbolize 
the PAA representation into a discrete string. There are two 
important advantages to doing this: 

1. Dimensionality Reduction: We can use the well-
defined and well-documented dimensionality reduction power 
of PAA [4, 5], and the reduction is automatically carried over 
to the symbolic representation. 

2. Lower Bounding: Proving that a distance measure 
between two symbolic strings lower bounds the true distance 
between the original time series is non-trivial. The key 
observation that allows us to prove lower bounds is to 
concentrate on proving that the symbolic distance measure 
lower bounds the PAA distance measure. Then we can prove 
the desired result by transitivity by simply pointing to the 
existing proofs for the PAA representation itself [5]. 

So, to reduce the time series from n dimensions to w 
dimensions, the data is divided into w equal sized “frames.” 
The mean value of the data falling within a frame is calculated 
and a vector of these values becomes the data-reduced 
representation. This representation is the PAA representation 
of the time series. Also we normalize each time series to have 
a mean of zero and a standard deviation of one before 
converting it to the PAA representation, since it is well 
understood that it is meaningless to compare time series with 
different offsets and amplitudes [6, 10]. 

Having transformed a time series database into PAA, we 
can apply a further transformation to obtain a discrete 
representation. It is desirable to have a discretization technique 
that will produce symbols with equal-probability. This is 
easily achieved since normalized time series have a Gaussian 
distribution [7]. Given that the normalized time series have 
highly Gaussian distribution, we can simply determine the 
“breakpoints” that will produce a equal-sized areas under 
Gaussian curve [7]. These breakpoints may be determined by 
looking them up in a statistical table. For example, Table 1 
gives the breakpoints for values of a from 3 to 10. 

Once the breakpoints have been obtained we can discretize 
a time series in the following manner. We first obtain a PAA 
of the time series. All PAA coefficients that are below the 
smallest breakpoint are mapped to the symbol “a,” all 
coefficients greater than or equal to the smallest breakpoint 
and less than the second smallest breakpoint are mapped to the 
symbol “b,” etc.  

 
 
 



TABLE 1: A LOOKUP TABLE THAT CONTAINS THE 
BREAKPOINTS THAT DEVIDE A GAUSSIAN DISTRIBUTION IN A 

NUMBER (3 TO 10) OF EQUIPROBABLE REGIONS 

 

 
Figure 2 illustrates the three steps of SAX generation 

algorithm. „C‟ is the name of the time series. First we obtain 
the PAA representation of C, which is represented by C-bar. 
Now we select alphabet size 3. So we introduce two 
breakpoints. The PAA points lying below the first breakpoint 
are labeled as „a‟, the PAA points lying between the first and 
the second breakpoint are labeled „b‟ and the points lying 
beyond the third breakpoint line are labeled „c‟. 

 
 
Figure 2: A time series is discretized by first obtaining a PAA 

approximation and then using predetermined breakpoints to map the PAA 
coefficients into SAX symbols. In the example above, with n = 128, w = 8 and 
a = 3, the time series is mapped to the word baabccbc 

Now we have to define the distance measure on SAX 
representation. i.e. how do we calculate the distance between 
two SAX strings.  The distance between two SAX strings can 
be calculated by Equation 1:  

   (1) 

Where dist() function calculates the distance between two 
SAX coefficients.  The dist() function can be implemented 
using a table lookup as illustrated in Table 3. 

 

 

TABLE 3. LOOKUP TABLE USED BY MINDIST FUNCTION. THIS 
TABLE IS FOR AN ALPHABET OF CARDINALITY 4. 

 

The value in cell (r,c) for any lookup table can be 
calculated by the following Equation 2. 

(2) 

The question still remains, what values of w and a should 
we choose? There is a clear tradeoff between the parameter w 
controlling the number of approximating elements, and the 
value a controlling the granularity of each approximating 
element. 

 
We choose the value of a and w such that the following 

ratio in equation 3 is maximized (close to 1 ). 

(3) 
 
So in order to choose the value of a and w, we conduct the 

following experiment. We find the tightness of lower bound 
for the time series by calculating the above ratio for every 
possible combination of substring possible and then averaging 
the ratio. The result of this experiment are shown in section 5. 

