
Identifying Patterns and Anomalies in Delayed Neutron

Monitor Data of Nuclear Power Plant

Durga Toshniwal, Aditya Gupta

Department of Computer Science & Engineering

Indian Institute of Technology Roorkee

Roorkee, India

{durgatoshniwal, adityag} @gmail.com

 Pramod K. Gupta, Vikas Khurana, Pushp Upadhyay

C&I and R&D-ES

Nuclear Power Corporation of India Ltd. Mumbai,

{pkgupta, vkhurana, pupadhyay} @npcil.co.in

Abstract— In nuclear fission, a delayed neutron is

a neutron emitted by one of the fission products any time

from a few milliseconds to a few minutes after the fission

event. The counts of delayed neutrons constitute a time

series sequence. The analysis of such time series can prove

to be very significant for purpose of predictive maintenance

in nuclear power plants. In this paper we aim to identify

anomalies in neutron counts, which may be generated due to

possible leaks in the nuclear reactor channel. Real world

case data comprising of readings from Delayed Neutron

Monitors (DNM) has been analyzed. The time sequences

formed by the delayed neutrons have first been symbolically

represented using Symbolic Approximation Algorithm

(SAX), then anomaly detection and pattern detection

algorithms have been applied on them.

Keywords-Time Series; Anomaly Detection; Symbollic Approximate

Algorithm; patterns; dataset; Delayed Neutron Monitor

I. INTRODUCTION

In nuclear engineering, a delayed neutron is

a neutron emitted after a nuclear fission event, by one of

the fission products (or actually, a fission product daughter

after beta decay), any time from a few milliseconds to a few

minutes after the fission event. Neutrons born

within seconds of the fission are termed "prompt

neutrons."
If a nuclear reactor happened to be in critical state for

prompt neutrons, the number of neutrons would increase
exponentially at a high rate, and very quickly the reactor
would become uncontrollable by means of cybernetics

Delayed neutrons play an important role in nuclear reactor
control and safety analysis [16]. The Nuclear reactors operate
in subcritical state as far as only prompt neutrons are
concerned. The delayed neutrons come a moment later, just in
time to sustain the chain reaction when it is going to die out.
In that regime, neutron production overall still grows
exponentially, but on a time scale that is governed by the
delayed neutron production, which is slow enough to be
controlled (just as an otherwise unstable bicycle can be
balanced because human reflexes are quick enough on the
time scale of its instability). Thus, by widening the margins of
non-operation and super criticality and allowing more time to

regulate the reactor, the delayed neutrons are essential
to inherent reactor safety and even in reactors requiring active
control [16].

In nuclear reactors, the fuel is encased in metal rods which
are mounted in groups in fuel assemblies which in turn are
massed together to form the reactor core. Reactor coolant in
the form of a fluid passed through the core to absorb heat
generated by nuclear reactions in the fuel is typically
circulated through several external heat transfer loops. The
reactor coolant may be ordinary water, heavy water, a gas or
any other material like liquid sodium [16].

In any case, the cladding on the fuel rods is subjected to
high temperatures and internal stresses generated as a result of
the nuclear reactions in the fuel which can lead to failures in
the cladding. Such breaches in the fuel rod cladding introduce
fuel into the reactor coolant which carries the contamination
throughout the heat transfer loops. Identifying and locating the
breached fuel rod in a timely manner is important in order that
appropriate action might be taken prior to the time that
operational or safety problems are created by the failure [16].

The counts of delayed neutrons (obtained from Delayed
Neutron Monitors in nuclear reactors) constitute a time series.
Time series is a sequence of data points, measured typically at
successive points in time spaced at uniform time intervals.
Time series data have a natural temporal ordering. This makes
time series analysis distinct from other common data analysis
problems, in which there is no natural ordering of the
observations.

In this paper, we aim to identify anomalies in neutron
counts generated due to possible leaks in the nuclear reactor
channel or other reasons. Such situations are very critical and
need continues monitoring and attention. The motivation of
this study is to predict such conditions to avoid failures in the
reactor and other unwanted events.

