
Reconstruction of Dynamic Gene Regulatory Networks for Cell
Differentiation by Separation of Time-course Data

T. Nakayama1, H. Daiyasu1, S. Seno1, Y. Takenaka1, and H. Matsuda1
1Department of Bioinformatic Engineering, Graduate School of Information Science and Technology,

Osaka University, 1-5, Yamadaoka, Suita, Osaka, Japan

Abstract— Recently, dynamic Bayesian network (DBN)
model is widely used for estimating gene regulatory networks
(GRNs) from time-course gene expression data. Ordinary
DBNs estimate only a single network using the whole time-
course data. However, some GRNs, such as cell differenti-
ation, dynamically change their network structures due to
chromatin remodeling. In this papers we present a method
to estimate such dynamic GRNs that follow the dynamic
changes of the regulations in adipocyte differentiation by
separating time-course data. We analyzed the estimated
GRNs and confirmed that the GRNs showed the dynamic
changes in adipocyte regulation. The result shows that our
method can identify the regulatory relationships of the genes
that are dynamically changing during adipocyte differentia-
tion by separating the time-course data.
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1. Introduction
Reconstruction of gene regulatory networks (GRNs) from

gene expression data is a fundamental but challenging task
in bioinformatics area. A number of methods have been
developed for reconstructing GRNs. Among the methods,
dynamic Bayesian network (DBN) model is widely used
for estimating GRNs from time-course gene expression data
[1]. However, ordinary dynamic Bayesian networks esti-
mate a single network using whole time-course data, while
some GRNs (e.g., GRNs in cell differentiation) dynamically
change their network structures at their observed time points
[2]. In this paper, we present a method to estimate the
dynamic GRNs by separating time-course data.

Adipocyte differentiation is the one of the processes
that is controlled by a complex network of transcription
factors acting at different stages of differentiation due to
chromatin remodeling [3]. It have been suggested that the
four important adipogenic genes act at different stages
[3][4]. During the early stages of adipogenesis, C/EBPβ
and C/EBPδ activate expression of PPARγ, C/EBPα and
probably other adipogenic genes. And then, PPARγ and
C/EBPα activate expression of adipocyte specific genes.
Furthermore recent studies have been revealing a complex
transcriptional cascade controlling adipocyte differentiation
[5][6][7][8].

The node-set separation method (NSS) [2] tries to cap-
ture different sub-networks that have high activity at their
observed time points. This method estimates a GRN from
whole timecourse data by using DBN, and then represents
the dynamics of the GRN as transition of the regulations
among the genes that are in active gene sets. An active gene
set is determined as a set of differentially expressed genes
comparing with the controls for each time point. Regulations
among the genes in the active gene sets from consecutive two
time points show the activity of the GRN at the time. In
whole time-course data, the activities are changed at each
time point. The transitions of activities of the GRN are
regarded as the dynamics of the GRN.

There is matter that the method like the NSS uses the
whole time-course gene expression data to estimate GRNs.
It is suggested that the estimations with whole time points
cannot identify the regulations that only exist in short span.
Such short-term dynamic transcription controls are caused
by chromatin remodeling [3]. Recently, experiments of mi-
croarray and updated methods, like RNA-Seq, that enable us
easily to acquire high resolution time-course data. However,
ordinary DBN-based methods evaluate the overall change of
the gene expressions rather than the expressions represent the
regulation change during short-term time intervals. In this
paper, we estimate dynamic GRNs by DBN from separating
the timecourse data of adipocyte differentiation, and present
our proposed method can estimate some experimentally-
confirmed regulations that are not detected by the NSS.

2. Materials and Method

Our method needs a time-course data with more time
points than the NSS to estimate the dynamic GRN. It
means that the data need to have the many time points
enough to estimate a GRN if we separate the data. In
addition, the estimation costs a computational time because
the data need to have the many genes enough to estimate
the relationships among genes that are concern of adipocyte
differentiation. In this study, we used parallelized software
on massively parallel systems for estimating the dynamic
GRNs of adipocyte differentiation.



2.1 Microarray Data of Adipocyte Differentia-
tion

We collected RNAs from Mouse ST2 Bone marrow
stroma cell-derived stem cell (RCB0224) from RIKEN
BioResource Center (BRC, Tsukuba, Japan) for adipocyte
cell differentiation. The ST2 cell was induced by chang-
ing the medium from RMPI1640 to DMEM supplemented
with 10% FBS, 0.5 mM 3-isobutyl-1-methlxanthine (MIX),
0.25µM DEX, and insulin-transferrin-selenium-X supple-
ment containing 5µg/ml of insulin and 1µM rosiglitazone.
After 48 hours, the differentiation medium was replaced with
DMEM supplemented with 10% FBS.

