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Abstract—This paper provides a novel framework for 

accelerating the solution of the pairwise DNA sequence 

alignment problem using CUDA parallel paradigm 

available on the NVIDIA GPU. The main idea is to 

implement a new algorithm that assigns different 

nucleotide weights using GPU architectures then merge the 

subsequences of match using CPU to get the optimum local 

alignment. The paper describes both the algorithm and the 

implementation of it using both the GPU and CPU to 

constitute a hybrid model for solving DNA sequence 

alignment problem on DNA molecules. Experimental 

results demonstrate a considerable reduction in run time 

relative to traditional Smith-Waterman implementation on 

traditional processors.  

 

Keywords— GPU, GPGPU, CUDA, sequence alignment 

algorithms, molecular biology. 

1 Introduction 
Sequence comparison is a very basic and important 

operation in Bioinformatics as Sequence alignment is a key 

component in the analysis of genes and genomes. Sequence 

alignment algorithms find regions in one sequence, called 

the query sequence, that are similar or identical to regions 

in another sequence, called the reference sequence [1]. A 

sequence alignment has a similarity score associated to it 

obtained by placing one sequence above the other, making 

clear correspondence between the characters and possibly 

introducing gaps into them. The most common types of 

sequence alignment are global and local. To solve a global 

alignment problem it is required to find the best match 

between the entire sequences. On the other hand, local 

alignment algorithms must find the best match between 

parts of the sequences. Both Needleman-Wunsch algorithm 

[2] for global alignment and Smith-Waterman algorithm [3] 

for local alignment deploy dynamic programming 

approaches. 

Genomic databases have an exponential growth rate. 

Therefore, a huge amount of new DNA sequences will need 

to be compared, in order to infer functional/structural 

characteristics. The growth of database size increases the 

time required for searching using this kind of dynamic 

programming approaches. Complexity of sequence 

comparison is proportional to query size and database size 

[4], [5]. 

The recent development of multi-core architectures, and 

its associated programming interfaces, provide an 

opportunity to accelerate sequence database searches using 

commonly available and inexpensive hardware. 

Graphics hardware is currently deployed in high-

performance computing due to its cost 

effectiveness. Bioinformatics applications also exploit 

GPU as a massive parallel multi-core processor to address 

computational challenges in many areas such as sequence 

analysis and alignment and protein structure prediction [6].  

CUDA is the architecture and developing platform of the 

NVIDIA GPU. It is an extension of the C programming 

language.  CUDA programs typically consist of a 

component that runs on the CPU, or host, and a smaller but 

computationally intensive component called the kernel that 

runs in parallel on the GPU. The kernel cannot access the 

CPU's main memory directly – input data for the kernel 

must be copied to the GPU's on-board memory prior to 

invoking the kernel, and output data also must first be 

written to the GPU's memory. All memory used by the 

kernel must be pre-allocated, and the kernel cannot use 

recursion or other features requiring a stack, but loops and 

conditionals are allowed [1]. 

In CUDA, the GPU is viewed as a computing device 

suitable for parallel data applications. It has its own device 

random access memory and may run a huge number of 

threads in parallel [7] as shown in Fig.1. Threads are 

grouped in blocks and many blocks may run in a grid of 

blocks. Such structured sets of threads could be launched 

on a kernel of code and process the data stored in the device 

memory. Threads of the same block share data through fast 

shared on chip memory and they can be synchronized 

through synchronization points as shown in Fig.2 [8], [9]. 

The proposed DNA sequence alignment approach can 

benefit from the CUDA architecture and the single 

instruction multiple thread SIMT model. 

The SIMT completes the DNA sequence comparison in 

two stages; the first stage is used to find matches and 

mismatches between each nucleotide from both the query 

and the target sequences. The second stage is used to weight 

and highlight the subsequences of matches. The resulting 

subsequences of matches are then passed to the CPU to be 

merged in order to find the optimum alignment between the 

two sequences. 
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The rest of the paper is organized as follows: Section 2 

describes the proposed framework. Section 3 describes the 

operation of the proposed system Section 4 provides the 

experimental results. Section 5 augments some concluding 

remarks. 

