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Abstract – The harmful presence of cancerous cells in the 

feminine breast brings as a result, breast cancer, illness 

that has spread widely lately, not only in Mexico, but in 

other parts of the planet. In this paper we present a method 

of automatic Breast cancer classification, in which a Raman 

signal is classified as coming from a biopsy of healthy 

tissue (class ω1) or biopsy of diseased tissue (class ω2); to 

do so, we created patterns from Raman spectra accurately 

measuring each Raman peak to provide naturally reduced 

data to a classifier; we used Adaptative Neuro-Fuzzy 

Inference System (ANFIS) classifier and high rates of 

correct classification were obtained. This provides the 

specialists with important clinical tools for a rapid and 

efficient automatic detection of breast cancer. We consider 

that our approach can be applicable to other kinds of 

cancer, e.g., lung, prostate, stomach. 
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1 Introduction 
 
Cancer is the 10th most common cause of death in the world 
[2], it is estimated that cancer will kill 83.2 million people 
in the world before the year 2015. Cancer is associated with 
the presence of more than one hundred specific related 
conditions that appear in a cell, the basic unit of life.  
Cancer takes place when cells begin to grow without any 
order and without control. When cancer appears, the cells 
keep on growing and multiplying although  new cells are 
not needed. Generally, the change of a normal cell into a 
cancerous cell begins with mutations in the DNA in the 
nucleus of the cell, known as genome. There are many 
factors that allow the appearance of different types of 
cancer in women; one of the latter is breast cancer, and it is 
the most common type of cancer after lung cancer, (10.4 %, 
considering both sexes) and the fifth cause of death [3].  In 
adult women, breast cancer is the most common type of 
death, approximately 16 % [3]. There is a malignant tumor 
that begins in the bust cells (see Fig 1). This illness appears 

generally in women, but it is not exclusive, it can also 
appear in men. The main components of the female breast 
are lobules connected to the nipple by ducts, fat cells, blood 
vessels and lymphatic vessels. The function of the 
lymphatic ganglions is to fight bacteria, cancerous cells and 
other harmful substances to the organism. When the normal 
cycle of the cells fails and the new cells keep on growing or 
the old cells do not die, these cells form a deformed mass 
called tumor. These abnormal tissues called tumors qualify 
as benign tumors (are neither cancerous nor spread through 
the organism) and malignant (are cancerous and put life in 
danger). 
The majority of the types of breast cancer begin in the 
conduits, in the lobes and in the bordering tissues.  The 
cancerous cells are spread into the lymphatic ganglions 
next to the breast and to almost any part of the body such 
as bones, liver, lungs and to the brain itself.  

                       
a) 

         
b) 

Fig. 1.  a) Feminine breast anatomy [1], b) Physical representation 
of Carcinoma ductal in situ (DCIS) [4] 

 

1.1 Breast cancer types 
 
There are several types of breast cancer [5], [3], [6]. Ductal 

carcinoma in situ (DCIS) is the most common type of 
non-invasive breast cancer where the cells of the ducts turn 
themselves into cancerous cells, (see fig. 1 b), and this is 
the first clinical diagnosis of breast cancer. Lobular 

carcinoma in situ (LCIS): [7], [8], begins in the milk-
making glands but does not go through the wall of the 
lobules, (see Fig. 2a); although this is not a true cancer, 



having LCIS increases a woman's risk of developing cancer 
later. When the carcinogenic cells acquire the ability of 
penetrating membranes, the cancer is named Invasive 

ductal carcinoma (IDC), (see Fig. 2b), and it can have 
access to the blood and the nodules; it means a potential 
spread to different organs of the body, for this reason, it is 
the most common type of invasive breast cancer. Another 
kind is Invasive lobular carcinoma (ILC), the tumor 
grows in the lobes of the breast and it can spread to other 
parts of the body too, generally, it does not appear in the 
screening analysis and it is only detected in the physical 
explorations. 
 

 
a) 

 
b) 

Fig. 2.  a) Physical representation of Lobular carcinoma in 
situ (LCIS) [9].  b) Physical representation of Invasive 

Ductual carcinoma zone (IDC) [10] 
 
Other less common types of breast cancer that exist are: 
Inflammatory breast cancer (IBC), Fundamental 
Carcinoma, Illness of Paget of the nipple, Phyllodes Tumor 
and Tubular Carcinoma. 
 