Two real world datasets have been used for the present
study. The dataset‟s comprises of readings taken from Delayed
Neutron Monitor (DNM) over a period of five years (2005-
2010).

In order to find the anomalies and patterns in time series,
we first convert our dataset into a symbolic representation. We
have used symbolic aggregate approximation (SAX) algorithm
for this purpose [1]. Then we apply anomaly detection and
pattern finding algorithm on the symbolic representation

The remainder of the paper is organized as follows.
Section 2 describes the related work. It includes description of
SAX algorithm and anomaly detection algorithm. Following
section, section 3 details the framework of our project. Section
4 describes the real world dataset that we have used. Next,
section 5 describes the experimental results and discussions.
Final conclusion is stated in section 6.

II. RELATED WORK

As with most problems in computer science, the suitable
choice of representation of time series greatly affects the ease
and efficiency of time series data mining. With this in mind, a
great number of time series representations have been
introduced, including the Discrete Fourier Transform (DFT)
[8], the Discrete Wavelet Transform (DWT) [9], Piecewise
Linear, and Piecewise Constant models (PAA) [11], (APCA)
[12, 11], and Singular Value Decomposition (SVD) [11].

All the above methods are similar in terms of indexing
power [13]; however, the representations have other features
that may act as strengths or weaknesses. As a simple example,
wavelets have the useful multi resolution property, but are
only defined for time series that are an integer power of two in
length [9].

One important feature of all the above representations is
that they are real valued. This limits the algorithms, data
structures and definitions available for them. For example, in
anomaly detection we cannot meaningfully define the
probability of observing any particular set of wavelet
coefficients, since the probability of observing any real
number is zero [14]. Such limitations have lead researchers to
consider using a symbolic representation of time series. One
main disadvantage is none of the above techniques allows a
distance measure those lower bounds a distance measure
defined on the original time series. For this reason, the various
generic time series data mining approaches are of little utility.

We have used Symbolic Approximation Algorithm to
represent out dataset in symbolic form. The main advantage of
this algorithm is that it allows the lower bounding of the true
distance. SAX also allows dimensionality/ numerosity
reduction, and distance measures to be defined on the
symbolic approach that lower bound corresponding distance
measures defined on the original series. Now we can take
advantage of the generic time series data mining model, and of
a host of other algorithms, definitions and data structures
which are only defined for discrete data, including hashing,
Markov models, and suffix trees. The SAX algorithm is
discussed in detail in section 2.

For anomaly detection in most real valued time series
problems such as motif discovery [15], longest common
subsequence matching, sequence averaging, segmentation,
indexing [13], etc. have approximate or exact analogues in the
discrete world, and have been addressed by the text processing
or bioinformatics communities. For identifying time series
anomalies in discrete datasets, Heuristically Ordered Time
series is the best algorithm. The algorithm is discussed in
section 2.

A. Symbollic Aggregate Approximation (SAX)

Symbolic Aggregate Approximation (SAX) algorithm [1]
produces symbolic representation of time series. This
representation is unique because it allows
dimensionality/numerosity reduction, and it also allows
distance measures to be defined on the symbolic approach that
lower bound corresponding distance measures defined on the
original series.

SAX allows time series of arbitrary length n to be
converted into strings of length w such that w<=n. The
alphabet size is also an integer a such that a >=2. Converting
time series data into SAX representation is a two-step process.
We first transform the data into the Piecewise Aggregate
Approximation (PAA) [1] representation and then symbolize
the PAA representation into a discrete string. There are two
important advantages to doing this:

1. Dimensionality Reduction: We can use the well-
defined and well-documented dimensionality reduction power
of PAA [4, 5], and the reduction is automatically carried over
to the symbolic representation.

2. Lower Bounding: Proving that a distance measure
between two symbolic strings lower bounds the true distance
between the original time series is non-trivial. The key
observation that allows us to prove lower bounds is to
concentrate on proving that the symbolic distance measure
lower bounds the PAA distance measure. Then we can prove
the desired result by transitivity by simply pointing to the
existing proofs for the PAA representation itself [5].