 

2 Proposed Framework 
Task Dependency in Smith-Waterman algorithm is very 

high. For each cell in the Smith-Waterman dynamic 

programing matrix, we need to compute the upper, left and 

diagonal cells adjacent to that cell. This is to find the best 

alignment between two DNA sequences. 

Given two DNA sequences S of length n, and T of length 

m, the proposed algorithm starts with an initialization phase 

shown in Fig.4.  During this phase, a sufficient number of 

threads that can carry out n × m initialization operation is 

activated. Corresponding locations in the two sequences are 

compared such that a weight of 2 is granted to matched 

positions and 0 is granted to unmatched. 

 

Fig. 4 Initialization Algorithm 

 

   Sequence matching process is then performed as 

described in Fig.5. During this phase, a weight of 4 is 

granted to a specific position in the matrix having an initial 

weight of 2 if at least one of its adjacent upper diagonal left 

or lower diagonal right positions have a weight of 2.  If  

 

both of the mentioned adjacent positions have a weight of 2 

then, a weight of 6 is granted to the specific position.  This 

approach maximizes the score of continuous “subsequence 

matching.” 

 

Fig. 5 Sequence Matching Algorithm 

 

It is clear that there is no task dependency either in the 

initialization phase or in sequence matching process now, 

we are ready to implement this parallel part using CUDA 

provided by NVidia GPU which can lead to a significant 

improvement in the speed without the need to deploy 

special purpose hardware as in [10].  

The block diagram shown in Fig.6 illustrates the model 

used to implement the Hybrid system for DNA sequence 

alignment using GPU. 

 

The Implementation flow of the DNA Sequence 

Alignment consists of four subsystems: Initialization, pre-

processing, Alignment, and the Output subsystem. 

 

 

 

 

  
Fig. 1 Heterogeneous programming. Fig. 2 CUDA Memory Model 

Given two DNA sequences S of length n, and T of length m: 

1- Activate a number of threads that can carry out n × m 

initialization operation. 

2- Load the two DNA sequences to all the threads. 

3- For All the threads Perform the initialization process 

according to the following rules: 

IF  Si= TJ        i=1… n.   j=1… m. 

THEN H (i, j) t = 2 

ELSE IF Si ≠ TJ  where H t is the preprocessing matrix 

THEN H (i, j) t = 0 

1- Activate a number of threads that can carry out n × m 

matching operation. 

2- For All the threads Perform the sequence matching 

process according to the following rules: 

IF H (i, j) t = 0 where H t and H t+1 are the  

THEN H (i, j) t+1 = 0 preprocessing and the final sequence       

ELSE IF H (i, j) t = 2 matching matrixes 

THEN 

 IF        H (i+1, j+1) t =2  AND  H(i-1, j-1) t =2 

 THEN         H (i, j) t +1=6 

                 ELSE IF        H (i-1, j-1) t =2  OR H (i+1, j+1) t =2 

 THEN         H (i, j) t+1 =4 

 ELSE         H (i, j) t +1=2 



The Initialization Subsystem is concerned with the 

initialization phase that allocates memory for both CPU and 

GPU used to read the DNA sequences and store the output. 

It also activates number of CUDA Cores (blocks and 

threads) according to the sizes of the two DNA input 

sequences and then passes the inputs to the GPU grid. 

At this point, the Preprocessing Subsystem can work on 

the device (GPU); the initialization kernel purpose is to 

compare each DNA nucleotide in the two sequences and fill 

the initialization vector with values for both DNA 

nucleotide match and mismatch. All the thread blocks 

perform the exact matching between the corresponding first 

sequence nucleotide and second sequence nucleotide 

simultaneously as a first step in the initialization process.  

The resulting output matrix of the pre-processing 

subsystem is then passed to the Alignment subsystem. 

 

The Alignment subsystem first applies the sequence 

matching algorithm that also works on the device (GPU). 

The sequence-matching kernel highlights the subsequence 

of match between the query and the subject sequences by 

weighting the match and the sub-sequences of match. 

 

The proposed framework takes the advantage of the fact 

that each nucleotide comparison “initialization then 

Matching weight” for both the query sequence and the 

subject sequence can be computed independent of each 

other. Therefore, a number of n threads in a thread block 

are responsible for computing a row in the alignment matrix 

H. 