1.2  Physical examinations and screening 
 
Early detection of breast cancer significantly reduces the 
risk of death. Tumors are found by physical examinations, 
by health professionals or by screening. Screening refers to 
checking for disease when there are no symptoms. Some 
screening tests and the current methods do not distinguish 
between a benign tumor and the malignant one, and for this 
reason they can be used to detect only suspicious injuries 
and not for diagnosis (to differentiate between a malignant 
or benign tumor at present specialized  analyses through a 
biopsy are needed). Some tests are commonly used to 
screen for breast cancer, in this section some methods are 
mentoned. a) Breast self-exam (BSE) [12] and b) Clinical 
breast exam (CBE) [12] are exams made by the woman 
herself and by a health professional respectively, looking 
for lumps or anything else that seems unusual, c) 
Mammogram [11], [13] is an x-ray of the breast, it may 
find ductal carcinoma in situ (DCI), in symptomatic and 
asymptomatic women. d) Breast ultrasound [14] shows 
whether a lump is solid or fluid-filled. e) Magnetic 
Resonance Imaging (MRI) or (NMRI) [15], [16] a 
computer makes detailed pictures inside the breast area that 
show the difference between normal and diseased tissue.  
 

1.3 Diagnosis 
 
When the previous methods show abnormalities in the 
breast, some studies (tests) are made in tissues or blood 
samples to find whether the cells are cancerous. One of 
them is Breast biopsy or Tissue sampling (TS), [17], [18] 
where cells from breast tissue are examined under a 
microscope by a pathologist. With the purpose of limiting 
to the minimum the error of appreciation by the technician, 
alternative techniques of clinical diagnosis of breast cancer 
must be implemented. The use of optical diagnosis as the 
spectroscopy Raman [19] to provide additional information 
and to reinforce the diagnosis about the suspicious injury is 
an example. In recent years, several spectroscopic 
techniques such as Raman, Infrared and fluorescent have 
been used to examine tissues. Spectroscopy Raman (SR) 
uses beam laser that does not damage the cells of the tissue, 
but it provides information about its components [20], [21]; 
such is the case of cancerous tissues of breast [22], [23].  
 
1.4 Raman Spectroscopy   
 
The Raman Effect was described by Ch. V. Raman in 1982 
[24]. The Raman spectroscopy analysis is a high-resolution 
technique that is based on the examination of the light 
dispersed by a material when affecting a monochrome 
beam of light; this provides chemical and structural 
information. Most of the dispersed light presents the same 
frequency that the incident light but a very small fraction 
displays a frequential change, result of the interaction of 
the light with the matter [24], [25]. The dispersed light that 
presents frequencies different from the incident radiation is 
that which provides information on the molecular 
composition of the sample (known as Raman dispersion).  
 
1.5 Raman Spectroscopy and Breast Cancer 
 
Cancer Detection.Various Raman spectroscopic studies on 
cancers have been reported, [26] and here we review one of 
the three most common cancers: breast cancer, the other 
two carcinomas (colorectal cancer and cervical cancer), are 
beyond the scope of this paper. 
Breast Cancer. Breast cancer had the highest rate of 
occurrence in the United States among the female 
population in 2010 [26].  Numerous studies have 
investigated the application of Raman spectroscopy on the 
detection of normal, precancerous and cancerous breast 
tissues. For instance, Haka [27] and colleagues have 
demonstrated the ability of Raman spectroscopy to 
distinguish between normal, benign, and malignant lesions 
of breast ex vivo, with a sensitivity of 94% and a specificity 
of 96%. Tissues in four pathological conditions were 
examined and classified, including normal, fibrocystic 
change, fibroadenoma, and infiltrating carcinoma. Raman 