So, to reduce the time series from n dimensions to w
dimensions, the data is divided into w equal sized “frames.”
The mean value of the data falling within a frame is calculated
and a vector of these values becomes the data-reduced
representation. This representation is the PAA representation
of the time series. Also we normalize each time series to have
a mean of zero and a standard deviation of one before
converting it to the PAA representation, since it is well
understood that it is meaningless to compare time series with
different offsets and amplitudes [6, 10].

Having transformed a time series database into PAA, we
can apply a further transformation to obtain a discrete
representation. It is desirable to have a discretization technique
that will produce symbols with equal-probability. This is
easily achieved since normalized time series have a Gaussian
distribution [7]. Given that the normalized time series have
highly Gaussian distribution, we can simply determine the
“breakpoints” that will produce a equal-sized areas under
Gaussian curve [7]. These breakpoints may be determined by
looking them up in a statistical table. For example, Table 1
gives the breakpoints for values of a from 3 to 10.

Once the breakpoints have been obtained we can discretize
a time series in the following manner. We first obtain a PAA
of the time series. All PAA coefficients that are below the
smallest breakpoint are mapped to the symbol “a,” all
coefficients greater than or equal to the smallest breakpoint
and less than the second smallest breakpoint are mapped to the
symbol “b,” etc.

TABLE 1: A LOOKUP TABLE THAT CONTAINS THE
BREAKPOINTS THAT DEVIDE A GAUSSIAN DISTRIBUTION IN A

NUMBER (3 TO 10) OF EQUIPROBABLE REGIONS

Figure 2 illustrates the three steps of SAX generation

algorithm. „C‟ is the name of the time series. First we obtain
the PAA representation of C, which is represented by C-bar.
Now we select alphabet size 3. So we introduce two
breakpoints. The PAA points lying below the first breakpoint
are labeled as „a‟, the PAA points lying between the first and
the second breakpoint are labeled „b‟ and the points lying
beyond the third breakpoint line are labeled „c‟.

Figure 2: A time series is discretized by first obtaining a PAA

approximation and then using predetermined breakpoints to map the PAA
coefficients into SAX symbols. In the example above, with n = 128, w = 8 and
a = 3, the time series is mapped to the word baabccbc

Now we have to define the distance measure on SAX
representation. i.e. how do we calculate the distance between
two SAX strings. The distance between two SAX strings can
be calculated by Equation 1:

 (1)

Where dist() function calculates the distance between two
SAX coefficients. The dist() function can be implemented
using a table lookup as illustrated in Table 3.

TABLE 3. LOOKUP TABLE USED BY MINDIST FUNCTION. THIS
TABLE IS FOR AN ALPHABET OF CARDINALITY 4.

The value in cell (r,c) for any lookup table can be
calculated by the following Equation 2.

(2)

The question still remains, what values of w and a should
we choose? There is a clear tradeoff between the parameter w
controlling the number of approximating elements, and the
value a controlling the granularity of each approximating
element.

We choose the value of a and w such that the following

ratio in equation 3 is maximized (close to 1).

(3)

So in order to choose the value of a and w, we conduct the

following experiment. We find the tightness of lower bound
for the time series by calculating the above ratio for every
possible combination of substring possible and then averaging
the ratio. The result of this experiment are shown in section 5.

B. Algorithm for detecting anomalies

Time series anomalies are subsequences of longer time
series that are maximally different to all the rest of the time
series subsequences. They thus capture the sense of the most
unusual subsequence within a time series. Before discussing
the algorithm, we must first discuss what are non-self-match.
Given a time series T, containing a subsequence C of length n
beginning at position p and a matching subsequence M
beginning at q, we say that M is a non-self match to C at
distance of Dist(M,C) if | p – q| >=n. [2]

The brute force algorithm for finding anomalies is simple
and obvious. We simply take each possible subsequence and
find the distance to the nearest non-self match. The
subsequence that has the greatest such value is the discord.
This is achieved with nested loops, where the outer loop
considers each possible candidate subsequence, and the inner
loop is a linear scan to identify the candidate‟s nearest non-
self match. The pseudo code for algorithm is shown in Figure
3.