The collected RNAs were analyzed with Affymetrix
GeneChip Mouse Genome 430 2.0 Array, which generated
transcript expression profiles at the time points: 5, 15, 30
and 45 minutes, 1 to 30 hours for every hour, 36 to 192
hours for every 6 hours after adipogenesis induction. Each
time-course data was background-subtracted and normalized
with the robust multi-array analysis (RMA) [9] using affy
package from the Bioconductor version1.8.1. The transcript
expression profiles are available from Genome Network
Platform (http://genomenetwork.nig.ac.jp ). We also calcu-
lated expression rate in each gene by Z-score. The data
are converted to a common scale with an average of zero
and standard deviation of one. This normalization was to
emphasize the changing behavior of the gene expressions of
the data rather than the value of the gene expressions.

In adipocyte differentiation, it is well-known that some
significant transcription genes act a key regulator of
adipocyte development [5] (see Fig. 1). These genes ex-
pressed enough value in our observed data. The network
represents 23 regulations among 14 adipogenic genes.
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Fig. 1: Reference gene regulatory network [5]. Black and
white circles represent the genes that are regulated at early
stage and at late stage, respectively. Arrow edge represents
upregulation and T-shaped edge, which exist on the relation-
ship among Klf2-Pparg, represents down-regulation.

2.2 Separating the Time-course Data
We separate the time-course data to describe the changes

of the gene regulations. If we estimate the network using
whole time-course data of adipocyte differentiation, the
result of the estimation describes the relationships between
genes that regulate the other genes at any time throughout
the whole differentiation. Other studies suggest that the gene
regulatory relationships in cell differentiations are changing
dynamically [3][6][10]. We generate subsequences from the
gene expression data to make sure of the changes and
estimated networks from each subsequence.

The node set separation method [2] is one of the methods
to make subsequences. This method defines an active gene
set for each time point and estimates GRN with each con-
tinuous couple of the time points at the active genes. In the
method concept, the sub-networks that are constructed from
the active genes have high activity and transmit information
of external signals to other sub-networks.

We separate data by time-course, inspired by the NSS
algorithm. In contrast to the NSS, the subsequences have
some continuous time-courses at least 10 time points and all
genes of input data (see Fig. 2). The NSS uses only active
genes at consecutive two time points, while this method takes
many time points to clear the causal relationships between
two genes.

Node-set separation method
Whole timecourse data

Networkestimationmethod
Separate genes by active gene set DynamicGRN

Our proposal method
Whole timecourse data

Networkestimationmethod
DynamicGRNSeparate time course 

Fig. 2: Summary of the methods

Our method separates input time-course data into equal in-
tervals with overlap. We formalized separated subsequences
Z, that is

Zi = (X(i−1)S+1, X(i−1)S+2, X(i−1)S+W )

i = 1, 2, . . . , 1 + (T −W )/S
(1)

where X = (X1, X2, . . . , XT )
t is the input time-course

data and T is the number of the time points of input data.
W is the size of the interval, which is "window size", and S
is the value of shifted time points, which is "sliding width".

2.3 GRN Estimation
We estimated GRNs by the DBN model [1][11] using

SiGN [11][12], which is the software that implements the
DBN and works at high speed in parallel for supercomputer
systems. The DBN model is able to construct cyclic regula-
tion and is based on time-course data. In general, the DBN
is estimated by an approximate search (greedy hill climbing)



algorithm because the DBN model takes a large amount of
computational time as increasing the number of genes.

3. Result
We present our separation method is suitable for high

resolution time-course data of adipocyte differentiation than
the NSS.

In this study, we separate the above time-course data into
10 subsequences. We set the parameters of (1) to W = 15
and S = 5. It means that each subsequence has 15 time
points and the first time point of the subsequences a five
time point time lag between two continuous sub sequences.
We estimated the DBNs by SiGN with the 10 subsequences
that have 15 time points and all time points for comparison.
The network Nt where t = 1, . . . , 10 is estimated from Zt

and N is estimated with all time points X . The NSS is
applied to N . We set the threshold of active gene to zero.
It means that the gene is assumed active if the expression
value of the gene is greater than mean of the gene expression
value.

In this work, the computational environments of the
estimation are the Human Genome Center (HGC) super-
computer system, the University of Tokyo, and K computer
(Advanced Institute for Computational Science, RIKEN). We
used SiGN to estimate the DBN networks. The parameters
we set is below; the number of bootstrap = 10,000, bootstrap
replication = 3, bootstrap threshold = 0.05, hyperparameters
of the BNRC score function hn=2, hb= 1.0 and hi=2.0. The
other parameters were set to their default values. We decided
these parameters by repeating small experiments with chang-
ing the parameters. This parameter set makes SiGN repeat
network estimation 10,000 times to determine one network
for bootstrapping, and output a network consisting of the
regulations that appear on at least five percent of the 10,000
networks.