spectra of breast tissues were fitted to those of individual 
breast tissue components including fat, collagen, cell 
nucleus, epithelial cell cytoplasm, calcium oxalate, calcium 
hydroxyapatite, cholesterol-like lipid deposits, and β-
carotene. Instead of examining breast tissues directly, 
Pichardo-Molina's group [28] studied serum samples from 
breast cancer patients and demonstrated the use of Raman 
spectroscopy for minimally invasive diagnostics. Seven 
Raman band ratios were used for classification, and spectral 
differences were observed between serum samples of breast 
cancer patients and normal healthy subjects. Using 
principal component analysis (PCA) and linear discriminant 
analysis (LDA), the sensitivity and specificity were 
reported to be 97% and 78%, respectively. However, the 
underlying molecular mechanism of these differences was 
not reported. Raman spectroscopic imaging technique has 
gained popularity recently in cancer research. Raman 
spectroscopic imaging is capable of visualizing the samples 
without extrinsic labeling, thus minimizing sample 
perturbation. In addition, the much-needed chemical and 
structural information about the sample are provided by 
Raman spectral analysis. Mariani and coworkers have 
applied Raman imaging to the detection of nuclear 
membrane lipid fluctuations in senescent epithelial breast 
cancer cells [28]. In this study, Raman images were 
composed based on the Raman peak intensity of CH-
stretching. Another example is the proposed Abramczyk 
[30], in their study presents the most reliable statistical 
analysis based on Raman spectroscopy, data of normal 
breast tissue, benign and cancerous of 146 patients were 
found. In his article presents the first Raman optical biopsy 
images (RI) from normal and cancerous breast tissues from 
the same patient. The results presented demonstrate the 
ability of Raman spectroscopy to characterize exactly types 
of tissue (non-cancerous) or cancerous. The results provide 
evidence that the composition of lipids and carotenes differ 
significantly from non-cancerous and cancerous breast 
tissue that should be a key factor in the mechanisms that 
detect cancer. 
Analysis methods. Raman spectra obtained from biological 
samples often contain significant amounts of fluorescence 
background. As Raman spectral differences between 
normal and diseased tissues are generally subtle, effective 
data-processing algorithms are often required for data 
analysis and interpretation. 
Fluorescence background removal. As mentioned above, 
Raman spectra collected from tissues are composed mainly 
of Raman scattering and intrinsic tissue fluorescence. To 
eliminate the fluorescence background, a polynomial 
function that fits to the fluorescence profile is usually 
subtracted from the Raman spectra [31]. Although there is 
no consensus on the optimal order of the polynomial 
function, fourth- and fifth-order polynomials are most 
commonly employed [31]. 

Multivariate data analysis. Raman spectra contain various 
overlapping Raman bands. As a result, it is difficult to 
visually inspect and interpret the spectral data. Multivariate 
spectral analysis methods are often used to process the 
Raman spectra and facilitate data interpretation. Spectral 
analysis methods are generally categorized as either 
supervised or unsupervised. For unsupervised analyses, 
such as cluster analysis and PCA [28], no a priori 
knowledge of class characteristics is required but is to be 
determined from the analysis itself. In contrast, in a 
supervised analysis the number of classes and 
representative samples of each class are known a priori, as 
is the case in LDA [28], regression analysis, and artificial 
neural networks (ANNs). 
  

2 Experimental methods 
 
2.1 Subjects and protocol 
 
Raw Raman spectra (Raman scattering plus background 
fluorescence) were provided to us by the Research Center 
in Optics (CIO, Centro de Investigaciones en Óptica, A.C.), 
and were taken from samples of cancerous and healthy 
breast tissue provided by the Cancer Institute of Jalisco, 
México; the samples were obtained by excisional biopsy of 
patients diagnosed with infiltrating ductal cancer and 
preserved in formalin; in order to obtain  the Raman 
spectra,  histological cuts were made on the samples. The 
Raman spectra were obtained using a Raman Renishaw 
system model 1000-B; this system uses a laser diode of λ = 
830 nm and a grating of 600 lines mm-1. The laser was 
focused on the samples with a Leica microscope model 
DMLM (objective of 50x), at approximately 35mW of 
power. Each spectrum was collected in the region from 680 
to 1780 cm-1, with an exposition time of 10s. Finally, the 
wavenumber resolution was of 2 cm-1 and the Raman 
system was calibrated with a silicon semiconductor at the 
Raman peak in 520 cm-1. With this experimental setup 100 
Raman spectra were recorded from healthy and diseased 
tissue zones of the biopsies. For fluorescence removal, in 
this work, we adopted the Vancouver Raman Algorithm 
(VRA) [37], because it avoids the possible oscillations at 
the extreme points of the spectrum that other algorithms 
insert to the corrected Raman spectrum. 
 

