Using the Centinel Data Format
to Decouple Data Creation from Data Processing
in Scientific Programs

Clarence Lehman' and Adrienne Keen?
1University of Minnesota, 123 Snyder Hall, Saint Paul, MN 55108, USA
2London School of Hygiene and Tropical Medicine, Keppel St., London WCIE 7HT, UK

“Software is hard. It’s harder than anything else I've ever had to do.

Abstract— Multi-dimensional numerical arrays are a staple
of many scientific computer programs, where processing may
be intricate but where data structures can be simple. Data
for these arrays may be read into the program from text
files assembled in advance, often laboriously from multiple
sources or from large-scale databases. Notwithstanding sim-
plicity in the structure of such files, their multi-dimensional
nature and the very regularity of their data makes it difficult
or impossible to know by inspection that they are assembled
exactly as required by the processing programs. Moreover,
data errors inadvertently may appear through unintended
alteration of some parts of a file while other parts intention-
ally are being edited. Verifying the correctness of scientific
programs is hindered by such difficulties. Here we describe
how we have applied the Centinel archival data format
to such problems. Centinel (1) provides a format that can
be read without difficulty by both people and computers,
(2) keeps all metadata locally in the same files as the data
themselves, and (3) optionally protects the data with error
correcting codes on each row, from the time the data are
prepared until they are finally processed. In addition, we
show how we have used the Centinel format to produce
prototypes of large datasets for initial program testing before
the actual data have been prepared. This effort is one step
in the uncompromising process of ensuring that complex
scientific programs rigorously perform the tasks they are
intended to do.

Keywords: data and metadata, code and metacode, scientific
programming, software validation, database, data archives

1. Introduction

Consider the following two files made available to a com-
puter program, each containing an 8x8 matrix of hypothet-
ical average temperature measurements at points along a
latitude line and at times throughout a season. The program
expects distances to be represented in successive matrix

’

—Donald Knuth, 2002

rows and time in successive columns. In this example, the
temperatures increase north to south (top to bottom in the
array) and also increase as the season progresses (left to right
in the array).

The two files below are identical, just with rows and
columns transposed. Suppose one is correct and the other is
not. Once read by the program, the data act as parameters,
so that verifying the correctness of the program includes
knowing the correctness of this data. The question is, how
can one verify by inspection which of the two matrices has
the correct format and will generate legitimate results in the
program?

Input File I:
18.9 20.7 224 249 21.7 240 23.1 249
21.1 240 242 21.6 25.0 23.0 23.8 242
21.7 209 248 227 264 250 248 284
239 21.7 229 241 27.0 258 283 27.6
23.8 225 248 263 25.1 269 29.6 29.1
243 27.0 253 262 26.0 259 27.0 299
25.1 272 263 28.8 274 283 29.7 28.6
2777 275 282 258 295 265 273 30.6

Input File 2:
18.9 21.1 21.7 239 238 243 25.1 27.7
20.7 24.0 209 21.7 225 270 272 275
224 242 248 229 248 253 263 28.2
249 21.6 227 241 263 262 28.8 25.8
21.7 250 264 27.0 25.1 26.0 274 295
24.0 23.0 250 258 269 259 283 265
23.1 238 248 283 29.6 27.0 29.7 27.3
249 242 284 27.6 29.1 299 28.6 30.6

The answer is simple. One cannot. Without digging deeper
into the processes that created the data files, one cannot know
whether rows in the file represent distance and columns
represent time, or vice versa. Nor can one be certain of what
temperature units are represented. Celsius is plausible if this
is a temperate region, but Fahrenheit is equally plausible if
this is the subarctic. How the axes are scaled and other basic
information about the data are also missing. In the absence

of such information, data development becomes undesirably
coupled with software development.

The problems are ameliorated but not solved with
“database connectors”—software to access databases from
within processing programs. Careful discipline beyond the
basic requirements of the database is needed at every step
to guarantee that the encoding of the data is known, data
transformations are specified, units are clear, and a variety
of other items are documented that can otherwise remain
underspecified.

