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Abstract— Mammography is the most effective method for
identifying breast cancer in its earliest stages. Random
forests (RF) have been successfully used for the task of
classification with good performance, but without informa-
tion about the reliability in classifications. In this paper, we
present a novel reliable probabilistic approach to classify
mammographic masses as benign, malignant and normal
tissues. The main aim of this paper is to improve the
performance of Random forests by introducing a recently
developed algorithmic framework, namely the Venn Proba-
bility Machine, for making reliable decisions in the face of
uncertainty.
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forests; Venn prediction.

1. Introduction and Background
Breast cancer is the most common cause of cancer-related

death in women worldwide, with some 327 000 deaths
each year. Nearly 1.4 million cases of breast cancer were
diagnosed across the world in 2008, compared with about
500 000 cases in 1975. This represents about 11% of all new
cancer cases and 23% of all female cancers. It is predicted
that the number of cases will rise to 1.7 million by 2020 [6].
Primary prevention seems impossible since the causes of this
disease are still remaining unidentified. Early detection is the
key to the ultimate survival rate for breast cancer patients.
For women whose tumors were discovered early, the five
year survival rate was about 82%, as opposed 60% that not
been found early [6].

Mammography is still the most effective screening method
for detecting breast cancer in its early, most treatable
stages. However, the low positive predictive value of breast
biopsy examinations resulting from mammogram interpre-
tation leads to approximately 70% unnecessary biopsies
performed on benign lesions. Computer-aided diagnosis
(CADx) systems have been developed to assist the radiol-
ogist in the discrimination of benign and malignant breast
lesions and thus to reduce the high number of unnecessary
biopsies. It is important to realize that the classification
of suspicious abnormalities in digital mammograms is an
extremely challenging task for a number of reasons. First,

it is a challenge to select a good feature set for the clas-
sification of mammogram. Second, abnormalities are often
occluded or hidden in dense breast tissue, which makes
detection difficult. Finally, symptoms of abnormal tissue may
remain quite subtle. For example, speculated masses that
may indicate a malignant tissue within the breast are often
difficult to correctly diagnose, especially at the early stage
of development.

As such, an increasing number of researchers have focused
on the classification of suspicious masses in mammograms.
Quite a lot of researchers apply the classification techniques
to classify the marked region in the mammogram. Classi-
fiers like decision tree classifiers [15], [8], Support Vector
Machines [9], [16], k-nearest neighbors [12] and Artificial
Neural Network [7], [1] have performed better in mass
classification.

Most of the methods mentioned previously provide too
little insight as to the importance of variables to the predictor
derived. The transparency is very important in some appli-
cation areas such as medical decision support. By contrast,
classification and regression trees are known for their trans-
parency. Decision tree have been widely and successfully
used in mammographic mass classification.

In [15], the authors used a method based on binary
trees for the classification of mammograms. Global feature
extraction from different levels wavelet decomposition of
normal and abnormal images was also used in this work.
This classifier is then used to classify whether an entire
whole-field mammogram is normal. However, in such a
binary tree classifier, errors may accumulate from one level
to another, thus making the classification erroneous. Hence,
this method resulted in false positive in more than 50% of
the cases, making it unreliable.

In [8], the authors discusses the effectiveness of using
decision trees for mass classification in mammography.
Different costs for type I and type II misclassification were
applied for the experiments. The results obtained using
algorithms based on decision trees were compared with
that produced by neural network which was reported giving
the higher classification rate than statistical models, with
higher standard deviation. It is concluded that the decision
trees are very promising for the classification of breast
masses in digital mammograms. However, decision trees



are rather unstable: small changes in the training set can
result in different trees and different predictions for the
same validation examples. It has been demonstrated that this
problem can be mitigated by applying bagging [4]. Random
Forests (RF) proposed by Breiman [4] is a combination of
the random subspace method and bagging.

In [17], an approach using Random Forests Decision
Classifier (RFDC), involving regression trees, has been used
in mammogram classification. The technique in [17] yielded
an accuracy of nearly 90%. However, this method is not
very reliable as features are randomly selected in the tree
induction process.