B. Algorithm for detecting anomalies 

Time series anomalies are subsequences of longer time 
series that are maximally different to all the rest of the time 
series subsequences. They thus capture the sense of the most 
unusual subsequence within a time series. Before discussing 
the algorithm, we must first discuss what are non-self-match. 
Given a time series T, containing a subsequence C of length n 
beginning at position p and a matching subsequence M 
beginning at q, we say that M is a non-self match to C at 
distance of Dist(M,C) if | p – q| >=n. [2] 

The brute force algorithm for finding anomalies is simple 
and obvious. We simply take each possible subsequence and 
find the distance to the nearest non-self match. The 
subsequence that has the greatest such value is the discord. 
This is achieved with nested loops, where the outer loop 
considers each possible candidate subsequence, and the inner 
loop is a linear scan to identify the candidate‟s nearest non-
self match. The pseudo code for algorithm is shown in Figure 
3. 



 
Figure 3: Algorithm for identifying discords in time series 

 
The advantage of this algorithm is that it requires only one 

parameter, that is the length of the subsequence as input and it 
finds the anomaly. The algorithm has square complexity. In 
order to improve the running time of the algorithm, we 
implement the following optimization: We don‟t really need to 
find the true nearest neighbor for every candidate. As soon as 
for any candidate, we find that its „nearest neighbor distance‟ 
is less than „best so far‟ we abandon the instance of the inner 
loop, safe in the knowledge that current candidate cannot be 
the time series discord. The algorithm in figure 3 allows 
several potential weaknesses for the sake of simplicity. First, it 
assumes a single anomaly in the dataset. Second, in the first 
few iterations, the measure needs to note the difference a small 
anomaly makes, even when masked by a large amount of 
surrounding normal data. A simple solution to these problems 
is to set a parameter W, for number of windows. We can 
divide the input sequence into W contiguous sections, and 
identify anomaly for each sensor in each of the windows. [3] 

III. PROPOSED FRAMEWORK 

In the proposed framework (Figure 1), symbolic aggregate 

approximation algorithm is applied on the raw dataset. This 

helps in discretizing the dataset, and allows us to use various 

algorithms used in text data mining. 

 

 

 

 

 

 

 

 
 

 

 
 

 

Figure 1. Framework for our experiment  
 

After the dataset has been discretized, we apply the 

Heuristically Ordered Time series algorithm to find the 

anomalies in the dataset. We analyze the anomalies found and 

find the correlation among sensors, that is the probability of 

one sensor failing given that another sensor has failed. 

IV. DATASET 

 
There are two datasets that are analyzed. The first dataset 

(DP1) consists of readings for 5 years from 2006- 2010. The 
second dataset (DP4) consists of readings for 6 years 2006 – 
2010. Each of these datasets contains readings recorded from 
28 sensors on certain days.  

Table 2 shows the number of days when readings are 
recorded in each of the dataset during the period of 2005- 
2010. For each of these days, a set of 14 readings have been 
considered for each of the 28 sensors deployed in the nuclear 
reactor. So in DP1 dataset, there are 434*14*28=1,70,128 
(Days multiplied by number of readings each day) readings 
and in DP4 dataset there are 479*14*28=1,87,768 readings. 

 
TABLE 2: NUMBER OF READINGS FOR EACH YEAR AND EACH 

DATASET 

 2005 2006 2007 2008 2009 2010 

DP1 - 19 107 126 96 86 

DP4 27 76 106 77 87 106 

     
It has also been assumed that the reactor channel is circular 

in shape, and the neutron count towards the center of the 
channel is greater when compared to the neutron count 
towards the circumference. 

 

V. EXPERIMENTAL RESULTS & DISCUSSION 

A. Finding Optimal SAX Representation 

In SAX representation of a dataset, the most important 
point to consider is what should be the value of word size (w) 
and alphabet size (a). w is the size of SAX string, i.e. the time 
series string of length n is converted into SAX representation 
of length w. w is less than or equal to the length of original 
time series n. Very small values of w are not preferred as it 
leads to loss of accuracy. Also very large values of w are also 
avoided as then there is no reduction in the size of the dataset. 
[1] 

Alphabet size a controls the granularity of each 
approximating element. So an alphabet size of 3 means that 
each approximating element can take 3 values i.e. „a‟, „b‟, „c‟. 

