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Abstract— Mammaography is the most effective method forit is a challenge to select a good feature set for the clas-
identifying breast cancer in its earliest stages. Randonsification of mammogram. Second, abnormalities are often
forests (RF) have been successfully used for the task otcluded or hidden in dense breast tissue, which makes
classification with good performance, but without informa-detection difficult. Finally, symptoms of abnormal tissuaym
tion about the reliability in classifications. In this papere  remain quite subtle. For example, speculated masses that
present a novel reliable probabilistic approach to clagsif may indicate a malignant tissue within the breast are often
mammographic masses as benign, malignant and normalifficult to correctly diagnose, especially at the earlygsta
tissues. The main aim of this paper is to improve theof development.
performance of Random forests by introducing a recently As such, an increasing number of researchers have focused
developed algorithmic framework, namely the Venn Probaen the classification of suspicious masses in mammograms.
bility Machine, for making reliable decisions in the face of Quite a lot of researchers apply the classification techesqu
uncertainty. to classify the marked region in the mammogram. Classi-
fiers like decision tree classifiers [15], [8], Support Vecto
Keywords: Mammography, Probabilistic classification; Random Machines [9], [16], k-nearest neighbors [12] and Artificial

forests; Venn prediction. Neural Network [7], [1] have performed better in mass
classification.
1. Introduction and Background Most of the methods mentioned previously provide too

little insight as to the importance of variables to the pcéati

Breast cancer is the most common cause of cancer-relate@rived. The transparency is very important in some appli-
death in women worldwide, with some 327 000 deathsation areas such as medical decision support. By contrast,
each year. Nearly 1.4 million cases of breast cancer werglassification and regression trees are known for theiistran
diagnosed across the world in 2008, compared with abouarency. Decision tree have been widely and successfully
500 000 cases in 1975. This represents about 11% of all newsed in mammographic mass classification.
cancer cases and 23% of all female cancers. It is predicted In [15], the authors used a method based on binary
that the number of cases will rise to 1.7 million by 2020 [6]. trees for the classification of mammograms. Global feature
Primary prevention seems impossible since the causessof thixtraction from different levels wavelet decomposition of
disease are still remaining unidentified. Early detect®otheé  normal and abnormal images was also used in this work.
key to the ultimate survival rate for breast cancer patientsThis classifier is then used to classify whether an entire
For women whose tumors were discovered early, the fivevhole-field mammogram is normal. However, in such a
year survival rate was about 82%, as opposed 60% that nbinary tree classifier, errors may accumulate from one level
been found early [6]. to another, thus making the classification erroneous. Hence

Mammography is still the most effective screening methodhis method resulted in false positive in more than 50% of
for detecting breast cancer in its early, most treatabl¢he cases, making it unreliable.
stages. However, the low positive predictive value of breas In [8], the authors discusses the effectiveness of using
biopsy examinations resulting from mammogram interpredecision trees for mass classification in mammography.
tation leads to approximately 70% unnecessary biopsieBifferent costs for type | and type Il misclassification were
performed on benign lesions. Computer-aided diagnosiapplied for the experiments. The results obtained using
(CADx) systems have been developed to assist the radioklgorithms based on decision trees were compared with
ogist in the discrimination of benign and malignant breasthat produced by neural network which was reported giving
lesions and thus to reduce the high number of unnecessatlye higher classification rate than statistical modelsh wit
biopsies. It is important to realize that the classificationhigher standard deviation. It is concluded that the degisio
of suspicious abnormalities in digital mammograms is artrees are very promising for the classification of breast
extremely challenging task for a number of reasons. Firstnasses in digital mammograms. However, decision trees