 

Increasing the DNA sequences’ size requires increasing 

the number of initialization and sequence matching 

operation needed. Using the CUDA architecture makes it 

obvious to scale the number of threads needed for the 

initialization and the sequence matching kernels. 

The GPU based part is scalable as different number of 

blocks and threads per block are activated according to the 

given query and sequence sizes. 

 

The resulting matrix from the Sequence matching kernel 

is then passed from the GPU to the CPU host memory 

where the last module “Merging Subsequences” in the 

Alignment subsystem will operate. 

 

   The Merging subsequences function running on the 

Host “CPU” firstly sorts the subsequences of match 

ascending according to their score. It represents the 

subsequence as entries in a table of indices and then tries to 

link these entries according to an input threshold given by 

the user until the optimum alignment could be found. The 

algorithm listed in Fig.7 represents how the Merging 

subsequences function operates. 

   The algorithm first creates a table of indices, which 

contains a list of matched subsequences represented by 

both lead and trail represented by i and j coordinates” of 

each matched subsequence, its score, and Mismatch/gap. A 

preprocessing step is then carried out to discard the very 

small subsequences of score equals to 2 that represents 

“only one match”.  The algorithm then sorts the entries of 

the matched subsequences using merge sort.  

 

   The user can specify a merging threshold K “the 

longest common subsequences between the two DNA 

sequences” that indicates how many subsequence to be 

merged with the whole entries in the table of indices. The 

algorithm then merges the entries in the table of indices 

“matched subsequences” according to a set of rules listed 

in the DNA sequence alignment sequential algorithm. The 

merging operation’s complexity is O (K N) where K is a 

constant representing the merging threshold and N is the 

size of the table of indices. After the merging process the 

alignment of maximum score can be found.

 

 

Fig. 6 Implementation Flow of DNA Sequence Alignment Using Graphical Processing Unit (GPU). 

 

Implementation Flow of DNA Sequence Alignment Using Graphical Processing Unit (GPU) 
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1- Apply merge sort to the stored results, it sorts the 

subsequences descending according to their score “A 

preprocessing step”. 

2- Discard small subsequences of score equal 2.   

3- Create table of indices according to the sorted 

subsequences. 

4- Given that Each entry “aligned subsequence” in the table 

of indices has a lead and trail and each has i and j 

coordinates such that: 

      
  Is the i coordinate of the first subsequence’s lead, 

      
  Is the j coordinate of the first subsequence’s lead, 

       
   Is the i coordinate of the first subsequence’s Trail, 

       
   Is the j coordinate of the first subsequence’s Trail, 

      
   Is the i coordinate of the second subsequence’s lead, 

      
   Is the j coordinate of the second subsequence’s lead, 

       
   Is the i coordinate of the second subsequence’s 

Trail, 

       
   Is the j coordinate of the second subsequence’s 

Trail, 

             = First subsequence’s score, 

             = Second subsequence’s score. 

                
         

          
         

    =Gaps 

and/or Mismatches between the two subsequences, 

 Given a threshold K indicating how many subsequence to 

be merged with the whole entries in the table of indices, 

Merge the subsequences in the table of indices according 

to the following rules: 

IF (          
         

            
        

      

                     
         

              
        

   )  

     (M G             )      (M G  1             ) ) 

THEN 

            Total score=                               

 

ELSE IF (         
        

               
        

       

                        M G                    
                       M G                ) 

THEN 

            Total score=                                 

 

5- Add the merged subsequences to the table. 

6- After a round of merging and getting new subsequences, 

delete from the table of indices the first subsequence used 

in margining each new subsequence. 

7- Go to 3 “another round of margining” until there are no 

sequences to be merged. 
 
Figure7 DNA Sequence Alignment Sequential Algorithm 

 

The Output Subsystem provides the results by selecting 

and reporting the sequence of maximum score and 

minimum gaps and mismatches. 

To sum up, the proposed framework aims to compare 

nucleotides from both the query and the subject sequences, 

weight the matched subsequences, and then link the 

matching subsequences. Finally, the optimum local 

alignment will be the sequence of the highest score.  