Associated mistakes can be spectacular. An unmanned
spacecraft vanished in 1999 after a ten-month interplanetary
journey, breaking into pieces and burning in the Martian
atmosphere in part because some of the units expected by the
program did not match those provided in the data (conflicts
between English and metric systems) [1]. “Our inability
to recognize and correct this simple error has had major
implications,” according to then-director of JPL, Edward
Stone [2]. Results in other scientific programs may be less
spectacular but of equal or greater moment. Simulations
informing national programs for vaccination and disease
control, for instance, or estimating potential climate change
from biophysical parameters, can affect millions of people.

In this paper we illustrate the problem and its solution with
basic software we developed to connect data that is stored
in the Centinal archival format [3]. This software may be
used directly in C programs or transcribed to serve other
languages. The principles apply to programs that connect to
any database.

2. Methods and results
2.1 Problem details

The two sample matrices above are an idealization of an
actual situation we confronted in a large-scale scientific
simulation developed by one of us (A.K., mathematical
model for tuberculosis in the UK [4]). The first version of
the simulation program had a standard input specification,
represented below in a C-like programming language. The
plausible correctness of the program can be verified by
inspection.

define V 8
float a[N][N]; /Celsius array, a[g][t].
for (9=0; g<N; g++)

for (t =0; t<N;t++) ey
if (scanf("%f", &alg][t]) < 1)
ExitMsg(1);

The input (File 1) can also be inspected—eight lines with
eight numbers on each—which matches the program above.
The doubly nested loop reads each number on a line into
the ¢t dimension, then reads subsequent lines into the g
dimension of the array a. Inspection of the code shows that
the input file cannot overflow the array, and that missing
or non-numeric values will be detected and the subroutine

ExitMsg will be notified to handle them, typically by issuing
an error message and terminating the operation.

However, the reason we said plausible correctness is that
one cannot know by inspection of the data and the code
that the order of the loops is correct, nor that the units are
indeed Celsius as the program expects. The danger is easy
to identify in this basic example, but the dimensionality of
arrays in practice commonly grows to five or more and the
dangers of undetected errors compound.

2.2 A basic solution

We sought general ways of decoupling the processes of
(1) creating the data and verifying the correctness of the
created data, and (2) writing the computer program and
verifying the correctness of the program’s code. Our solution
was simple in concept and not difficult to accomplish.
We inserted a “decoupling step” between the data and the
program, with two components: (1) computer- and human-
readable metadata maintained within the file and (2) software
that processes not only the data but parts of the metadata as
well. Below is an example of File 1 in Centinel format.

Centinel Version of File I:

Dataset: Seasonal omega-transformed temperatures.

Description: This is purely a sample dataset constructed
for illustration. The data are quite imaginary.
Label a: Average temperature over time t, location g,
in degrees Celsius, omega-transformed.

Label t: Time, two-week intervals from March 21.
(0=Mar21-Apr03, 7=Jun27-Jul10)

Label g: Geographic location, half-degree quadrangles
from the 45th parallel north centered on
the 100th meridian west.

(0=45.0-45.5°N, 7=49.0-49.5°N)