Figure 3: Algorithm for identifying discords in time series

The advantage of this algorithm is that it requires only one

parameter, that is the length of the subsequence as input and it
finds the anomaly. The algorithm has square complexity. In
order to improve the running time of the algorithm, we
implement the following optimization: We don‟t really need to
find the true nearest neighbor for every candidate. As soon as
for any candidate, we find that its „nearest neighbor distance‟
is less than „best so far‟ we abandon the instance of the inner
loop, safe in the knowledge that current candidate cannot be
the time series discord. The algorithm in figure 3 allows
several potential weaknesses for the sake of simplicity. First, it
assumes a single anomaly in the dataset. Second, in the first
few iterations, the measure needs to note the difference a small
anomaly makes, even when masked by a large amount of
surrounding normal data. A simple solution to these problems
is to set a parameter W, for number of windows. We can
divide the input sequence into W contiguous sections, and
identify anomaly for each sensor in each of the windows. [3]

III. PROPOSED FRAMEWORK

In the proposed framework (Figure 1), symbolic aggregate

approximation algorithm is applied on the raw dataset. This

helps in discretizing the dataset, and allows us to use various

algorithms used in text data mining.

Figure 1. Framework for our experiment

After the dataset has been discretized, we apply the

Heuristically Ordered Time series algorithm to find the

anomalies in the dataset. We analyze the anomalies found and

find the correlation among sensors, that is the probability of

one sensor failing given that another sensor has failed.

IV. DATASET

There are two datasets that are analyzed. The first dataset

(DP1) consists of readings for 5 years from 2006- 2010. The
second dataset (DP4) consists of readings for 6 years 2006 –
2010. Each of these datasets contains readings recorded from
28 sensors on certain days.

Table 2 shows the number of days when readings are
recorded in each of the dataset during the period of 2005-
2010. For each of these days, a set of 14 readings have been
considered for each of the 28 sensors deployed in the nuclear
reactor. So in DP1 dataset, there are 434*14*28=1,70,128
(Days multiplied by number of readings each day) readings
and in DP4 dataset there are 479*14*28=1,87,768 readings.

TABLE 2: NUMBER OF READINGS FOR EACH YEAR AND EACH

DATASET

 2005 2006 2007 2008 2009 2010

DP1 - 19 107 126 96 86

DP4 27 76 106 77 87 106

It has also been assumed that the reactor channel is circular

in shape, and the neutron count towards the center of the
channel is greater when compared to the neutron count
towards the circumference.

V. EXPERIMENTAL RESULTS & DISCUSSION

A. Finding Optimal SAX Representation

In SAX representation of a dataset, the most important
point to consider is what should be the value of word size (w)
and alphabet size (a). w is the size of SAX string, i.e. the time
series string of length n is converted into SAX representation
of length w. w is less than or equal to the length of original
time series n. Very small values of w are not preferred as it
leads to loss of accuracy. Also very large values of w are also
avoided as then there is no reduction in the size of the dataset.
[1]

Alphabet size a controls the granularity of each
approximating element. So an alphabet size of 3 means that
each approximating element can take 3 values i.e. „a‟, „b‟, „c‟.

 One of the most important properties of SAX
representation is that it lower bounds the distance of two
symbolic representations when compared to the distance
between the original series. Lower bounding means if A and B
are original time series and distance between them is X ; Q and
R are their symbolic approximations and distance between
them is Y then Y lower bounds X. i.e. Y<=X always! A lower
bounding symbolic approach would allow us to use suffix
trees, hashing, Markov models, text processing and

Possible
Anomalies

Candidate

Anomalies

Discretized data SAX Algorithm RAW

DATASET

DATASET

DATASET

DISCRETIZATION

PATTERN

DETECTION

ANOMALY

DETECTION

CORRELATION

IDENTIFICATION

Correlation among
sensors

bioinformatics algorithms on symbolic approximation.[1] The
closer is Y to X more accurate is our approximation.

Hence we wish to choose variables a and w such that there
is tightest possible lower bound between the symbolic
approximation and time series. Equation 3 shows the equation
for tightness of lower bound.