 One of the most important properties of SAX 
representation is that it lower bounds the distance of two 
symbolic representations when compared to the distance 
between the original series. Lower bounding means if A and  B  
are original time series and distance between them is X ; Q and 
R  are their symbolic approximations and distance between 
them is Y then Y lower bounds X. i.e. Y<=X always! A lower 
bounding symbolic approach would allow us to use suffix 
trees, hashing, Markov models, text processing and 
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bioinformatics algorithms on symbolic approximation.[1] The 
closer is Y to X more accurate is our approximation.  

Hence we wish to choose variables a and w such that there 
is tightest possible lower bound between the symbolic 
approximation and time series. Equation 3 shows the equation 
for tightness of lower bound. 

  In this equation D and C are two time series subsections 
and D(Q,C) is the distance between these subsections. 
MINDIST(Q,C) finds the difference between the SAX 
approximations of Q and C. Hence we can see that the above 
equation will always be less than one, since MINDIST lower 
bounds D(Q,C) function. 

In our experiment, we choose different values of a and w 
and for all possible combinations of time series subsequences 
find their Tightness of Lower Bound. Finally we take the mean 
for all the lower bounds to represent the property for a given a 
and w.  

We performed such tests on DP1 dataset for year 2006. In 
all we found mean for lower bound for 171 subsequences of 
the data set. We averaged these results to find the final results. 
We conducted these experiments for all the sensors. Figure 4, 
Figure 5 and Figure 6 shows the results. In these results the 
tightness of lower bound is shown on z axis whereas x and y 
axis contain alphabet size and word size respectively. 

 

 
Figure 4: Tightness of Lower Bound for different values of alphabet sizes 

(a) and for word sizes of 7 and 14, when calculated for time series generated 
by SENSOR 1 

The results suggest that using a low value for a results in 
weak bounds, but that there are diminishing returns for large 
values of a. The results also suggest that the parameters are 
not too critical; an alphabet size in the range of 5 to 7 seems to 
be a good choice.  

 

 
 
Figure 5 Tightness of Lower Bound for different values of alphabet sizes 

(a) and for word sizes of 7 and 14, when calculated for time series generated 
by SENSOR 26 

 

 
 
Figure 6 Tightness of Lower Bound for different values of alphabet sizes 

(a) and for word sizes of 7 and 14, when calculated for time series generated 
by SENSOR 12. 

 

Based on these results we have chosen word size of 14 and 
alphabet size of 5 to represent the time series dataset by 
symbolic representation. Using the SAX algorithm we convert 
the entire dataset into symbolic representation.  

 

B. Finding Anomalies in the Dataset 

Once we have converted the time series dataset, we apply 
the algorithm discussed in section 2 to find the discords. It 
must be noted that this algorithm takes only the length of the 
anomaly as the input and identifies the subsequence of that 
length that is most different from other subsequences. We 
have performed our experiment for all anomaly sizes varying 
it from 3 to 14. We have found that strongest anomalies are 
detected for anomaly size of 11.  

This algorithm has two potential weaknesses that we must 
solve. First, it assumes a single anomaly in the dataset. 
Second, in the first few iteration, the measure needs to note the 
difference a small anomaly makes, even when masked by a 
large amount of surrounding normal data. A simple solution to 
these problems is to set a parameter W, for number of 
windows. 

We can divide the input sequence into W contiguous 
sections and apply our algorithm on each of these windows. In 
our experiment, we have taken the window size to be 17, 
hence we are finding the most anomalous subsequence of 
length 11 for each of the sensors in data taken across 17 days. 
It must be noted that, now in a time series there are 14 
readings for each day and in all there are 17 days, so for each 
sensor we have 238 readings and we are trying to find the 
subsequence of length 11 that is most different from the 
others.  

So we consider readings from each sensor to be part of a 
time series. We divide readings for each sensor in group of 17 
days and apply the algorithm shown in figure 3. So for each 
sensor, we find the day when the sensor has been most 
anomalous (with respect to other 16 days in the window).  

We repeat the above process for each window of each 
sensor. We get large number of results for our experiment, a 
snapshot of part of the results is shown below in table 4. 