are rather unstable: small changes in the training set casurrent mass classification methods using Random Froest
result in different trees and different predictions for theclassifiers. The novelty of this research is in exploiting th
same validation examples. It has been demonstrated tlsat ttsuperiority of Venn prediction to produce probability esti
problem can be mitigated by applying bagging [4]. Randonmates that are guaranteed to be well calibrated. The rest of
Forests (RF) proposed by Breiman [4] is a combination othis paper is organized as follows: Section 2 describestabou
the random subspace method and bagging. the Random forests method. Section 3, details the Venn
In [17], an approach using Random Forests DecisiorPrediction framework. Section 4 presents our proposed Al-
Classifier (RFDC), involving regression trees, has beed usegorithm for classifying masses in breast. Section 5 dessrib
in mammogram classification. The technique in [17] yieldedhe experiments that have been conducted on benchmark data
an accuracy of nearly 90%. However, this method is noset. Finally, Section 6 presents some concluding remarks.
very reliable as features are randomly selected in the tre§
induction process. . Random Forests
In [10], the authors investigated the usage of Random Random Forests (RF) is an ensemble learning technique
forests classifier for the classification of masses with gedeveloped by Breiman [4]. This technique combines many
ometry and texture features. The experiments are testafbcision trees to make a prediction, giving as output thescla
using a database @86 clinical mammograms. This method that is the mode of the classes output by individual trees.
achieved an average area under the ROC curgeséfwith RFs is a family of methods, made of different decision
Support Vector Machines (SVM) and.83 with Random tree ensemble induction algorithms, such as the Breiman
forests. The experimental result shows that Random forestorest-RI method often cited as the reference algorithm
is a promising method for the diagnosis of masses. in the literature [4]. In this algorithm, the training setrfo
Meyer et al. [11] compared7 classifiers or21 datasets each individual tree in a Random forests is constructed by
obtained from the above-mentioned repository. RF outpersampling N examples at random with replacement from
formed neural network in terms of average test set errorthe IV available examples in the dataset. This is known as
in 15 cases, SVM in7 cases. The authors concluded thatbootstrap sampling, and bagging describes the aggregation
ensemble methods - such as RF - proved very competitiv@f predictions from the resulting collection of trees. As a
and often produce adequate results "out of the box", whereaiesult of the bootstrap sampling procedure, approximately
SVM react very delicately to parameter tuning. one third of the availableV examples are not present in
However, like most machine learning algorithms, Ran-the training set of each tree. The "out-of-bag" predictions
dom forests outputs the label predictions for new instancegre those predictions derived from non-bootstrapped ebser
without indicating how reliable the predictions are. Thevations which built that particular tree.
applicability of these classifiers is limited in critical miains In this induction algorithm, a feature subset is randomly
where incorrect predictions have serious consequendes, lidrawn for each node, from which the best splitting criterion
medical diagnosis. Further, the default assumption of lequas then selected according to the Gini index (Breiman et
misclassification costs is most likely violated in medicalal., [3]), which measures the likelihood that an example
diagnosis. This paper addresses the importance of reliabivould be incorrectly labelled if it were randomly classified
ity and confidence for classification, and presents a noveiccording to the distribution of labels within the node. For
method based on a combination of Random forests, and Vermbinary split, the Gini index of a node may be expressed
Prediction (VP) [18]. aslg(n) =1 —Zizl p?, wherep,. is the relative proportion
Venn Prediction is an extension of the original conformalof examples belonging to clagspresent in node:. Thus,
predictor (CP) framework , which can be used for makingthe Forest-RI Algorithm grows a decision tree using the
multiprobability predictions [18]. In particular multipba- ~ following process :
bility predictions are a set of probability distributionerf Let T' be the number of trees to build, for each [f|
the true classification of the new example. This set can b#erations
summarized by lower and upper bounds for the conditional 1) Select a new bootstrap sample from training set.
probability of the new example belonging to each one of 2) Grow an un-pruned tree on this bootstrap.
the possible classes. The resulting bounds are guaramteed t 3) At each internal node, randomly select tny pre-

contain well-calibrated probabilities (up to statistiflalctu- dictors and determine the best split using only these
ations). Again, like with CPs, the only assumption made for predictors.

obtaining this guaranty is that the data are are generated4) Output overall prediction as the majority vote from all
independently by the same probability distribution ().i.d individually trained trees.