 In this equation D and C are two time series subsections
and D(Q,C) is the distance between these subsections.
MINDIST(Q,C) finds the difference between the SAX
approximations of Q and C. Hence we can see that the above
equation will always be less than one, since MINDIST lower
bounds D(Q,C) function.

In our experiment, we choose different values of a and w
and for all possible combinations of time series subsequences
find their Tightness of Lower Bound. Finally we take the mean
for all the lower bounds to represent the property for a given a
and w.

We performed such tests on DP1 dataset for year 2006. In
all we found mean for lower bound for 171 subsequences of
the data set. We averaged these results to find the final results.
We conducted these experiments for all the sensors. Figure 4,
Figure 5 and Figure 6 shows the results. In these results the
tightness of lower bound is shown on z axis whereas x and y
axis contain alphabet size and word size respectively.

Figure 4: Tightness of Lower Bound for different values of alphabet sizes

(a) and for word sizes of 7 and 14, when calculated for time series generated
by SENSOR 1

The results suggest that using a low value for a results in
weak bounds, but that there are diminishing returns for large
values of a. The results also suggest that the parameters are
not too critical; an alphabet size in the range of 5 to 7 seems to
be a good choice.

Figure 5 Tightness of Lower Bound for different values of alphabet sizes

(a) and for word sizes of 7 and 14, when calculated for time series generated
by SENSOR 26

Figure 6 Tightness of Lower Bound for different values of alphabet sizes

(a) and for word sizes of 7 and 14, when calculated for time series generated
by SENSOR 12.

Based on these results we have chosen word size of 14 and
alphabet size of 5 to represent the time series dataset by
symbolic representation. Using the SAX algorithm we convert
the entire dataset into symbolic representation.

B. Finding Anomalies in the Dataset

Once we have converted the time series dataset, we apply
the algorithm discussed in section 2 to find the discords. It
must be noted that this algorithm takes only the length of the
anomaly as the input and identifies the subsequence of that
length that is most different from other subsequences. We
have performed our experiment for all anomaly sizes varying
it from 3 to 14. We have found that strongest anomalies are
detected for anomaly size of 11.

This algorithm has two potential weaknesses that we must
solve. First, it assumes a single anomaly in the dataset.
Second, in the first few iteration, the measure needs to note the
difference a small anomaly makes, even when masked by a
large amount of surrounding normal data. A simple solution to
these problems is to set a parameter W, for number of
windows.

We can divide the input sequence into W contiguous
sections and apply our algorithm on each of these windows. In
our experiment, we have taken the window size to be 17,
hence we are finding the most anomalous subsequence of
length 11 for each of the sensors in data taken across 17 days.
It must be noted that, now in a time series there are 14
readings for each day and in all there are 17 days, so for each
sensor we have 238 readings and we are trying to find the
subsequence of length 11 that is most different from the
others.

So we consider readings from each sensor to be part of a
time series. We divide readings for each sensor in group of 17
days and apply the algorithm shown in figure 3. So for each
sensor, we find the day when the sensor has been most
anomalous (with respect to other 16 days in the window).

We repeat the above process for each window of each
sensor. We get large number of results for our experiment, a
snapshot of part of the results is shown below in table 4.

In all there are two datasets having data for a number of
years. So we perform our experiment on the entire datasets.