In all there are two datasets having data for a number of 
years. So we perform our experiment on the entire datasets. 
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TABLE 4: RESULT OF ANOMALY DETECTION ALGORITHM FOR 
A WINDOW IN YEAR 2008, DP4 DATASET 

 

S.No. Sensor No. Timestamp 

1 1, 14, 20 06/06 /2008 

2 2,7, 12 05/05 /2008 

3 3,11 02/06 /2008 

4 4 14/05 /2008 

5 5,24 21/05 /2008 

6 6, 25 09/05 /2008 

7 7,8,9,13 11/04 /2008 

8 10 16/05 /2008 

9 15, 22 28/05 /2008 

10 18 07/04 /2008 

11 19 26/05 /2008 

12 21 18/04 /2008 

13 23 4/9/2008 

 

So as it can be seen above, in window of 17 days in year 

2008, we have identified days when the sensor has been most 

anomalous. Also there are sensors that do not show any 

anomaly at all, for example sensor number 16, 17, 26, 27 and 

28 don‟t show any anomaly! 

In the second part of anomaly detection process, we try to 

identify a single day when each of the sensors has been most 

anomalous. In order to do this, we compare the most 

anomalous day in each window of set of 17 days. The results 

of this process for DP1 dataset for year 2008 are shown below 

in table 5. 

 
TABLE 5: THE MOST ANOMALOUS DAY FOR EACH SENSOR 

DURING THE YEAR 2008 IN DP1 DATASET 

2008- DP1 Days 

Sensor 7 1/9/2008 

Sensor 11 2/6/2008 

Sensor 12 2/7/2008 

Sensor 10 4/8/2008 

Sensor 22 4/8/2008 

Sensor 26 4/8/2008 

Sensor 28 4/8/2008 

Sensor 6 4/8/2008 

Sensor 23 4/9/2008 

Sensor 14 16/6/2008 

Sensor 20 16/6/2008 

Sensor 1 6/8/2008 

Sensor 17 6/8/2008 

Sensor 13 6/10/2008 

Sensor 18 7/4/2008 

Sensor 5 9/7/2008 

Sensor 3 10/24/2008 

Sensor 8 11/4/2008 

Sensor 9 11/4/2008 

Sensor 19 11/7/2008 

Sensor 24 11/17/2008 

Sensor 15 20/7/2008 

Sensor 2 20/8/2008 

Sensor 25 24/9/2008 

Sensor 4 28/7/2008 

Sensor 21 30/7/2008 

Sensor 16 30/7/2008 

Sensor 27 30/7/2008 

 

From the above table, we derive a very useful result. We 

have derived the most anomalous day for each of the sensor 

independently. That is we considered data for each sensor as 

an independent time series, still there are group of days when 

multiple sensors are showing anomalies simultaneously. We 

can see that sensor 6, 10, 26, 28 and 22 show maximum 

anomalies on the same day. Below in table 6, we summarize 

this result. Hence we can deduce that there must be some 

correlation among sensors. That is, when one sensor fails, 

there is certain probability that other sensors with whom it has 

high correlation also fail. Hence in the next section we explore 

this and try to find sensors with high correlation. 
 

TABLE 6: SENSORS SHOWING MAXIMUM ANOMALY ON SAME 
DAY 

S.No. Sensor No.‟s Timestamp of Anomaly 

1 10, 22, 26, 28, 6 4/8/2008 

2 14,20 16/6/2008 

3 1,17 6/8/2008 

4 8,9 11/4/2008 

5 21,16,27 30/7/2008 

 

C. Finding Correlation Among Sensors 

When we analyze the discords found, we find some 
interesting patterns, like some sensors are related to each 
other. That is they show discords on same days. For these 
sensors, we find the probability of failure on same day. For 
example for DP4 dataset, and year 2008, we obtain the 
following observation as shown in table 7. 

 

 

TABLE 7. PROBABILITY OF SENSORS FAILING SIMULTANEOUSLY 

Sensor No. Sensor No. Probability 

26 28 0.50 

4 23 0.50 

6 26 0.50 

6 28 0.50 

9  13 0.50 

21 27 0.50 

 
 



VI. CONCLUSION 

 
The entire dataset has been discretized using SAX 

representation. Then anomaly finding algorithm was applied on 
the datasets. For both the datasets, days were identified when 
there is an anomaly in the neutron flow counts.  These 
anomalies may be generated due to possible leaks in the 
nuclear reactor channels or other reasons. 

Also correlation among sensors was found based on the 
result of anomalies. Hence the probability of two sensors 
showing anomalies simultaneously has been calculated. We 
have also ranked the sensors based on the mean of their 
readings and used the basic information given to us about 
dimensions of the devise to infer the locations of the sensors in 
the device.  

In our future work, we will be applying motif discovery 
algorithms to identify patterns that repeat themselves in the 
dataset. 
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