In [10], the authors investigated the usage of Random
forests classifier for the classification of masses with ge-
ometry and texture features. The experiments are tested
using a database of236 clinical mammograms. This method
achieved an average area under the ROC curve of0.86 with
Support Vector Machines (SVM) and0.83 with Random
forests. The experimental result shows that Random forests
is a promising method for the diagnosis of masses.

Meyer et al. [11] compared17 classifiers on21 datasets
obtained from the above-mentioned repository. RF outper-
formed neural network in terms of average test set errors
in 15 cases, SVM in7 cases. The authors concluded that
ensemble methods - such as RF - proved very competitive,
and often produce adequate results "out of the box", whereas
SVM react very delicately to parameter tuning.

However, like most machine learning algorithms, Ran-
dom forests outputs the label predictions for new instances
without indicating how reliable the predictions are. The
applicability of these classifiers is limited in critical domains
where incorrect predictions have serious consequences, like
medical diagnosis. Further, the default assumption of equal
misclassification costs is most likely violated in medical
diagnosis. This paper addresses the importance of reliabil-
ity and confidence for classification, and presents a novel
method based on a combination of Random forests, and Venn
Prediction (VP) [18].

Venn Prediction is an extension of the original conformal
predictor (CP) framework , which can be used for making
multiprobability predictions [18]. In particular multiproba-
bility predictions are a set of probability distributions for
the true classification of the new example. This set can be
summarized by lower and upper bounds for the conditional
probability of the new example belonging to each one of
the possible classes. The resulting bounds are guaranteed to
contain well-calibrated probabilities (up to statisticalfluctu-
ations). Again, like with CPs, the only assumption made for
obtaining this guaranty is that the data are are generated
independently by the same probability distribution (i.i.d).
The VP framework has until now been combined with the
k-nearest neighbours algorithm in [18], [5], with SVMs in
[19] and more recently with Neural Networks in [13].

This work is aimed at improving performance of the

current mass classification methods using Random Froest
classifiers. The novelty of this research is in exploiting the
superiority of Venn prediction to produce probability esti-
mates that are guaranteed to be well calibrated. The rest of
this paper is organized as follows: Section 2 describes about
the Random forests method. Section 3, details the Venn
Prediction framework. Section 4 presents our proposed Al-
gorithm for classifying masses in breast. Section 5 describes
the experiments that have been conducted on benchmark data
set. Finally, Section 6 presents some concluding remarks.

2. Random Forests
Random Forests (RF) is an ensemble learning technique

developed by Breiman [4]. This technique combines many
decision trees to make a prediction, giving as output the class
that is the mode of the classes output by individual trees.

RFs is a family of methods, made of different decision
tree ensemble induction algorithms, such as the Breiman
Forest-RI method often cited as the reference algorithm
in the literature [4]. In this algorithm, the training set for
each individual tree in a Random forests is constructed by
sampling N examples at random with replacement from
the N available examples in the dataset. This is known as
bootstrap sampling, and bagging describes the aggregation
of predictions from the resulting collection of trees. As a
result of the bootstrap sampling procedure, approximately
one third of the availableN examples are not present in
the training set of each tree. The "out-of-bag" predictions
are those predictions derived from non-bootstrapped obser-
vations which built that particular tree.

In this induction algorithm, a feature subset is randomly
drawn for each node, from which the best splitting criterion
is then selected according to the Gini index (Breiman et
al., [3]), which measures the likelihood that an example
would be incorrectly labelled if it were randomly classified
according to the distribution of labels within the node. For
a binary split, the Gini index of a noden may be expressed
asIG(n) = 1−

∑2
c=1 p

2
c , wherepc is the relative proportion

of examples belonging to classc present in noden. Thus,
the Forest-RI Algorithm grows a decision tree using the
following process :

Let T be the number of trees to build, for each of|T |
iterations

1) Select a new bootstrap sample from training set.
2) Grow an un-pruned tree on this bootstrap.
3) At each internal node, randomly select trym pre-

dictors and determine the best split using only these
predictors.

