
Hybrid Framework for pairwise DNA Sequence

Alignment Using the CUDA compatible GPU

H. Khaled, R. El Gohary, N.L. Badr and H. M. Faheem
Faculty of Computer & Information Science, Ain Shams University,

Cairo, Egypt.

heba.kaled@cis.asu.edu.eg, dr.raniaelgohary@fcis.asu.edu.eg, dr.nagwabadr@gmail.com,

hmfaheem@cis.asu.edu.eg

Abstract—This paper provides a novel framework for

accelerating the solution of the pairwise DNA sequence

alignment problem using CUDA parallel paradigm

available on the NVIDIA GPU. The main idea is to

implement a new algorithm that assigns different

nucleotide weights using GPU architectures then merge the

subsequences of match using CPU to get the optimum local

alignment. The paper describes both the algorithm and the

implementation of it using both the GPU and CPU to

constitute a hybrid model for solving DNA sequence

alignment problem on DNA molecules. Experimental

results demonstrate a considerable reduction in run time

relative to traditional Smith-Waterman implementation on

traditional processors.

Keywords— GPU, GPGPU, CUDA, sequence alignment

algorithms, molecular biology.

1 Introduction
Sequence comparison is a very basic and important

operation in Bioinformatics as Sequence alignment is a key

component in the analysis of genes and genomes. Sequence

alignment algorithms find regions in one sequence, called

the query sequence, that are similar or identical to regions

in another sequence, called the reference sequence [1]. A

sequence alignment has a similarity score associated to it

obtained by placing one sequence above the other, making

clear correspondence between the characters and possibly

introducing gaps into them. The most common types of

sequence alignment are global and local. To solve a global

alignment problem it is required to find the best match

between the entire sequences. On the other hand, local

alignment algorithms must find the best match between

parts of the sequences. Both Needleman-Wunsch algorithm

[2] for global alignment and Smith-Waterman algorithm [3]

for local alignment deploy dynamic programming

approaches.

Genomic databases have an exponential growth rate.

Therefore, a huge amount of new DNA sequences will need

to be compared, in order to infer functional/structural

characteristics. The growth of database size increases the

time required for searching using this kind of dynamic

programming approaches. Complexity of sequence

comparison is proportional to query size and database size

[4], [5].

The recent development of multi-core architectures, and

its associated programming interfaces, provide an

opportunity to accelerate sequence database searches using

commonly available and inexpensive hardware.

Graphics hardware is currently deployed in high-

performance computing due to its cost

effectiveness. Bioinformatics applications also exploit

GPU as a massive parallel multi-core processor to address

computational challenges in many areas such as sequence

analysis and alignment and protein structure prediction [6].

CUDA is the architecture and developing platform of the

NVIDIA GPU. It is an extension of the C programming

language. CUDA programs typically consist of a

component that runs on the CPU, or host, and a smaller but

computationally intensive component called the kernel that

runs in parallel on the GPU. The kernel cannot access the

CPU's main memory directly – input data for the kernel

must be copied to the GPU's on-board memory prior to

invoking the kernel, and output data also must first be

written to the GPU's memory. All memory used by the

kernel must be pre-allocated, and the kernel cannot use

recursion or other features requiring a stack, but loops and

conditionals are allowed [1].

In CUDA, the GPU is viewed as a computing device

suitable for parallel data applications. It has its own device

random access memory and may run a huge number of

threads in parallel [7] as shown in Fig.1. Threads are

grouped in blocks and many blocks may run in a grid of

blocks. Such structured sets of threads could be launched

on a kernel of code and process the data stored in the device

memory. Threads of the same block share data through fast

shared on chip memory and they can be synchronized

through synchronization points as shown in Fig.2 [8], [9].

The proposed DNA sequence alignment approach can

benefit from the CUDA architecture and the single

instruction multiple thread SIMT model.