lg |a:t=0 |a:t=1 |a:t=2 |a:t=3 |a:t=4 |a:t=5 |a:t=6 |a:t=7

|7 118.9 |20.7 |22.4 |24.9 |21.7 [24.0 |23.1 |24.9

|6 [21.1 |24.0 |24.2 |21.6 [25.0 |23.0 |23.8 |24.2

[5 121.7 |20.9 |24.8 [22.7 |26.4 [25.0 |24.8 |28.4

|4]23.9 |21.7 |22.9 |24.1 |27.0 |25.8 |28.3 |27.6

[3]23.8 |22.5 |24.8 |26.3 [25.1 [26.9 [29.6 |29.1

[2 [24.3 |27.0]25.3 [26.2 [26.0 [25.9 |27.0 |29.9

[1 |25.1 |27.2 |26.3 |28.8 [27.4 |28.3 |29.7 |28.6

[0 27.7 |27.5 |28.2 |25.8 [29.5 [26.5 |27.3 |30.6

Centinel files are ASCII text with three parts: (1) An
optional column of numbers at the far left above, which
represent error-correcting codes called “centinels.” They
guard each line against accidental alterations [3]. If the first
character of a Centinel file is not a digit ‘0’ to ‘9’, then the
column is not included and the file consists only of data and
metadata. (2) Metadata, at the top of the example above and
to the right of the column of centinels. Metadata describes
the data to people and, in certain cases, to computer pro-
grams that may process parts of it. Metadata have “keyword—
colon—data” format, with indented lines continuing the line
above. The last line of metadata contains headings that define

the contents of each column of data. (3) Data, with data
elements separated by vertical bars. In this case a column at
the left defines the index for each row.

The column of numbers labeled ‘g’ defines the geographic
location of each data element on the line, as described in the
metadata above it. Each of the 64 data elements in the array
is identified with its geographic location, in column ‘g’, and
with its time, in the column headings marked ‘a:t=0’ through
‘a:t=7". Each such column heading contains the value of the
label to the left of the colon (‘a’) indexed by the label to the
right of the colon (‘t’) at the index specified to the right of
the equal sign. Thus the value in the upper left corner of the
data block is a[g][t] = a[7][0] = 18.9, the value immediately
to its right is a[7][1] = 20.7, and so forth until the value in
the lower right corner is «[0][7] = 30.6. In this way the file
is self-defining and the following call to subroutine Centinel
is sufficient to read it into the array.

define V 8
float a[N][N]; /Celsius array, alg][t].
char b[] = "a[g=0~7][t=0~7]"; 2

if (Centinel (a, b, "omega.txt") # 0) ExzitMsg(1);

The second line in the code above specifies the array
a and its indexes for the compiler, as before. The third
line specifies the array and its indexes for the subroutine
Centinel, which reads the file. Thus the second line says,
“The array a has eight rows indexed by label g in the file
and eight columns each indexed by label ¢ in the file.” The
third line calls the subroutine Centinel to read the file. Its
first parameter specifies the array to receive the data, in this
case a, its second parameter defines the structure of the array
and names the index values, and its third parameter is the
name of the file to be read. Free source-code copies of the
software are available from the authors upon request.

2.3 Equivalent transposed format

We have shown a sample matrix and its transposition, which
could not be reliably distinguished, then showed how the
first form of the matrix could be reliably represented. For
completeness, below is the transposed form of the same
matrix, which can also be read with the same call to the
subroutine Centinel. No changes to the program are needed.

[t |a:g=T7|a:g=6|a:g=5|a:g=4|a:g=3|a:g=2|a:g=1]a:g=0
0 [189 |21.1 [21.7 |23.9 [23.8 |24.3 [25.1 |27.7
111207 [24.0 [209 [21.7 |22.5 [27.0 |27.2 275
2 [22.4 |242 [24.8 |22.9 [24.8 |25.3 [26.3 |28.2
3 1249 |21.6 [22.7 |24.1 263 |26.2 |28.8 |25.8
14 [21.7 [25.0 [26.4 [27.0 |25.1 [26.0 [27.4 [29.5
|5 [24.0 [23.0 [25.0 [25.8 [269 |25.9 283 |26.5
23.1 [23.8 [24.8 [283 [|29.6 [27.0 |29.7 [27.3
17 1249 |24.2 [28.4 |27.6 [29.1 |29.9 [28.6 |30.6

All lines of metadata but the heading line are identical
and therefore not shown again here. Notice that the only
differences in the remainder are in the labels on the heading

line and in the column for ‘t’, and in the centinels. Those
are sufficient to allow the software to load the data into the
proper locations of the program’s array.