4) Output overall prediction as the majority vote from all
individually trained trees.

Figure 1 illustrates the workflow for random forests, where
y1, y2, ...; yc are class labels. As more trees are added to
RF, the generalization error converges to a limiting value,
thus there is no over-fitting in large RFs [4].



Fig. 1: General architecture of RF classifier.

The main advantage of Random Forests over other tech-
niques such as Artificial Neural Networks, Support Vector
Machines, Linear Discriminant Analysis, etc. is the robust-
ness of this technique regarding solution over fitting, tending
to converge always when the number of trees is large.

To assess the importance of a specific predictor variable
(feature), the values of the variable in the out-of-bag samples
are randomly permuted and then the modified out-of-bag
samples are passed down the tree to get new predictions. The
increase of estimation error for the modified and original out-
of-bag data provides a useful measure for determining the
feature importance, although feature selection is not needed
in RF (Breiman and Cutler, [2]).

3. The framework of Venn machines
This section provides a brief overview of the Venn pre-

diction mechanism; for more details the interested reader is
referred to [18].

Let us consider a training set consisting of examplesZ =
{(xi, yi)}

n−1
i=1 , where eachxi ∈ R

d is the vector of attributes
for examplei andyi ∈ Y = {yj}

c
j=1 is the class label of that

example. Letxn be a new unclassified example. Our task is
to predict the probability of this new example belonging to
each classyj ∈ Y based only on the assumption that all
(xi, yi), i = 1, 2, · · · are generated independently by the
same probability distribution (i.i.d).

The essential idea of Venn prediction is to divide all ex-
amples into a number of categories based on their similarity
and calculate the probability ofxn belonging to each class
yj ∈ Y as the frequency ofyj in the category that contains
it. Then since we do not know the true labels of the new
objectxn, we try every possible label as a candidate for its
label. In each try, we calculate a probability distributionfor
the true class ofxn based on the examples

{(x1, y1), · · · , (xn−1, yn−1), (xn, yn)} . (1)

To divide each set (1) into categories we use ataxonomy
function. An : Z

n−1 × Z → T, n ∈ N, which classifies
the relation between an example and the bag of the other
examples:

τi =An((xi, yi), {(x1, y1), · · · , (xi−1, yi−1),

(xi+1, yi+1), · · · , (xn, yn)}).
(2)

Valuesτi are called categories and are taken from a finite
setT = {τi, τi, · · · , τk}. Equivalently, a taxonomy function
assigns to each example(xi, yi) its categoryτi, or, in other
words, groups all examples to a finite set of categories.

Typically each taxonomy is based on a traditional ma-
chine learning algorithm, called theunderlying algorithmof
the Venn predictor. The output of this algorithm for each
attribute vectorxi, i = 1, · · · , n after being trained either
on the whole set (1), or on the set resulting after removing
the pair (xi, yi) (2), is used to assign(xi, yi) to one of a
predefined set of categories. At this point it is important to
emphasize the difference between the classes of the problem
and the categories of a Venn taxonomy. These categories
are assigned examples based on the output classification
label of the underlying algorithm and not on the true class
to which each example belongs. There fore the category
corresponding to a given classification labelyj will contain
the examples that the underlying algorithm "believes" to
belong to classyj , which are not necessarily the same as
the examples that actually do belong to that class since the
underlying algorithm might be wrong in some cases.

The conventional way of using Venn ideas was as follows.
Categories are formed using only the training set. For each
non-empty categoryτ , the empirical probabilities of an
object within categoryτ to have a labelyj are found as

Pτ (yj) =
Nτ (yj)

Nτ

. (3)

Where Nτ is the total number of examples from the
training set assigned to categoryτ , andNτ (yj) is the number
of examples within categoryτ that are labelled withyj .