Figure 3 shows estimation accuracy of the each 10,000 es-
timated networks. SiGN uses an informatic criterion named
BNRC [11]. The optimal network is chosen such that the
BNRC is minimal. BNRC depends on the number of time
points. In this study, BNRC of the estimated network was
divided by the number of time points of the input data for
the bias correction.

The overall network N is shown in Fig. 4. N has 62 edges
among 16 genes. The number of estimated networks by NSS
method is 60 because active gene set are determined at each
time point. We show parts of the networks in Fig. 5. Our
proposed method estimated 10 networks. For comparison
with the results of NSS, N2, N4, N7, N8, and N9, which
are the result from 6th time point to 21th time point, 16th
to 30th, 31st to 45th, 36th to 50th, and from 41th to 55th,
respectively, are shown in Fig. 6. These networks in figures
were arranged by force directed algorithm using Cytoscape
(http://www.cytoscape.org), which is a visualization and
analysis tool for biologic network.

Fig. 3: This box plot shows the network estimation accuracy.
The lower BNRC the network has, the higher accuracy the
estimation of the network is. N1, . . . , N10 are estimated by
our proposed method, and N is estimated by NSS. N4 has
no box in the box plot because the results of N4 were too
low to draw in this graph.
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Fig. 4: The result of estimation with whole time-course
data. Solid arrows show regulations that match with known
regulations shown in Figure 1, and dash arrows show those
that do not match with them.

Summary of these networks is shown in Fig. 7. Figure 7
shows distribution of F-measure in estimated networks by
NSS and proposed method. F-measure, which is calculated
by Eq. (2), is a measure of a estimation accuracy to compare
the result with a reference. The best score of F-measure
becomes 1, and the worst score of F-measure becomes 0.

F −measure = 2 · Precision ·Recall
Precision+Recall

Precision =
true positive

true positive+ false positive

Recall =
true positive

true positive+ false negative

(2)



Fig. 5: A part of the results of estimation by NSS. As the
same as Fig. 4, Solid and dash arrows show the regulations
that match and do not match with known regulations shown
in Fig. 1, respectively. Network A extracts an active gene
set at the first time point from the network shown in Fig.
1. Similarly, networks B, C, and D extract active gene sets
from the 15th and the 16th, from the 30th and the 31th, and
from the 45th and the 46th time points, respectively.

Figure 8 is the network represents the result of comparing
the reference network shown in Fig. 1 with the estimated
networks. The number of matched edges that estimated only
by NSS is one, and estimated only by the proposed method
is five. Five edges are commonly appeared in both methods.

4. Discussion
In this paper we proposed a time-separation method for

GRN estimation method with high time-resolution data of
adipocyte differentiation. Our method has an advantage of
tracing dynamic GRN changes over other methods that
estimate GRN with whole time-course data. The networks
of proposed method capture the gene regulations that are not
in entire span of adipocyte differentiations but in short span.
This method is applicable to estimate GRN from the mech-
anisms at what expressions of genes change vary widely for
a small amount of time such as adipocyte differentiations.

Figure 3 showed that the BNRC of the all networks
estimated by our method is lower than the result of NSS.
It means that the estimation accuracy of our method be-
comes higher than NSS. Furthermore, Figure 8 shows that
the proposed method estimated more correct regulations
than NSS. Moreover, Figure 7 shows the accuracy of each
estimated network is more of the same. It suggests that
our method does not decline estimation accuracy in spite
of using lesser time points than NSS, and captured the
regulations of adipocyte differentiation in short span. Our

Fig. 6: A part of the results of estimation by our proposed
method. Solid and dash arrows and their width mean the
same as in Fig. 5. Network A is estimated from the 6th
time point to the 21th. Similarly, networks B, C, D and E
are estimated from the 16th to 30th, from the 31th to 45th,
from the 36th to 50th, and from the 41th to 55th time points,
respectively.

method focuses on the change of regulation in short span.
In contrast, the networks that are estimated by NSS is based
on the whole time-course data. Therefore, the regulations
are mainly appeared from the entire differentiation behavior.
Several studies have reported that various genes regulate
other genes like a cascade in short term in adipocyte dif-
ferentiation. For the reason, the proposed method is more
suitable than NSS in this study.

The parameters of the proposed method, which are "win-
dow size" and "sliding width", are not optimized. If we could
fully optimize the parameters, we would get more favorable
performance.
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Fig. 7: This graph shows the distribution of F-measure in
estimated networks by NSS and proposal method. Each point
represents one network estimated respective methods.
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Fig. 8: This network represents the result of comparing the
reference network with the estimated networks. Thin edge
is the correct edge that is appeared in both networks in
common. Thick edge and dot edge mean that the correct
edge is appeared in the separated networks and the network
estimated by NSS, respectively.
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