The VP framework has until now been combined with the Figure 1 illustrates the workflow for random forests, where

k-nearest neighbours algorithm in [18], [5], with SVMSs in 4, ys, ...; y. are class labels. As more trees are added to

[19] and more recently with Neural Networks in [13]. RF, the generalization error converges to a limiting value,
This work is aimed at improving performance of the thus there is no over-fitting in large RFs [4].
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> To divide each set (1) into categories we us@eonomy

function A, : Z» ! x Z — T,n € N, which classifies
the relation between an example and the bag of the other

examples:
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> ye Values; are called categories and are taken from a finite
setT = {r;, 7, -+, 7 }. Equivalently, a taxonomy function

assigns to each example;, y;) its categoryr;, or, in other

words, groups all examples to a finite set of categories.
Typically each taxonomy is based on a traditional ma-

chine learning algorithm, called thenderlying algorithmof

the Venn predictor. The output of this algorithm for each

attribute vectorx;,7 = 1,--- ,n after being trained either

The main advantage of Random Forests over other tecf! the.whole set (1)_’ or on the set' resulting after removing
nigues such as Artificial Neural Networks, Support Vectorthe pa_lr(:cy;,y,») (2). is use_zd to ass_lg(w,-_, yZ) t_o one of a
Machines, Linear Discriminant Analysis, etc. is the robust predefln_ed set OT categories. At this point it is important 1o

ness of this technique regarding solution over fitting, tegd emphasize the d!fference between the classes of the probllem
to converge always when the number of trees is large. and the categories of a Venn taxonomy. These categories

To assess the importance of a specific predictor variabl re assigned examples based on the output classification

(feature), the values of the variable in the out-of-bag damp abel (_)f the underlying algorithm and not on the true class
are randomly permuted and then the modified out—of-ba%(: which each example belongs. There fore the category
t

| Training samples | | Random Forests | |Prediction |

Fig. 1: General architecture of RF classifier.

samples are passed down the tree to get new predictions. T grresponding to a given classification Ia_lg«;-lwill co_ntain
increase of estimation error for the modified and originat ou 9] exampltlas that tﬁghunderlylng algorlth.:n I:Jeheves 0
of-bag data provides a useful measure for determining th elong to clasg;, which are not necessarily the same as

feature importance, although feature selection is notetdaedt € exa.mples thgt actuglly do belong 'to that class since the
in RF (Breiman and Cutler, [2]). underlying algorithm might be wrong in some cases.

The conventional way of using Venn ideas was as follows.
3. The framework of Venn machines Categories are formed using only the training set. For each
) non-empty categoryr, the empirical probabilities of an

diction mechanism; for more details the interested reasler i

referred to [18]. No(y;)
Let us consider a training set consisting of examles Pr(y;) = — Yi). 3)

{(zi,s) f;ll, where each; € R? is the vector of attributes N-

for examplei andy; € Y = {y;}5_, is the class label of that ~ Where N is the total number of examples from the

example. Letr,, be a new unclassified example. Our task istraining set assigned to categaryandN-(y;) is the number

to predict the probability of this new example belonging toof examples within category that are labelled withy;.

each clasg; € Y based only on the assumption that all Now, given a new object,, with the unknown label,,,

(zi,9:), © = 1,2,--- are generated independently by theone should assign it somehow to the most likely category of

same probability distribution (i.i.d). those already found using only the training set;7iedenote
The essential idea of Venn prediction is to divide all ex-it. Then the empirical probabilitie®.«(y;) are considered

amples into a number of categories based on their similaritgs probabilities of the object,, to have a labely;. The

and calculate the probability af,, belonging to each class idea of confidence machines allows us to construct several

y; € Y as the frequency of; in the category that contains probability distributions of a labg}; for a new object. First

it. Then since we do not know the true labels of the newwe consider a hypothesis that the lapglof a new object:,,

objectz,,, we try every possible label as a candidate for itsis equal toy (y, = y). Then we add the paifz,,y) to the

label. In each try, we calculate a probability distributiimn  training set and apply the taxonomy functighto this ex-

the true class of,, based on the examples tended sequenc€(z1,v1), -, (Tn—1,Yn—1), (Zn,y)}. Let