Now, given a new objectxn with the unknown labelyn,
one should assign it somehow to the most likely category of
those already found using only the training set; letτ⋆ denote
it. Then the empirical probabilitiesPτ⋆(yj) are considered
as probabilities of the objectxn to have a labelyj . The
idea of confidence machines allows us to construct several
probability distributions of a labelyj for a new object. First
we consider a hypothesis that the labelyn of a new objectxn

is equal toy (yn = y). Then we add the pair(xn, y) to the
training set and apply the taxonomy functionA to this ex-
tended sequence{(x1, y1), · · · , (xn−1, yn−1), (xn, y)}. Let



τ⋆(xn, y) be the category containing the pair(xn, y). Now
for this category we calculate, as previously, the valuesNτ⋆ ,
Nτ⋆(yj) and empirical probability distribution

Pτ⋆(xn,y)(yj) =
Nτ⋆(yj)

Nτ⋆

, yj ∈ Y. (4)

This distribution depends implicitly on the objectxn and
its hypothetical labely. Trying all possible hypotheses of the
label yn being equal toy, we obtain a set of distributions
Py(yj) = Pτ⋆(xn,y)(yj) for all possible labelsy.

The taxonomy used is still very important as it determines
how efficient, or informative, the resulting predictions are.
We want the diameter of multiprobability predictions and
therefore their uncertainty to be small, since saying that the
probability of a given classification label for an example is
between0.8 and0.9 is much more informative than saying
that it is between0 and 0.9. We also want the predictions
to be as close as possible to zero or one, indicating that
a classification label is highly unlikely or highly likely
respectively.

The maximum and minimum probabilities obtained for
each classification labelyj define the interval for the prob-
ability of the new example belonging toyj :

[

min
y∈Y

Pτ⋆(xn,y)(yj),max
y∈Y

Pτ⋆(xn,y)(yj)

]

. (5)

To simplify notation the lower bound of this interval for a
given classyj will be denoted asL(yj) and the upper bound
will be denoted asU(yj). The Venn predictor outputs the
best clasŝy for xn where:

ŷ = arg max
j=1,··· ,c

P (yj). (6)

and P (yj) is the mean of the probabilities obtained for
yj :

P (yj) =
1

|Y |

∑

y∈Y

Pτ⋆(xn,y)(yj). (7)

This prediction is accompanied by the interval:

[L(ŷ), U(ŷ)] . (8)

as the probability interval of it being correct. The com-
plementary interval

[1− L(ŷ), 1− U(ŷ)] . (9)

gives the probability that̂y is not the true classification
label of the new example and it is called the error probability
interval.

4. The Algorithm
The difference between alternative Venn Prediction meth-

ods is the taxonomy they use to divide examples into cate-
gories. Here a RF classifier defined which allocate examples
into categories. This section describes our algorithm for
reliable probabilistic classification of mammograhic masses.
The main idea of the proposed Algorithm is to embed
random forests in confidence machines. In this way, we
expect designed Venn machines to inherit advantages of
random forests.

First, we train a RF classifier, according to Forest-RI Al-
gorithm, on the extended set (1). Second, we assign(xi, yi)
to the corresponding categoryτi according to RF outputs
{o1i , · · · , o

l
i}. The predicted class of(xi, yi) is calculated by

its majority vote of the out-of-bag predictions. Algorithm1
presents the completeRPRF algorithm.

Algorithm 1: Reliable Probabilistic Random forests
(RPRF)

Input : Training setZ = {(xi, yi)}
n−1
i=1 in wich

xi = {x
1
i , · · · , x

d
i } ∈ R

d and
yi ∈ Y = {y1, · · · , yc} the possible class forxi,
xn a new example to be classified.