3 Results and Discussion 
 

3.1 Highlighting Differences Raman Spectrum 

of Healthy Tissue Vs. Raman Spectrum of 

Damaged Tissue 
 
In this section we present the results of Raman studies on 
normal breast tissue (noncancerous) and damaged 



(cancerous). Previous publications [30], [28], [33] have 
demonstrated that the Raman  spectrum of normal breast 
tissue are dominated by lipids and carotenes. Healthy tissue 
spectrum show peaks in the bands 1004, 1080, 1158, 1259, 
1266, 1304, 1444, 1518, 1660, 1750 and damaged tissue 
(cancerous tumors, invasive ductal carcinoma) gets less 
peak intensity. Fig. 3 compares a Raman spectrum of 
healthy and damaged breast tissue from the same patient. 
The most notorious differences can be observed in the 
regions of the bands 1158 and 1518 cm-1 assigned to 
carotenoids [30] and the regions of the bands 1444, 1660, 
1750 cm-1that have been assigned to the lipids. A detailed 
inspection in Fig. 3 demonstrates that the Raman bands of 
the carotenoids are strong in healthy tissue while in 
damaged tissues they are not seen. Raman intensities of the 
peaks of lipids are significantly smaller in damaged tissue 
than in healthy tissue (bands 1444, 1750, 1259.1080) [30]. 
 

 
 

Fig. 3. Raman Spectrum of Normal and Damaged Breast Tissue 
(Invasive Ductal Carcinoma) of the Same Patient.  

 

3.2 Analysis of Components Multivariate 
 
Recently, multivariate methods have been applied to 
Raman spectroscopy to classify breast cancer tissue, 
noncancerous and cancerous. In Particular way the 
principal component analysis (PCA) has been used to 
differentiate healthy and damaged tissue [34].  
 
Table 1. Feature Vectors for 86 Raman Spectrum Healthy and 
Damaged Breast Tissue. 
 

Raman Scatter Region 

Region(Wavenumber in cm-1) 
1750 1660 1518 1444 1304 1266 1259 1158 1080 1004 

0 1027.9 0 2011.2 0 0 469 0 0 403 
0 782.1 0 1704 0 0 447 0 0 251 
0 1597 0 3020 0 0 1154 0 0 1193 
… … … … … … … … … … 
… … … … … … … … … … 
0 2408 0 4551 0 0 2171 0 0 1398 
0 3070 0 5205 0 0 2004 0 0 1535 

 
PCA is a multivariate technique that acts in an unsupervised 
manner, and is used to analyze the inherent structure of the 
data. PCA reduces the dimensionality of the data set to 

obtain an alternative set of coordenates: principal 
components (PCs). PCs are linear combinations of original 
variables which are orthogonal and are designed so that 
each one has the maximum variability in the data set [28]. 
As each of the spectrum contains a large amount of 
information we needed PCA help to extract important 
features or components. In PCA method each Raman 
spectrum is represented as a vector of intensity values of  
each wavelength. To make the multivariate component 
analysis (PCA), we obtained the Raman peak intensities of 
both healthy tissue and damaged tissue of the same 
patient´s biopsy. 86 vectors were formed with a features 
length (λ = 10), each feature is based on  peaks intensity of 
the of their respective wave number (cm-1) as shown in 
Table 1. Once the feature vectors extracted from the 86 
spectra based on Raman peak Intensities, we proceeded to a 
dimensions reduction, on which feature vectors that 
describe to Raman spectrum of healthy breast tissue as well 
as tissue damaged breast (Table 2). 
 
Table 2. Principal Component Analysis in Three Dimensions. 
 

Spectrum pc1 pc2 pc3 

1 523 -425 131 
2 1223 -602 290 
3 2137 -877 295 

… … … … 
… … … … 
85 -1028 -503 3 
86 -1053 -448 17 

 

Fig 4 shows the new feature vectors distribution of Raman 
spectrum in the 86 tri-dimensional space in the first 3 
principal components obtained from different parts of a 
breast cancer biopsy. 
 

 
 

Fig. 4. PCA in Three Dimensions Retrieved from the Intensities of 
the Peaks Detected in Raman Spectrum 86. 

 
 



3.3 Algorithm K-Means Clustering 
 
Generally, PCA analysis by itself does not provide the 
meaning answer that each PCA component have, because 
the PCA does not group (Clustering) only reduces 
dimensions K-means is a clustering algorithm, which is an 
easy way to divide a given database in k groups 
(determined a priori).The main idea is to define k centroids 
(one for each group of the database and place them in the 
type of its nearest centroid. Next step is to recalculate the 
centroid of each group and redistribute all items according 
to the nearest centroid. The process is repeated until there 
are no changes in the groups from one step to the next. 
Detailed inspection of the algorithm can be observed in 
[35]. We apply the K-means algorithm to find the 
distribution of two kinds in our case these two kinds will be 
healthy breast tissue and damage breast tissue. For 
convenience each kind will be expressed as ω1 and ω2 
respectively. 
 