 

3 Operation  
In order to explain the operation of the proposed system, 

let us consider an example; perform sequence alignment on 

the given two DNA sequences S= T1C2G3C4A5G6A7 of 

length n=7 and T= T1C2C3A4G5C6A7 of length m=7. The 

operation shown in Table 1 and Table 2 can be summarized 

as follows: 

 Activate a total number of threads equals n*m =49 to 

perform both the initialization and the sequence 

matching processes. This can be carried out either by 

distributing these threads among number of blocks or 

activating only one block of total number of 49 threads. 

When activating the threads per block we consider the 

CUDA architecture limitation: a maximum of 512 

threads per block and the maximum number of blocks 

per grid equals 65535. 

 Load the two DNA sequences to the activated threads. 

 All threads perform the initialization process “Kernel” 

simultaneously according to the rules stated in the 

Initialization Kernel. The initialization matrix will 

contain the values shown in Table 1. 

 After the initialization process, all the threads perform 

the sequence matching process “kernel” 

simultaneously according to the rules stated in the 

Sequence Matching Kernel. The resulting matrix will 

be as shown in Table 2. 

 

 

 Pass the resulting matrix to the Host to fill the initial 

entries of the table of indices as shown in Table 3 

according to the rules stated in the Merging 

subsequences function. 

 Perform the preprocessing step to discard very small 

subsequences of score equals to 2 and sort the entries 

of the table of indices descending according to their 

score using merge sort as shown in Table 4. 

 Merge the subsequences in the table of indices 

according to a threshold K indicating how many 

subsequences are used in merging with the whole 

entries of the table of indices. Add the merged 

subsequences to the table. The worst case in this 

sequential part occurs when the threshold K equals to 

the total number of entries in the table of indices the 

algorithm will try to merge each entry in the table of 

indices with the whole entries. 

 Delete from the table of indices the first subsequence 

used in margining each new subsequence. 

  

TABLE 1 
Matrix Values after 

Initialization Kernel 

 

 T C G C A G A 

T 2 0 0 0 0 0 0 

C 0 2 0 2 0 0 0 

C 0 2 0 2 0 0 0 

A 0 0 0 0 2 0 2 

G 0 0 2 0 0 2 0 

C 0 2 0 2 0 0 0 

A 0 0 0 0 2 0 2 

TABLE 2 

Matrix Values after 
Sequence Matching Kernel 

 

 T C G C A G A 

T 4 0 0 0 0 0 0 

C 0 4 0 2 0 0 0 

C 0 2 0 4 0 0 0 

A 0 0 0 0 6 0 2 

G 0 0 4 0 0 4 0 

C 0 2 0 6 0 0 0 

A 0 0 0 0 4 0 2 



 

 Repeat the merging operation consequently. 

 If there is nothing to be merged then select the 

sequence of maximum score and minimum gaps and 

mismatches. 

 The resulted tables of indices is shown in Table 5 given 

threshold K=3. 

 

 

 

 The best alignment starts at lead (0, 0) and ends with 

the trail (5,4) with score equals 9 and Gap and 

Mismatch equals 1 which is indicated at sequence 

number 0 at the final round in the table of indices. 

4 Performance Evaluation 
The performance of the proposed algorithm is measured 

by comparing the execution time of the NVidia GPU/CPU 

version of the preprocessing, sequence matching and 

subsequences merging running time of the DNA sequence 

alignment proposed algorithm versus both the sequential 

execution of the same proposed algorithm of sequence 

comparison [10], and the sequential Smith-Waterman 

algorithm [3] used for DNA sequence alignment 

implemented on the same machine. 

 

 
Fig. 8 Hybrid system and Smith-Waterman execution times at S1=16 and 

S2=16 BP 

 

 

Fig. 9 Hybrid system and Smith-Waterman execution times at S1=32 and 
S2=32 BP 

 

Fig. 10 Hybrid system and Smith-Waterman execution times at S1=64 and 

S2=64 BP 

 

 

 