Result: The best class forxn : ŷ = arg max
j=1,··· ,c

P (yj),

the probability interval for̂y :
[

min
y∈Y

Pτ⋆(xn,y)(ŷ),max
y∈Y

Pτ⋆(xn,y)(ŷ)

]

begin
for k ← 1 to c do

Train a random forest (RF) classifier, according
to Forest-RI Algorithm, on the extended set
{(x1, y1), · · · , (xn−1, yn−1), (xn, yk)};
Supply the input patternsx1, · · · , xn to the
trained RF to obtain the output values
{o1, · · · , on} based on the out-of-bag
predictions;
for i← 0 to n do

According to RF outputs{o1i , · · · , o
c
i},

assign(xi, yi) to the corresponding
categoryτi.

end
Find the most likely category that contains
(xn, yk), let τ⋆ denote it.
for j ← 0 to c do

Compute the empirical probability
Pτ⋆(xn,yk)(yj) using equation (4).

end
end
for j ← 0 to c do

Compute the mean of the probabilityP (yj)
using equation (7).

end
end

Applying a RF classifier that was trained on the whole



training data set (1), the examples are divided into categories
for each assumed classification labelyk ∈ {y1, · · · , yc} of
xn and the process described in section 3 is followed for
calculating the outputs of the Reliable Probabilistic Random
Forests (RPRF). The predictions are based on the out-of-bag
predictions from the RF.

In the next section, we will analyze experimentally our
proposed model.

5. Experimentation
In this section, we will analyse experimentally our pro-

posed model to well-known other proposals using a standard
reference database. Experimental settings and results are
described in the sequel.

5.1 Experimental settings
To evaluate our method, we used mammograms from the

Mammographic Image Analysis Society (MIAS) database
[14]. Films were taken from the United Kingdom National
Breast Screening Program; digitized to50 micron pixel edge,
and presented each pixel with an 8-bit word. The MIAS
database consists of totally322 digital mammograms from
161 patients, which belong to three big categories: normal,
benign and malign. There are208 normal, 63 benign and
51 malign images. The normal ones are those characterizing
a healthy patient, the benign ones represent mammograms
showing a tumor, but that tumor is not formed by cancerous
cells, and the malign ones are those mammograms taken
from patients with cancerous tumors. This database provides
for each mammogram a meta-data from radiologists about
the characteristics of background tissue, the type and the
severity of abnormality and the coordinates of center; etc.
Using this informations, suspicious regions with the given
centre and radius have been extracted as the Regions of
Interest (ROIs).

We use a set which consists of totally285 ROIs, which
belong to three categories: normal, benign and malign. There
are130 normal,75 benign and80 malign ROIs. The images
from the MIAS dataset are separated for training and testing.
The training ratio is set as80%, i.e. 80% of the samples for
training and20% for testing.

The computer classification results were validated using
the following standard criteria: Accuracy (AC), Sensitivity
(SE) or Recall, Specificity (SP), the area under the ROC
curve (Az), F-measure (F1), Precision (Prec), Brier Score
(BS) and Matthews’s correlation coefficient (MCC). These
measures are calculated from confusion matrix. The con-
fusion matrix describes actual and predicted classes of the
proposed method and shown in table 1. Calculations of those
performance measures were carried out as follows:

SE = TPR =
TP

(TP + FN)
(10)

SP = 1− FPR =
TN

(TN + FP )
(11)

AC =
(TN + TP )

(TN + TP + FN + FP )
(12)

Prec =
TP

(TP + FP )
(13)

F1 = 2×
(Prec× SE)

(Prec+ SE)
(14)

MCC =
(TP × TN − FP × FN)

√

((TP + FP )(TP + FN)(TP + FP )(TN + FN))
(15)

whereFP , FN , TP andTN denote false-positive, false-
negative, true-positive and true-negative answers, respec-
tively. Moreover,FPR andTPR denote false-positive rate
and true-positive rate, respectively.

The Brier score,BS, is defined for a dichotomous event
as the mean square error of the probability forecast:

BS =
1

M

M
∑

i=1

(pi − oi)
2 (16)

whereM is the total number of samples,pi is the forecast
probability, oi is the verifying observation (1 if the event
occurs, 0 if it does not).

5.2 Comparative analysis
The classification performance of the proposed system is

compared with that of other three existing classifiers like
Support Vector Machine (SVM) [16], Probabilistic neural
network (PNN) [1] and Random Forests (RF) [17] classifiers.
Numerical results are summarized in Tables 1 and 2.