ω1 = Healthy breast tissue. 
ω2 = Damaged breast tissue. 
 
The K-means algorithm after 10 iterations grouped 44 
feature vectors type   ω1 and  42 in ω2  (Table 3). In the first 
column of Table 3 it´s shown the type to which belongs 
each feature vector of the Raman spectrum of healthy and 
damaged tissue. 
 
Table 3. Structure for Feature Vectors 
 

Class Vector Spectrum pc1 pc2 pc3 
ω1 1 82 -1025 489 85 
ω1 2 83 -1074 815 30 
ω1 3 84 -1081 827 46 
… … … … …  
… … … … … … 
ω1 43 85 -1028 503 3 
ω1 44 86 -1053 448 17 

ω2 45 1 523 -425 131 
ω2 46 2 1223 -602 290 
ω2 47 3 2137 -877 295 
… … … … … … 
… … … … … … 
ω2 85 85 -1028 -503 3 
ω2 86 86 -1053 -448 17 

 
The distribution of both types is shown in Fig. 5, as we can 
see in Fig. 5, the examples are from one of two distinctive 
groups, the left and right circles  are separated according to 
healthy and damaged tissue. The left side circle exclusively 
represents normal breast tissue. The right  circle  represents 
damaged tissue. 
 
Once the data is clustered the 86 Raman spectra are 
verified, Raman spectrum of normal breast tissue can be 
observed in Fig. 6 (a) and Raman spectrum of damage 
breast tissue can be seen in Fig. 6 (b). 
 

Fig. 6 (a) and (b) clearly show many marked differences in 
the Raman spectrum of healthy and damaged tissue. The 
peaks of the Raman bands 1004, 1080, 1158, 1259, 1266, 
1304, 1444, 1518, 1660, 1750 that have been assigned to 
lipids and carotenes are significantly different in healthy 
and damaged breast tissue. 

 
 

Fig. 5. Grouping of 86 Raman Spectrum with Healthy Breast 
Tissue (Left Side) and Breast Tissue with Invasive Ductal 

Carcinoma (Right Side). 
 
As there are many marked differences in the Raman spectra 
of healthy and damaged breast tissue we considerate a 
Neuro-diffuse classifier (ANFIS). 
 

   
                a)                                              b) 

Fig. 6. Raman Spectra of Healthy and Damage Breast Tissue 
Result of the Clustering Algorithm K-means Type. 

 
As there are many marked differences in the Raman spectra 
of healthy and damaged breast tissue we considerate a 
Neuro-diffuse classifier (ANFIS). 
 

3.4 ANFIS Architecture 
 
Adaptative Neuro Fuzzy Inference System (ANFIS) is an 
architecture that is functionally equivalent to diffuse 
inferential systems (fuzzy), that is to say, is equivalent to 
the type of diffuse rules base of Takagi and Sugeno [36]. In 
the next section you will see results of ANFIS obtained 
from the evaluation of the 45 feature vectors of healthy 
tissue Raman spectra in Class ω1 and 45   vectors of 



damaged tissue spectra associated with the class ω2, using 
the technique of cross-validations. To evaluate the correct 
classification percentage it was performed the following 
confusion matrix: 
 
Table 4. Confusion Matrix. 
 

Class ω1 ω2 

ω1 VN(1,1) 

 
FP(1,2) 

 

ω2 FN(2,1) 

 
VP(2,2) 

 
Where: 
 
TN (True Negative). The disease is not present and 
diagnosed as healthy. 
FP (False Positive). The disease is not present and it´s 
diagnosed ill. 
FN (False Negative). The disease is present but not 
detected. 
TP (True Positive). The disease is present and detected. 
 
Considering the confusion matrix previously described we 
can assess the sensitivity of our classifier to detect positive 
case of ill patients (percentage of patients correctly 
identified) and specificity that indicates the ability of our 
classifier to give as negative cases really healthy cases 
(percentage of correctly identified healthy patients). 
 

                                (1) 

 

                              (2) 
 
The ANFIS classifier was evaluated with the membership 
functions Triangular, Trapezoidal, Gaussian and Bell. 
Having each one 10, 100 and 250 training epochs while 
fixing a threshold for classification. Table 5 shows the 
sensitivity and specificity of ANFIS classifier using the 
membership functions mentioned above. 
 