7 (zn,y) be the category containing the pdir,,,y). Now
for this category we calculate, as previously, the valies,
N« (y;) and empirical probability distribution

N+ (y )
NT*J 4)

This distribution depends implicitly on the object, and
its hypothetical labe}. Trying all possible hypotheses of the
label y,, being equal toy, we obtain a set of distributions
Py(yj) = Pre(s, 4 (y;) for all possible labelg.

Prea, ) (y;) = y; €Y.

4. The Algorithm

The difference between alternative Venn Prediction meth-
ods is the taxonomy they use to divide examples into cate-
gories. Here a RF classifier defined which allocate examples
into categories. This section describes our algorithm for
reliable probabilistic classification of mammograhic nesss
The main idea of the proposed Algorithm is to embed
random forests in confidence machines. In this way, we
expect designed Venn machines to inherit advantages of
random forests.

The taxonomy used is still very important as it determines First, we train a RF classifier, according to Forest-RI Al-

how efficient, or informative, the resulting predictionsar

gorithm, on the extended set (1). Second, we asgigry;)

We want the diameter of multiprobability predictions andt0 the corresponding category according to RF outputs

therefore their uncertainty to be small, since saying that t

{o},---,0'}. The predicted class dfr;, y;) is calculated by

i

probability of a given classification label for an example isits majority vote of the out-of-bag predictions. Algorithin

between0.8 and 0.9 is much more informative than saying
that it is betweerd and 0.9. We also want the predictions

presents the completRPRFE algorithm.

Algorithm 1: Reliable Probabilistic Random forests

to be as close as possible to zero or one, indicating thatRPRF)

a classification label is highly unlikely or highly likely
respectively.

The maximum and minimum probabilities obtained for
each classification label; define the interval for the prob-
ability of the new example belonging ip:

()

To simplify notation the lower bound of this interval for a
given clasgy; will be denoted ad.(y;) and the upper bound
will be denoted ad/(y;). The Venn predictor outputs the
best clasg) for x,, where:

min e, 4) (Y5)

P.. Il
vy 7Iyn€a)}/{ T (wn,y)(yJ)

g =arg max P(y;).
=1 e

(6)

and P(y;) is the mean of the probabilities obtained for
Yy

— 1
P(y;) = i > Pretanw (U)): (7
yey
This prediction is accompanied by the interval:
[L(5),U(9)]- 8

as the probability interval of it being correct. The com-
plementary interval

(1= L), 1-U@®)] (9)

gives the probability thag is not the true classification
label of the new example and it is called the error probahilit

Input: Training setZ = { (=, y;)}"=" in wich
z; = {z}, - ,2¢} € R% and
y; €Y ={y1, -+ ,y.} the possible class for;,
T, a hew example to be classified.
Result The best class for, : § = argj max

the probability interval fory :

P(y;),

C

min Pr (z,, ) (9), max Pre(z,, 4) (9)

begin
for k<« 1to cdo
Train a random forest (RF) classifier, according
to Forest-RI Algorithm, on the extended set
{(@r,), s (@n—1,Yn-1)s (Tn, Uk) 1
Supply the input patterns,, -- - , x, to the
trained RF to obtain the output values
{01, ,0,} based on the out-of-bag
predictions;
for i < 0 to n do
According to RF outputgo}, - , 05},
assign(x;, y;) to the corresponding
categoryr;.
end
Find the most likely category that contains
(Zn,yr), let 7* denote it.
for j < 0to cdo

Compute the empirical probability
‘ Pri(5, 4o (y;) using equation (4).
end
end
for j < 0to cdo
Compute the mean of the probabilif§(y; )
using equation (7).
end
end

interval.