2.4 Equivalent relational format

Any format that properly specifies the data will work. In
particular, an ordinary relational database format can be used
with the subroutine Centinel, as depicted below. We have
not used this format in our work nor in this explanation,
however, since it is much less compact and therefore harder
to examine visually.

lg |t |a

0 |0 [27.7
0 |1]27.5
10 |2]28.2
10 |3]25.8
|0 |4 |29.5
10 |5 |26.5
0 |6 |27.3
10 |7 |30.6
1110 |25.1
1|1 [27.2
17 15 |24.0
|7 |6 |23.1
17 17 |24.9

2.5 Over and under specification

The datafile may contain more data than the array contains.
Data corresponding to array indexes that are out of bounds
are ignored, as defined in the specifier b. An error indicator
will be returned if requested. Also, any labels in the file
that are not part of the array are ignored. These are “over-
specified” files that contain more information than needed.
They allow different parts of a single file to be loaded into
different arrays, for example.

Files may also be “underspecified,” in that they do not
contain enough information to fill the array. For example,
any of the three files above could be divided into eight
separate files, one for each column of the matrix. When
each was read, it would fill in only its column of the array.
Multiple files may thus be combined into a single array—
convenient for some organizations of data. Of course, in all
cases care must be taken not to leave parts of the array
undefined.

2.6 Prototyping

The datasets we have shown thus far have single integer
indexes in each location. In addition, sequences and ranges
of integers can be used in each location, for the purpose
of prototyping. Often a program will be ready for partial
testing before its data are fully available. We included basic
prototyping in the Centinel algorithm to allow this.

A set of indexes can be a range of integers separated
by a tilde, written ‘nj~ns’, where the n; are integers, or a

sequence, written ‘mg, mg, ms, ..., my’, where the m; are
integers or ranges of integers. Here are some examples:

Specification Indexes represented
1 1
0,1 01
0~1 01
0, 3~9, 40~38, 2 034567894039382

)

The example below is related to an actual dataset we
used, where a collection of probabilities, p, is indexed
in four dimensions by a region 0 <region <2, a relative
year 0 <year <95, a state 0 < ¢ <8, and a class 0 <c < 3.
This is an array of 3-96-9-4=10,368 elements. When the
data became available and completely encoded, each array
element had its own distinct probability value, but in the
meantime program development needed to continue. A file
like the following, with appropriate additional descriptive
metadata, sufficed for initial testing.

[region|year |q |p:c=0 |p:c=1 |p:c=2 |p:c=3
02 (095 0 [0 0o [0 o

(line 1)

0 |0~95 [1~7 [0.80 [0.60 [0.79 [0.89 (line 2)
11,2 [0~95 [1~7 [0.84 [0.71 [0.88 [0.99 (line 3)
0~2 [0~95 [8 |1 1 I 1 (line 4)

When the above file is read, every subarray for ¢=0
is set to zero (by line 1) and every subarray for ¢ =28 is
set to one (by line 4). Of the remaining elements in the
array, every subarray for region=0 is set to the vector
0.80,0.60,0.79,0.89 for ¢=0,1,2,3 (by line 2), and the
remainder is set to the vector 0.84,0.71,0.88,0.99, for
the same values of ¢ (by line 3). Thus the array can be
filled initially with appropriate “placeholders.” As data are
developed, the file can be filled out and the program further
tested, until all placeholders are withdrawn and the full
10,368 array entries are individually specified.

2.7 Error correction

The optional error-correcting codes represented by num-
bers to the left of the lines of data and metadata are
“Hamming codes” [5], originally designed for 0-1 bits but
redesigned in Centinel for symbols. They allow (1) any
single-character error on a line to be corrected, (2) any
double-character error to be detected, and (3) the overwhelm-
ing majority of multi-character errors also to be detected.
The codes are created by the Centinel algorithm [3] or by a
text editor that supports the Centinal algorithm.

As mentioned earlier, they guard against accidental mod-
ification of one piece of data while editing another. They
also make printed copies of the data into reliable long-
term storage media for archiving the data. Printed copies
of the data can be scanned and verified long into the future,
with no intervening migration or maintenance of the data
necessary [3].