0

0.1

0.2

0.3

0.4

0.5

0.6

a=3 a=4 a=5 a=6 a=7

W = 7

W=14

0

0.2

0.4

0.6

0.8

a=3 a=4 a=5 a=6 a=7

W = 7

W=14

0

0.2

0.4

0.6

0.8

a=3 a=4 a=5 a=6 a=7
W = 7

W=14T
ig

h
tn

es
s

o
f

L
o

w
er

 B
o
u
n

d

Alphabet size

Word size

T
ig

h
tn

es
s

o
f

L
o

w
er

 B
o
u
n

d

T
ig

h
tn

es
s

o
f

L
o

w
er

 B
o
u
n

d

Alphabet size

Alphabet size

Word size

Word size

TABLE 4: RESULT OF ANOMALY DETECTION ALGORITHM FOR
A WINDOW IN YEAR 2008, DP4 DATASET

S.No. Sensor No. Timestamp

1 1, 14, 20 06/06 /2008

2 2,7, 12 05/05 /2008

3 3,11 02/06 /2008

4 4 14/05 /2008

5 5,24 21/05 /2008

6 6, 25 09/05 /2008

7 7,8,9,13 11/04 /2008

8 10 16/05 /2008

9 15, 22 28/05 /2008

10 18 07/04 /2008

11 19 26/05 /2008

12 21 18/04 /2008

13 23 4/9/2008

So as it can be seen above, in window of 17 days in year

2008, we have identified days when the sensor has been most

anomalous. Also there are sensors that do not show any

anomaly at all, for example sensor number 16, 17, 26, 27 and

28 don‟t show any anomaly!

In the second part of anomaly detection process, we try to

identify a single day when each of the sensors has been most

anomalous. In order to do this, we compare the most

anomalous day in each window of set of 17 days. The results

of this process for DP1 dataset for year 2008 are shown below

in table 5.

TABLE 5: THE MOST ANOMALOUS DAY FOR EACH SENSOR

DURING THE YEAR 2008 IN DP1 DATASET

2008- DP1 Days

Sensor 7 1/9/2008

Sensor 11 2/6/2008

Sensor 12 2/7/2008

Sensor 10 4/8/2008

Sensor 22 4/8/2008

Sensor 26 4/8/2008

Sensor 28 4/8/2008

Sensor 6 4/8/2008

Sensor 23 4/9/2008

Sensor 14 16/6/2008

Sensor 20 16/6/2008

Sensor 1 6/8/2008

Sensor 17 6/8/2008

Sensor 13 6/10/2008

Sensor 18 7/4/2008

Sensor 5 9/7/2008

Sensor 3 10/24/2008

Sensor 8 11/4/2008

Sensor 9 11/4/2008

Sensor 19 11/7/2008

Sensor 24 11/17/2008

Sensor 15 20/7/2008

Sensor 2 20/8/2008

Sensor 25 24/9/2008

Sensor 4 28/7/2008

Sensor 21 30/7/2008

Sensor 16 30/7/2008

Sensor 27 30/7/2008

From the above table, we derive a very useful result. We

have derived the most anomalous day for each of the sensor

independently. That is we considered data for each sensor as

an independent time series, still there are group of days when

multiple sensors are showing anomalies simultaneously. We

can see that sensor 6, 10, 26, 28 and 22 show maximum

anomalies on the same day. Below in table 6, we summarize

this result. Hence we can deduce that there must be some

correlation among sensors. That is, when one sensor fails,

there is certain probability that other sensors with whom it has

high correlation also fail. Hence in the next section we explore

this and try to find sensors with high correlation.

TABLE 6: SENSORS SHOWING MAXIMUM ANOMALY ON SAME
DAY

S.No. Sensor No.‟s Timestamp of Anomaly

1 10, 22, 26, 28, 6 4/8/2008

2 14,20 16/6/2008

3 1,17 6/8/2008

4 8,9 11/4/2008

5 21,16,27 30/7/2008

C. Finding Correlation Among Sensors

When we analyze the discords found, we find some
interesting patterns, like some sensors are related to each
other. That is they show discords on same days. For these
sensors, we find the probability of failure on same day. For
example for DP4 dataset, and year 2008, we obtain the
following observation as shown in table 7.

TABLE 7. PROBABILITY OF SENSORS FAILING SIMULTANEOUSLY

Sensor No. Sensor No. Probability

26 28 0.50

4 23 0.50

6 26 0.50

6 28 0.50

9 13 0.50

21 27 0.50

VI. CONCLUSION

The entire dataset has been discretized using SAX

representation. Then anomaly finding algorithm was applied on
the datasets. For both the datasets, days were identified when
there is an anomaly in the neutron flow counts. These
anomalies may be generated due to possible leaks in the
nuclear reactor channels or other reasons.