Table 5.  Sensitivity, Specificity and Predictive Accuracy 
Through ANFIS. 
 

Membership 

Fuctions 

Errors (case 

18 bands + ANFIS) 

Sensitivity 

 

Specificity 

 

Healthy as 
cáncer(FP) 

Cancer as 
healthy(FN) 

Triangular 
Membership 

0/45 1/45 100% 97.77% 

Trapezoid 
Membership 

1/45 1/45 97.77% 97.77% 

Gaussian 
Membership 

1/45 2/45 97.77% 95.55% 

Bell-shape 
Membership. 

2/45 1/45 95.55% 97.77% 

 

Fig. 8 shows the ANFIS classifier with a triangular 
membership function and 100 training epochs, in the figure 
we can observe that the classifier achieved a sensitivity of 
100% and a specificity of 97.77%, with a classification 
error of 0% False Negatives (FN) and 2.23% for False 
Positives (FP). 
 

 
 

Fig. 8. Decision Threshold ANFIS with Triangular 
 Membership Function 100 Epochs. 

 

4. Conclusions 
 
In this article we present a method for the automated 
detection of breast cancer in which a Raman signal is 
classified as healthy tissue biopsy (class ω1) and damage 
tissue (type ω2). An important aspect is the characteristic 
generating, using PCA, in the PCA method each Raman 
spectrum was represented as a vector of values of intensity 
for each wavelength, that represent Raman peaks both 
healthy tissue and damaged tissue. PCA analysis by itself 
does not provide the answer meaning that each component 
PCA have, as the PCA does not group (Clustering) only 
reduces the dimensions. We apply the K-means algorithm 
to find the distribution of two types, in our case these two 
types were damaged tissue and healthy tissue. For 
convenience each type was expressed as ω1 and ω2 
respectively, after detecting types we tried a Neuro-diffuse 
classifier   (ANFIS) and high correct classification rates 
were obtained. 
 

5. References 
 
[1] This National Cancer Institute (NCI) booklet (NIH 
Publication No. 05-1556). National Cancer Institute.  
(www.cancer.gov). 
[2] An update of the global burden of disease in 2004. 
Geneva, World Health Organization (forthcoming).  
[3] World Health Statistics, 2008. World Health         
Organization 2008.  ISBN 978 92 4 156359 8. 
[4] Ernster VL, Ballard-Barbash R, Barlow WE, et al 
(Oct 2002). "Detection of ductal carcinoma in situ in 



women undergoing screening mammography". J Natl 
Cancer Inst 94 (20): 1546–54. 
[5] Breast Cancer document. Technical Report. American 
Cancer Society. (www.cancer.org). 
[6] Tumours of the breast and female genital organs, 
WHO. Classification of tumours, 2003. 
[7] Foote FW, Stewart FW. Lobular carcinoma in situ: a 
rare form of mammary cancer. Am J Pathol1941; 17:491- 
496. 
[8] Hutter RVP, Foote FW. Lobular carcinoma in situ. 
Long term follow-up. Cancer. 1969; 24, 1081. 
[9] Causes of Lobular Carcinoma in situ. Mayo 
Foundation for Medical Education and Research 
(MFMER). Technical Report.  (MayoClinic.com) 
[10] Tests for Diagnosing IDC. www.breastcancer.org 
[11] Breast cancer screening. Lyon, International Agency 
for Research on Cancer, 2002 (Handbooks on Cancer 
Prevention, Vol. 10) 
[12] International Agency for Research on Cancer IARC.  
Technical Report. (screening.iarc.fr/)  
[13] National Cancer Institute. Breast Cancer: Screening 
and Testing. Bethesda, MD: National Cancer Institute. 
Accessed: 25 September 2008. (www.cancer.gov)  
[14] Wilson ARM. Ultrasound guidance boosts biopsy 
outcome. Diagnostic Imaging Europe: 40-45 & 50, 
December 1999. 
[15] Lauterbur, P.C. (1973). "Image Formation by Induced 
Local Interactions: Examples of Employing Nuclear 
Magnetic Resonance". Nature 242: 190-191. 
[16] Gould, RT-(R)(MR)(ARRT), Todd A.  "How MRI 
Works."  01 April 2000.  HowStuffWorks.com. 
(www.health.howstuffworks.com) 
[17] Abeloff MD, Armitage JO, Niederhuber JE, Kastan 
MB, McKena WG. Clinical Oncology. 3rd ed. Orlando, Fl: 
Churchill Livingstone; 2004 
[18] Whitman GJ. Ultrasound-guided breast biopsies. 
Ultrasound Clin. Dec 2006; 1(4); 603-615. 
[19] K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. 
Crowe, J. Myles, R. R. Dasari, M. S. Feld, J. Raman 
Spectrosc. 33 (2002) 552. 
[20] Parker FS (1983) Applications of infrared Raman, and 
resonance Raman spectroscopy in biochemistry. Plenum, 
New York. 
[21] Das K, Stone N, Kendall C, Fowler C, Christie-
Brown J. (2006) Raman spectroscopy of parathyroid tissue 
pathology. Lasers Med Sci 21(4):192–197 
[22] Alfano RR, Liu CH et al (1991) Human breast tissue 
studied by IR Fourier transform Raman spectroscopy. 
Lasers in Life Sci 4:23–28 
[23] Pichardo-Molina, et all. Raman spectroscopy and 
multivariate analysis of serum samples from breast cancer 
patients. (2006) Lasers Med Sci. DOI 10.1007/s10103-006-
0432-8., Springer-Verlag. 
[24] Raman, C. V., Nature, 108, 367, 1921 