3. Discussion

3.1 Correctness of scientific programs

Writing software that works is one of the most difficult
of human endeavors, and scientific software is at a special
disadvantage. Whereas commercial and engineering software
can be very complex, its desired behavior can be specified in
advance. For example, if a spreadsheet operation is intended
to produce the sum of a column of numbers, it is possible
to determine whether it is actually doing so. That is, testing
is possible. In scientific software, however, testing is often
impossible. The program’s behavior is often not known
because the behavior of the natural system being simulated
is not known. Indeed, the whole purpose of the simulation
program is to determine how the system behaves.

One aspect among several is “correctness proving.” [6] [7]
[8] This topic has been well discussed but less well practiced.
An essential part is partitioning the software into manageable
pieces and documenting each piece so that its correctness can
be verified. The ideas discussed in this paper are part of that
process—because data read by the program as parameters
become part of the program, the program’s correctness in
turn depends on the data’s correctness. Thus the data must
also be partitioned into manageable pieces and documented.

The goal is to restrict the range of attention to what can
be understood by the human mind in one review session. In
software, this can be accomplished by adding “metacode”
to the code, describing, among other things, full entry and
exit conditions for every module, no matter how small.
For data, it can be accomplished by partitioning the data
and encapsulating each partition with metadata, as described
here.

3.2 Centinel and other forms

This approach can be applied to any database and any
programming language that can connect with that database.
However, methods such as we have described for partitioning
the data into manageable pieces, for documenting it, and
optionally for guarding it against unintended alteration, are
important with any database. Column names and row names
are not required by common spreadsheet software, and
spreadsheets for important data are sometimes prepared with
little more information than in the sample matrix files shown
at the beginning of this paper.

Centinel files may be constructed directly with a text
editor. More commonly they are assembled by collections of
programs and scripting languages, from databases or from
spreadsheets. When created from spreadsheets, column 1
of the spreadsheet can be used solely for metadata, with
all actual data beginning in column 2. Then when the files
are saved, for example as tab-separated text files, and after
the tabs are translated to vertical bars, each actual data line
will begin with a vertical bar. Centinel formats can thus be

transferred back and forth to spreadsheet programs without
loss of data in either direction.

3.3 Database labels

It is useful to label data elements in the file so that they
exactly match corresponding variable names in the program.
Doing so means restricting labels to letters and digits, begin-
ning with a letter, and possibly supplemented with optional
characters such as underscores. That way no confusion will
arise between variables in the program and labels in the
database. There is a tendency to try to include metadata in
the names of data elements in the database, especially with
spreadsheets. For example, a spreadsheet column might be
named “%cover-no litter”. This is inadvisable for several
reasons: (1) even a moderately large amount of metadata
in the label is still insufficient to understand what the field
really contains; (2) the label will need special characters
such as period, hyphen, percent sign, and blank, which have
special meanings in most programming languages; and (3)
the long label induces a wide column, or alternatively forces
part of the label to be hidden.

The approach we use and recommend here is to make
a small distinct label, such as in this case “pcover”, with
metadata like, “Label pcover: Percentage of the area covered
by the species in question, when viewed from directly above,
relative to the area occupied by living plants (the area not
occupied by leaf litter or bare soil).” Not much less than that
amount of metadata is necessary for someone familiar with
the data to understand what that data element represents,
and that amount is too long for a label. Therefore, the better
strategy is to use short data labels with ample metadata
descriptions carried separately in the file.

3.4 Database metadata

In popular database management systems such as MySQL
[9], metadata of the type we advocate can be added, though
often not in the same file as the data. At the time of this
writing, metadata elements that can be stored as comments
in MySQL files are limited to one line of text each and
thus are difficult to use for complete metadata. It is always
possible to set up special tables to contain the metadata, but
that presents other difficulties, for it is harder to maintain
metadata when it is in a separate file.

We feel it is important to specify the metadata while
creating the data. That is, after all, when the structure and
meaning of the data are known. Writing it down then is
only incremental time; writing it down later is re-creating
a thought process that has already been completed once.
Fine details of data and code evaporate from the mind with
disappointing ease. Data structures should be defined as
carefully as possible beforehand, although achieving good
data structures, like good computer programs, can be an
iterative process. The best practice is that documentation of
the data be maintained at each step of the iteration.