Also correlation among sensors was found based on the
result of anomalies. Hence the probability of two sensors
showing anomalies simultaneously has been calculated. We
have also ranked the sensors based on the mean of their
readings and used the basic information given to us about
dimensions of the devise to infer the locations of the sensors in
the device.

In our future work, we will be applying motif discovery
algorithms to identify patterns that repeat themselves in the
dataset.

ACKNOWLEDGMENT

We would like to thank Department of Atomic Energy for
providing the domain knowledge, dataset and for partially
funding the research work and program. Research Project
Grant Number DAE-603-ECD.

REFERENCES

[1] Jessica Lin , Eamonn Keogh , Stefano Lonardi , Bill Chiu, A symbolic

representation of time series, with implications for streaming algorithms,
Proceedings of the 8th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery, June 13-13, 2003, San Diego,
California.

[2] Eamonn Keogh , Jessica Lin , Ada Fu, HOT SAX: Efficiently Finding
the Most Unusual Time Series Subsequence, Proceedings of the Fifth
IEEE International Conference on Data Mining, p.226-233, November
27-30, 2005 [doi>10.1109/ICDM.2005.79]

[3] Eamonn Keogh , Stefano Lonardi , Chotirat Ann Ratanamahatana,
Towards parameter-free data mining, Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining, August 22-25, 2004, Seattle, WA, USA
[doi>10.1145/1014052.1014077]

[4] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S. (2001). Locally
Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases. In proceedings of ACM SIGMOD Conference on
Management of Data. Santa Barbara, CA, May 21-24. pp 151-162.

[5] Yi, B, K., & Faloutsos, C. (2000). Fast Time Sequence Indexing for
Arbitrary Lp Norms. In proceedings of the 26st Int‟l Conference on
Very Large Databases. Sep 10-14, Cairo, Egypt. pp 385-394.

[6] Keogh, E. & Kasetty, S. (2002). On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In
proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. July 23 - 26, 2002. Edmonton,
Alberta, Canada. pp 102-111.

[7] Larsen, R. J. & Marx, M. L. (1986). An Introduction to Mathematical
Statistics and Its Applications. Prentice Hall, Englewood, Cliffs, N.J.
2nd Edition

[8] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast
Subsequence Matching in Time-Series Databases. In proceedings of the
ACM SIGMOD Int’l Conference on Management of Data. May 24-27,
Minneapolis, MN. pp 419-429.

[9] Chan, K. & Fu, A. W. (1999). Efficient Time Series Matching by
Wavelets. In proceedings of the 15th IEEE Int'l Conference on Data
Engineering. Sydney, Australia, Mar 23-26. pp 126-133.

[10] Geurts, P. (2001). Pattern Extraction for Time Series Classification. In
proceedings of the 5th European Conference on Principles of Data
Mining and Knowledge Discovery. Sep 3-7, Freiburg, Germany. pp.
115-127.

[11] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S. (2001). Locally
Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases. In proceedings of ACM SIGMOD Conference on
Management of Data. Santa Barbara, CA, May 21- 24. pp 151-162.

[12] Datar, M. & Muthukrishnan, S. (2002). Estimating Rarity and Similarity
over Data Stream Windows. In proceedings of the 10th European
Symposium on Algorithms. Sep 17-21, Rome, Italy.

[13] Keogh, E. & Kasetty, S. (2002). On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In
proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. July 23 - 26, 2002. Edmonton,
Alberta, Canada. pp 102-111.

[14] Larsen, R. J. & Marx, M. L. (1986). An Introduction to Mathematical
Statistics and Its Applications. Prentice Hall, Englewood, Cliffs, N.J.
2nd Edition.

[15] Chiu, B., Keogh, E. & Lonardi, S. (2003). Probabilistic Discover of
Time Series Motifs. In the 9th SIGKDD Conference on Knowledge
Discovery and Data Mining. pp 493-498.

[16] Locating a breached fuel assembly in a nuclear reactor on-line.
http://www.google.com/patents/EP0258958A1?cl=en.

http://www.google.com/patents/EP0258958A1?cl=en