Table 1 shows the confusion matrices for all used classi-
fiers. This should be read as follows: rows indicate the object
to be recognized (the true class) and columns indicate the la-
bel the classifiers associates at this object, thus obtaining the
correct classified mammograms in the diagonal of the matrix.
Therefore, the performance of this approach is91.92%. We
can see that the mammograms better classified are those
belonging to normal class, while benign mammograms are
the worst classified.

ROC curve is graphical display of sensitivity (TPR) on y-
axis and (1 - specificity) (FPR) on x-axis with changing the
decision threshold. This is generally depicted in a square
box for convenience and its both axes are from0 to 1.
Figure 2 depicts the ROC curve for the proposed method.
The area under the ROC curve is an important criterion for
evaluating diagnostic performance. Usually it is referredas
the Az index. MaximumAz = 1 and it means diagnostic
test is perfect in differentiating diseased with non-diseased



(a) normal (b) benign (c) malign

Fig. 2: The ROC curve for the proposed method.

Assigned Class

normal malign benign

3*Actual Class normal 250 4 6

malign 10 142 8

benign 16 21 113

(a) SVM [16]

Assigned Class

normal malign benign

3*Actual Class normal 253 2 5

malign 9 140 11

benign 10 9 131

(b) RPRF

Assigned Class

normal malign benign

3*Actual Class normal 246 6 8

malign 15 133 12

benign 16 18 116

(c) RF [17]

Assigned Class

normal malign benign

3*Actual Class normal 240 9 11

malign 16 130 14

benign 15 22 113

(d) PNN [1]

Table 1: Confusion matrices showing classification error re-
sults for (a) SVM, (b) RPRF, (c) RF and (d) PNN Classifiers.

subjects. The proposed methodology yielded an area under
the ROC curve of0.943.

Table displays the numerical results from the experiments.
Classification Accuracy represents the overall performance
of a classifier. It indicates the percentage of correctly clas-
sified positive and negative cases from the total number of
cases. Our model yielded a higher accuracy rate, with a mean
of 91.93% compared to SVM (88.6%), PNN (84.74%) and
RF (86.84%). Sensitivity, also known as recall rate, measures
the proportion of positives correctly identified. The proposed
methodology yielded a higher sensitivity rate, with a mean
of 97.31% compared to SVM (96.15%), PNN (92.31%)
and RF (94.62%). The specificity measure represents the
proportion of negatives that are correctly identified. Our
model has a specificity of93.87%. F-measure is widely
used to evaluate classification techniques. It is a common
evaluation metrics that combines precision and recall into
a single value. Our proposed yields F-measure of0.9511
which is only0.9328 for SVM, 0.9040 for PNN and0.9162
for RF. The Brier score is a well-known evaluation measure
for probabilistic classifiers. It measures the average squared
deviation between predicted probabilities for a set of events
and their outcomes. The lower the Brier score of a model
the better the predictive performance. Our proposed has a
small Brier score0.1544, explaining the good results of
classification for this dataset.

As a summary to these simulations, it can be observed that
the classification efficiency of the proposed classifier is better
than other classifiers, for the mammogram classification
problem of the database considered for the study.

6. Conclusion
In this paper, we have developed a reliable probabilistic

algorithm for the classification of masses in Mammograms.
The proposed method has acceptable performance compared



AC (%) SE (%) SP (%) Az F1 Prec BS MCC

SVM [16] 88.60 96.15 91.61 0.9646 0.9328 0.9058 0.2242 0.8747

PNN [1] 84.74 92.31 90.00 0.9131 0.9040 0.8856 0.3154 0.8209

RF [17] 86.84 94.62 90.00 0.9053 0.9162 0.8881 0.2441 0.8432

RPRF 91.93 97.31 93.87 0.9433 0.9511 0.9301 0.1544 0.9092

Table 2: Performance measures comparison.

to that obtained by the used comparison methods. In the
future, we aim to refine our proposal for false-positive
reduction. Furthermore, we would like to apply the proposed
approach on other medical images where probabilistic pre-
dictions are of great importance.
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