[25] C. V. Raman, K.S. Krishnan, A new type of 
Secondary Radiation, Nature, 121, 619, 1928. 
[26] Qiang Tu, MS, Chang Chang. Diagnostic applications 
of Raman spectroscopy. Nanomedicine: Nanotechnology, Biology, 
and Medicine 8 (2012) 545–558. 

[27] Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, 
Dasari RR, Feld MS. Diagnosing breast cancer by using 
Raman spectroscopy. Proc Natl Acad Sci U S A 
2005;102:12371-6. 
[28] Pichardo-Molina JL, Frausto-Reyes C, Barbosa-Garcia 
O, Huerta-Franco R, Gonzalez-Trujillo JL, Ramirez-
Alvarado CA, et al. Raman spectroscopy and multivariate 
analysis of serum samples from breast cancer patients. 
Lasers Med Sci 2007;22:229-36. 
[29] Mariani MM, Maccoux LJ, Matthaus C, Diem M, 
Hengstler JG, Deckert V. Micro-Raman detection of 
nuclear membrane lipid fluctuations insenescent epithelial 
breast cancer cells. Anal Chem 2010;82:4259-63. 
[30] Abramczyk Halina, Beata Brozek-Pluska, Jakub 
Surmacki, Joanna Jablonska-Gajewicz, Radzislaw Kordek. 
Raman ‘optical biopsy’ of human breast cancer. Progress in 
Biophysics and Molecular Biology. 108(2012) 74-81. 
[31] Tu Q, Eisen J, Chang C. Surface-enhanced Raman 
spectroscopy study of indolic molecules adsorbed on gold 
colloids. J Biomed Opt 2010;020512:15. 
[32] Robichaux-Viehoever A, Kanter E, Shappell H, 
Billheimer D, Jones III H, Mahadevan-Jansen A. 
Characterization of Raman spectra measured in vivo for the 
detection of cervical dysplasia. Appl Spectrosc 
2007;61:986-93. 
[33] B. Brożek-Płuska, I. Placek, K. Kurczewski, Z. 
Morawiec, M. Tazbir, H. Abramczyk. Breast cancer 
diagnostics by Raman spectroscopy, Journal of Molecular 
Liquids 141 (2008) 145–148 
[34] H. Abramczyk, J. Surmacki, B. Bro_zek-Płuska Z. 
Morawiec M. Tazbir. The hallmarks of breast cancer by 
Raman spectroscopy, Journal of Molecular Structure 924–
926 (2009) 175–182. 
[35] K. Koutroumbas y S. Theodoridis, Pattern 
Recognition, 1st ed. California, E. U. A.: Academic Press, 
1999. 
[36] Roger, J.S., 1997. Neuro-fuzzy and Soft Computing. 
Prentice Hall. Nj, USA. ISBN 0-13-261066-3. 
[37] J. Zhao, H. Lui, D. I. McLean, y H. Zeng, "Automated 
autofluorescence background subtraction algorithm for 
biomedical Raman spectroscopy", Applied Spectroscopy, 
vol. 61, no. 11, p. 1225–1232, 2007. 