3.5 Database connections versus files

Even when working with a large-scale database that can
connect to the program, there is merit in creating files of the
Centinel type for communication with the program. Those
files fully document the data that will lead to conclusions
drawn from the program, and can be used in supplemen-
tal material submitted with any publications that result.
Recorded in Centinel format, they will be ready for long-
term archiving, along with the scientific publication itself.
(See example in Appendix.)

Too often, when such files are not created, subsequent
changes in the dataset used to draw the conclusions will
make it difficult for anyone, including the original authors, to
replicate precisely the results. This can make it impossible to
precisely compare former conclusions with new conclusions
that may arise as conditions change, and may occasionally
call into question the original results.

Many other considerations in constructing databases and
documenting them lie beyond the scope of our purposes here,
but appear in other publications [10] [11] [12].

3.6 Non-relational data

Up to this point we have emphasized ordinary scientific data
as stored in relational databases, but any kind of data can
be represented in the form we have described. That form
allows the data to be written and read directly by simple
computer programs and to take forms that adapt to various
requirements. As an example, the Centinel format has been
applied to large-scale photographic radar images, which can
have 10° or more levels per spectral band and more than
three spectral bands, and exceed the limits of simple image
formats such as JPEG and PNG. An image can be represented
as a rectangular array of colors, with each color being a set
of numeric values. Below is an excerpt from a large array
of satellite radar elevation measurements from public NASA
databases.

Title:
Contents:

Earth at maximal ice melt
Pixel array, 4320 x 2160

Spectral bands: 3

Bits per band: 32

Wavelengths: ~ RGB standard

Resolution: 1/12 degree, latitude and longitude
Data source: NASA STMR30 database
Produced by: flood.c

Label Lat: Latitude band in 1/12 degree resolution.
Elevation in meters, LatO=90N, Lat2160=90S.
Label Lon: Longitude band in 1/12 degree resolution.
Elevation in meters, Lon0=180W, Lon2160=0,
Lon4320=180E
| Lat|Lon0 |Lonl |Lon2 |Lon3 |Lon4 |Lon5 |..
| 0]0,10,8800,10,880|0,10,880 |0,10,880 |0,10,880 |0,10,880 |..
\ 1/0,10,880 10,10,88010,10,880]0,10,8800,10,880|0,10,880 ...
| 539]0,10,8800,10,880|65.66 [67.93 [85.21 [129.23 |..
| 5 [100.53 [109.73 [129.9 |..

40(0,10,880 0,10,880 |76.52

12159]2605.37 |2605.95 [2606.52 |2607.23 |2607.79 |2608.44 |..

Ellipsis symbols in the example above (‘> and ‘..") rep-
resent material in the file that is not shown here for brevity.
Each data element consists of a string of comma-separated
numbers following a vertical bar, each number specifying a
spectral band. If there are fewer numbers than spectral bands,
the last number is taken to be repeated. Thus single numbers
represent monochromatic pixels. In this example colors were
only used to represent blue water and red coastlines, the
remainder representing elevations in meters as monochrome
intensities.

The full file is approximately 80 MB uncompressed.
Converted to a pixel image, it appears as the following map.
As a point of interest, the data represent the results of a
flood-fill algorithm estimating coastlines of the planet if all
the glacial ice were distributed as water to the oceans.

The point of the example above is that data of many kinds
can be treated by the methods we describe in this paper,
beyond data that are usually considered relational database
material.

4. Conclusions

By applying methods of judiciously organizing data and
metadata, the processes of data development and software
development can be separated. The consequence is data that
are better defined, programs that are more often correct,
and results that are replicable. Based on the problems and
solutions discussed in this paper, we make the following
suggestions and recommendations.

A) Use metadata to disentangle data construction from data
usage, including data input to scientific programs.

B) Maintain data formats that people can read with ease
and computers can access with simple algorithms.