Applying a RF classifier that was trained on the whole



training data set (1), the examples are divided into categor TN

for each assumed classification lakgl € {y1,--- ,y.} of SP=1- FPR = (11)
z,, and the process described in section 3 is followed for (TN + FP)
calculating the outputs of the Reliable Probabilistic Rand TN + TP
Forests (RPRF). The predictions are based on the out-of-bag AC = ( +TP) (12)
predictions from the RF. (TN +TP+FN + FP)
In the next section, we will analyze experimentally our TP
proposed model. Prec = m (13)
5. Experimentation
p Fleox (Prec x SE) (14)
In this section, we will analyse experimentally our pro- (Prec+ SE)
posed model to well-known other proposals using a standard
reference database. Experimental settings and results aJrV?CC B (TPxTN —FP x FN)
described in the sequel. ~ V(TP +FP)(TP + FN)(TP + FP)(TN + FN))
. . (15)
5.1 Experimental settings whereFP, FN, TP andT N denote false-positive, false-

To evaluate our method, we used mammograms from thBegative, true-positive and true-negative answers, cespe
Mammographic Image Analysis Society (MIAS) databasdVelY- Moreoyt_ar,FPR andTPR denote false-positive rate
[14]. Films were taken from the United Kingdom National @nd true-positive rate, respectively. _

Breast Screening Program:; digitizedstomicron pixel edge, The Brier scoreBS, is defined for a d!ghotomous event
and presented each pixel with an 8-bit word. The MIAS2S the mean square error of the probability forecast:
database consists of totalB22 digital mammograms from M

161 _patlents, wh_|ch belong to three big categon_es: normal, BS — 1 Z (p; — 0;)? (16)
benign and malign. There a@)8 normal, 63 benign and M P

51 malign images. The normal ones are those characterizing i )

a healthy patient, the benign ones represent mammogramsVNeré is the total number of sampleg; is the forecast
showing a tumor, but that tumor is not formed by cancerou®"°Papility, o; is the verifying observation (1 if the event
cells, and the malign ones are those mammograms tak&curs: 0 if it does not).

from patients with cancerous tumors. This database previd . .

for each mammogram a meta-data from radiologists aboﬁ%'z Comparative analysis

the characteristics of background tissue, the type and the The classification performance of the proposed system is
severity of abnormality and the coordinates of center; etccompared with that of other three existing classifiers like
Using this informations, suspicious regions with the givenSupport Vector Machine (SVM) [16], Probabilistic neural

centre and radius have been extracted as the Regions ®#twork (PNN) [1] and Random Forests (RF) [17] classifiers.
Interest (ROISs). Numerical results are summarized in Tables 1 and 2.

We use a set which consists of totaltg5 ROIs, which Table 1 shows the confusion matrices for all used classi-
be]ong to three Categories: normal, benign and ma"gn_e‘fherﬁers. This should be read as follows: rows indicate the dibjec
are130 normal,75 benign and30 malign ROIs. The images t0 be recognized (the true class) and columns indicate the la
from the MIAS dataset are separated for training and testind€! the classifiers associates at this object, thus obtathie
The training ratio is set a80%, i.e. 80% of the samples for ~correct classified mammograms in the diagonal of the matrix.
training and20% for testing. Therefore, the performance of this approaci2%. We

The computer classification results were validated usin%an see that the mammograms better classified are those
the following standard criteria: Accuracy (AC), Sensivi Pelonging to normal class, while benign mammograms are
(SE) or Recall, Specificity (SP), the area under the RO¢he worst classified.
curve (Az), F-measure (F1), Precision (Prec), Brier Score ROC curve is graphical display of sensitivity (TPR) on y-
(BS) and Matthews’s correlation coefficient (MCC). Thesea@Xis and (1 - specificity) (FPR) on x-axis with changing the
measures are calculated from confusion matrix. The cordecision threshold. This is generally depicted in a square
fusion matrix describes actual and predicted classes of tHoX for convenience and its both axes are fronto 1.
proposed method and shown in table 1. Calculations of thodaigure 2 depicts the ROC curve for the proposed method.