TABLE 3 

 Initial Table of Indices 

ID
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0 _ (2,4) (4,6) 6 0 

1 _ (3,2) (5,4) 6 0 

2 _ (0,0) (1,1) 4 0 

3 _ (1,2) (1,2) 2 0 

4 _ (1,5) (1,5) 2 0 

5 _ (3,1) (3,1) 2 0 

6 _ (6,3) (6,3) 2 0 

7 _ (6,6) (6,6) 2 0 

TABLE 4 

 Table of Indices after Discarding Very Small 
Subsequences 

ID
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0 _ (2,4) (4,6) 6 0 

1 _ (3,2) (5,4) 6 0 

2 _ (0,0) (1,1) 4 0 

TABLE 5 

 Complete Round in the Table of Indices at K=3 

ID
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0 2&1 (0,0) (5,4) 9 1 

1 2&0 (0,0) (4,6) 8 2 

2 0 (2,4) (4,6) 6 0 

3 1 (3,2) (5,4) 6 0 
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The list of figures from Fig.8 to Fig.14 shows the Hybrid 

system execution time using GPU, Parallel architecture in 

[10] and Smith-Waterman at different sequence sizes 

starting from 16 bp ‘Base pair’ to 1024 bp. 

The GPU execution time for both preprocessing and 

sequence matching is recorded at different input sequences’ 

size and the CPU execution time for the merging 

subsequences is calculated for different thresholds as shown 

in Table 6. 

 

Results are obtained using Intel Core i5 2430M 2.4GHZ, 

4 GB DDR3 Memory and NVidia GeForce GT540M GPU 

with  

96 CUDA Cores with 1GB device memory. All the 

implementations run on Windows7 with Display 

Driver285.86. 

The methods are implemented using Microsoft Visual 

Studio 2010 and NVidia GPU Computing SDK 4.1. 

5 Conclusion 
The proposed framework combines both a parallel and a 

sequential algorithm to speed up the solution of the pairwise 

DNA sequence alignment. The architecture of the hybrid 

system uses the GPGPUs.  It has been observed that the 

proposed framework can provide an alignment quality 

comparable to that of Smith-Waterman algorithm while 

consuming significantly less time. 

The target of the proposed framework is to compare all 

the nucleotides from both the query and the target 

sequences simultaneously then extract the subsequences of 

match and try to merge them to find the optimum alignment 

according to the maximum score and minimum 

gap/mismatch.   

The system is considered a step towards a complete 

parallel processing architecture to solve computationally 

intensive applications of DNA 

  
Figure 11  Hybrid system and Smith-Waterman execution times at 
S1=128 and S2=128 BP 

Figure 12  Hybrid system and Smith-Waterman execution times at S1=256 
and S2=256 BP 

  
Figure 13  Hybrid system and Smith-Waterman execution times at 
S1=512 and S2=512 BP 

Figure 14  Hybrid system and Smith-Waterman execution times at S1=1024 
and S2=1024 BP 

Table 6 
The Proposed GPU Implementation, The Hybrid System and Smith-Waterman Execution Times for Different Sequence Sizes. 
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S1 S2 T at K=1 T at K=2 T at K=3 T at K=4 T at K=5 T at K=1 T at K=2 T at K=3 T at K=4 T at K=5

16 16 0.1389 0.3571 0.3277 0.4233 0.9589 0.0141 0.4982 0.6718 0.8997 3.2393 5.19781

32 32 0.4010 0.4964 1.4243 1.0972 1.6248 1.3449 2.3729 7.1229 9.5471 6.1988 17.983

64 64 1.3591 1.3024 1.8715 2.5768 4.2268 2.1330 3.3937 6.6120 13.9064 20.1797 73.4924

128 128 2.3459 14.8844 15.9078 19.8200 12.8086 9.8944 31.1223 58.8689 83.9278 85.9526 291.548

256 256 4.6377 16.6957 58.8322 106.7312 57.8178 29.8864 81.0289 177.6650 212.0680 256.1450 1059.95

512 512 16.7758 33.3471 50.2516 66.9213 386.2223 106.7730 194.8590 299.6170 390.4650 2328.3000 3397.86

1024 1024 41.3386 101.2055 282.8225 305.7553 316.2523 138.7090 260.3110 1115.4600 1488.2800 1852.3400 13817.8

Sequence's Size
Total Hybrid System Time (Parallel Matching GPU 

+Sequential Rounds) (ms)

Total Hybrid System "parallel + Sequential Execution 

"(ms)
Smith 

Waterman
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