C) Develop metadata concurrently with data collection.

D) Store metadata in the same files as the data themselves.

E) Use data prototyping to test programs before all data
are available.

F) Resist the temptation to embed metadata within data
labels. Keep labels simple.

G) Maintain archival copies as snapshots of evolving
data—especially data used in reaching published sci-
entific conclusions.

H) Include error-correcting codes in archival data to assure
integrity independent of changing storage media.

This method has been practical and useful in reducing
or eliminating data errors in large-scale simulations [4] and
we recommend it for use and extension by others. Code
for the functions described here and for related query and
maintenance operations on the Centinel format is available
free in compilable source files from the authors upon request.

5. Acknowledgements

We thank Eric Lind and Todd Lehman for helpful discus-
sions and comments. The project was supported in part
by a resident fellowship grant to C. Lehman from the
UMN Institute on the Environment, by grants of computer
time from the Minnesota Supercomputer Institute, and by
doctoral research funding to A. Keen from the Modelling and
Economics Unit at the Health Protection Agency, London.

6. Contributions

A. Keen wrote the simulation programs that inspired the
present paper and prepared corresponding simulation data in
the format explained here. C. Lehman coded the software for
reading Centinel data into scientific programs. Both authors
contributed to the development of the Centinel data format
and the manuscript.

References

[1] R. A. Kerr, “More than missing metric doomed orbiter,” Science, p.
207, 1999.

[2] D. Isbell, M. Hardin, and J. Underwood, ‘“Mars climate orbiter team
finds likely cause of loss,” JPL-NASA report, Release 99-113, 1999.

[3] C. Lehman, S. Williams, and A. Keen, “The Centinel data format:
Reliably communicating through time and place,” International Con-
ference on Information and Knowledge Engineering, Proceedings, vol.
IKE 12, pp. 47-53, 2012.

[4] A. Keen, “Understanding tuberculosis dynamics in the United King-
dom using mathematical modelling,” Doctoral Thesis, London School
of Hygiene and Tropical Medicine, University of London, 488 pp.,
2013.

[5] R. W. Hamming, “Error detecting and error correcting codes,” The
Bell System Technical Journal, vol. 26, pp. 147-160, 1950.

[6] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, pp. 576-585, 1969.

[7] E. W. Dijkstra, “A discipline of programming,” Prentice-Hall Series
in Automatic Computation, 1976.

[8] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, pp. 256-290, 2002.

[9] B. Schwartz, P. Zaitsev, and V. Tkachenko, “High performance
MySQL: Optimization, backups, and replication,” 3rd Ed., O’Reilly
Media, 828 pp., 2012.

[10] P. A. Sharp, D. Kleppner, and committee, “Ensuring the integrity,
accessibility, and stewardship of research data in the digital age,”
National Academies Press, 180 pp., 2009.

[11] E. T. Borer, E. W. Seabloom, M. B. Jones, and M. Schildhauer,
“Some simple guidelines for effective data management,” Bulletin of
the Ecological Society of America, vol. 90, pp. 205-214, 2009.

[12] D. Butler, “The future of electronic scientific literature,” Nature, vol.
413, pp. 1-3, 2001.

7. Appendix

Below is a sample excerpt of a file in Centinel format,
used as input to scientific analyses and showing the style of
metadata and data specification. At the left of each line are
the optional “centinels,” error detecting and correcting codes
that accompany the file as it is transferred across media,
supplementing any such codes that may be part of specific
computer media. Thus even printed copies of the file that may
be retained indefinitely into the future can be subsequently
scanned and the data recovered with the full reliability of
any computer medium. Lines beginning with a vertical bar

to the right of the centinel codes are data, in columnar format.
Other lines are metadata, describing the data sufficiently
well to be understood by a worker in the field who may
be accessing the data from a remote place or time. Metadata
have “keyword—colon—data” format, with indented lines con-
tinuing the line above. Keywords are chosen to fit the data
and the needs of processing programs. For example, “Label”
is used by query and other database management programs
that process the Centinel format. An automatic summary line
at the end guards against missing or duplicate lines.