performance measures were Carried out as fo”ows: The area Under the ROC curve iS an important Criterion fOI’
evaluating diagnostic performance. Usually it is referasd
TP the Az index. MaximumAz = 1 and it means diagnostic
SE=TPR= " (10) N : g

(TP + FN) test is perfect in differentiating diseased with non-déssh



Predicted class: normal Predicted class: benign Predicted class: malign
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Fig. 2: The ROC curve for the proposed method.

subjects. The proposed methodology yielded an area under

Assigned Class the ROC curve 00).943. _ _
- - Table displays the numerical results from the experiments.
normal | malign | benign e .
Classification Accuracy represents the overall perforreanc
8*Actual Class | normal | 250 | 4 6 of a classifier. It indicates the percentage of correctlg<la
malign | 10 142 8 sified positive and negative cases from the total number of
benign | 16 21 113 cases. Our model yielded a higher accuracy rate, with a mean
() SVM [16] of 91.93% compared to SVM §8.6%), PNN 84.74%) and
RF (86.84%). Sensitivity, also known as recall rate, measures
Assigned Class the proportion of positives correctly identified. The prepd
normal | malign | benign methodology yielded a higher sensitivity rate, with a mean
3*Actual Class | normal | 253 | 2 5 of 97.31% compared to SVM 96.15%), PNN (92.31%)
malign | 9 120 m and RF 04.62%). The specificity measure repre_s_ents the
benign | 10 5 131 proportion of negafuygs that are correctly |de|jt|f|eq. Our
model has a specificity 093.87%. F-measure is widely

(b) RPRF used to evaluate classification techniques. It is a common
evaluation metrics that combines precision and recall into
a single value. Our proposed yields F-measure).8f11

Assigned Class

normal | malign | benign which is only0.9328 for SVM, 0.9040 for PNN and0.9162
3*Actual Class | normal | 246 6 8 for RF. The Brier score is a well-known evaluation measure
malign | 15 133 12 for probabilistic classifiers. It measures the average regua
benign | 16 18 116 deviation between predicted probabilities for a set of &ven

and their outcomes. The lower the Brier score of a model
the better the predictive performance. Our proposed has a
small Brier score0.1544, explaining the good results of

(c) RF [17]

Assigned Class

, . classification for this dataset.
normal | malign | benign . . .
s Actual G T 220 5 " As a summary to these simulations, it can be observed that
clual-lass | horma the classification efficiency of the proposed classifier tssbe
malign | 16 130 |14 than other classifiers, for the mammogram classification
benign | 15 22 113 problem of the database considered for the study.
(d) PNN [1]

Table 1: Confusion matrices showing classification errer re6' Conclusion

sults for (@) SVM, (b) RPRF, (c) RF and (d) PNN Classifiers. In this paper, we have developed a reliable probabilistic
algorithm for the classification of masses in Mammograms.

The proposed method has acceptable performance compared



AC (%) | SE %) | SP %) | Az F1 Prec BS MCC
SVM [16] | 88.60 96.15 91.61 | 0.9646| 0.9328| 0.9058| 0.2242| 0.8747
PNN [1] 84.74 92.31 | 90.00 | 0.9131| 0.9040| 0.8856| 0.3154| 0.8209
RF [17] 86.84 94.62 | 90.00 | 0.9053| 0.9162| 0.8881| 0.2441| 0.8432
RPRF 91.93 97.31 93.87 | 0.9433| 0.9511| 0.9301| 0.1544| 0.9092

Table 2: Performance measures comparison.

to that obtained by the used comparison methods. In thge] G. vaira Suganthi and J. sutha. Classification of breaasses in
future, we aim to refine our proposal for false-positive

reduction. Furthermore, we would like to apply the proposed
approach on other medical images where probabilistic pre-

dictions are of great importance.
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