3255845646594753 Dataset: Peatland dates and depths

8969865226586934 By: Art Dyke, Eville Gorham, Jan Janssens

8286898747137843 Date: September 15, 2012

0000000000000000

1314776168875326 Contents: Age, depth, and location data for North American

8620213562356287 peatlands. Please consult the publication below for

0901842416681217 details.

0000000000000000

5827730880685764 Publication: This is the archival dataset for "Long-Term

1520774603075243 Carbon Sequestration in North American Peatlands," Gorham,

7259216113317888 Lehman, Dyke, Clymo, and Janssens, Quaternary Science

7505773863167388 Reviews, 2012, doi 10.1016/7j.gsciref.2012.09.018.

0000000000000000

1884884179373648 Format: This file is recorded in Centinel format, which is

1043670634366401 for immediate use and long term archiving. The numbers at

6812166714427858 the left are error-correcting and error-detecting codes to

4037101440275922 help ensure that inadvertent alterations of the file will

7313760841625847 not go undetected. See Lehman, Williams, and Keen (2012),

4508626531434354 "The Centinel Data Format: Reliably Communicating through

6206860589148901 Time and Place," International Conference on Information

1864531348064250 and Knowledge Engineering, IKE 12:47-53, Proceedings.

0000000000000000

7770288188098974 Label ID: Unique identifier for the sample.

0000000000000000

7740581166254016 Label Lat: Latitude, degrees north of the equator.

6908751974650935 Negative is south latitude.

0000000000000000

6204302802774740 Label Lon: Longitude, degrees east of the prime meridian.

4064257255528647 Negative is west longitude.

0000000000000000

6239741042826543 Label Depth: Depth of the peatland in centimeters.

0000000000000000

4325213022514926 Label CalBP: Date of peatland initiation, calendar years

2283760574804679 before present, reckoned as 1950. Calculated

5705568955445847 using 2004 international calibration methods.

0000000000000000

4024078842187041 Label Line: Serial line number.

0000000000000000

5384013588094368 |ID |Lat |Lon |Depth |CalBP |Line

8963026933143738 |A-1112 [41.5 |-113.5 | 707.5 114367 | 1

2355144908347452 |A-2143 |63.33 |=149. | . | 14046 | 2

3055234629388956 |A-2147 |63.33 [=149. \ . | 6643 | 3

4680358064467548 |A-2163 [63.33 |-152. | 30. | 1840 | 4

6020894830527075 |A-219 [42.2 | -88.6 | 175 13713 | 5

5124434961658461 |A-9338 [55.15 |-162.95 \ [10491 | 6

4450355574122328 |AA-10925 |42.667 | -70.883 | 179 13760 | 7

2609664440071317 |AA-20755 [68.02 |-158.73 \ [11903 | 8

8704316082120318 |AA-20756 |68.02 |-158.73 | 300 110996 | 9
-2047 LINES OMITTED-| : [\ | \ : | :

3187374887671188 |Y-2464 [45.08 | =71.08 | 11618 |2056

0513875673303111 |Y-416 [49.62 | =99.43 \ . | 8878 [2057

4553882162706867 |Y-418 [51.17 |-100.25 | 10. | 1316 |2058

6580606639747581 |Y-526 [40.025 | -82.975 \ . [13351 [2059

1002595983626604 |Y-527 |54.8 | -60.82 | 115. | 4300 [2060

4600813124741886 |Y-762 |46.02 | -61.565 \ . |12618 [2061

0000000000000000

4314701862316530 Summary: 2061 data lines, 41 metadata lines, Centinel V2.

	Introduction
	Methods and results
	Problem details
	A basic solution
	Equivalent transposed format
	Equivalent relational format
	Over and under specification
	Prototyping
	Error correction

	Discussion
	Correctness of scientific programs
	Centinel and other forms
	Database labels
	Database metadata
	Database connections versus files
	Non-relational data

	Conclusions
	Acknowledgements
	Contributions
	References
	Appendix