The SIMT completes the DNA sequence comparison in

two stages; the first stage is used to find matches and

mismatches between each nucleotide from both the query

and the target sequences. The second stage is used to weight

and highlight the subsequences of matches. The resulting

subsequences of matches are then passed to the CPU to be

merged in order to find the optimum alignment between the

two sequences.

mailto:heba.kaled@cis.asu.edu.eg
mailto:dr.raniaelgohary@fcis.asu.edu.eg
mailto:nagwabadr@
mailto:hmfaheem@cis.asu.edu.eg

The rest of the paper is organized as follows: Section 2

describes the proposed framework. Section 3 describes the

operation of the proposed system Section 4 provides the

experimental results. Section 5 augments some concluding

remarks.

2 Proposed Framework
Task Dependency in Smith-Waterman algorithm is very

high. For each cell in the Smith-Waterman dynamic

programing matrix, we need to compute the upper, left and

diagonal cells adjacent to that cell. This is to find the best

alignment between two DNA sequences.

Given two DNA sequences S of length n, and T of length

m, the proposed algorithm starts with an initialization phase

shown in Fig.4. During this phase, a sufficient number of

threads that can carry out n × m initialization operation is

activated. Corresponding locations in the two sequences are

compared such that a weight of 2 is granted to matched

positions and 0 is granted to unmatched.

Fig. 4 Initialization Algorithm

 Sequence matching process is then performed as

described in Fig.5. During this phase, a weight of 4 is

granted to a specific position in the matrix having an initial

weight of 2 if at least one of its adjacent upper diagonal left

or lower diagonal right positions have a weight of 2. If

both of the mentioned adjacent positions have a weight of 2

then, a weight of 6 is granted to the specific position. This

approach maximizes the score of continuous “subsequence

matching.”

Fig. 5 Sequence Matching Algorithm

It is clear that there is no task dependency either in the

initialization phase or in sequence matching process now,

we are ready to implement this parallel part using CUDA

provided by NVidia GPU which can lead to a significant

improvement in the speed without the need to deploy

special purpose hardware as in [10].

The block diagram shown in Fig.6 illustrates the model

used to implement the Hybrid system for DNA sequence

alignment using GPU.

The Implementation flow of the DNA Sequence

Alignment consists of four subsystems: Initialization, pre-

processing, Alignment, and the Output subsystem.

Fig. 1 Heterogeneous programming. Fig. 2 CUDA Memory Model

Given two DNA sequences S of length n, and T of length m:

1- Activate a number of threads that can carry out n × m

initialization operation.

2- Load the two DNA sequences to all the threads.

3- For All the threads Perform the initialization process

according to the following rules:

IF Si= TJ i=1… n. j=1… m.

THEN H (i, j) t = 2

ELSE IF Si ≠ TJ where H t is the preprocessing matrix

THEN H (i, j) t = 0

1- Activate a number of threads that can carry out n × m

matching operation.

2- For All the threads Perform the sequence matching

process according to the following rules:

IF H (i, j) t = 0 where H t and H t+1 are the

THEN H (i, j) t+1 = 0 preprocessing and the final sequence

ELSE IF H (i, j) t = 2 matching matrixes

THEN

 IF H (i+1, j+1) t =2 AND H(i-1, j-1) t =2

 THEN H (i, j) t +1=6

 ELSE IF H (i-1, j-1) t =2 OR H (i+1, j+1) t =2

 THEN H (i, j) t+1 =4

 ELSE H (i, j) t +1=2

The Initialization Subsystem is concerned with the

initialization phase that allocates memory for both CPU and

GPU used to read the DNA sequences and store the output.

It also activates number of CUDA Cores (blocks and

threads) according to the sizes of the two DNA input

sequences and then passes the inputs to the GPU grid.

At this point, the Preprocessing Subsystem can work on

the device (GPU); the initialization kernel purpose is to

compare each DNA nucleotide in the two sequences and fill

the initialization vector with values for both DNA

nucleotide match and mismatch. All the thread blocks

perform the exact matching between the corresponding first

sequence nucleotide and second sequence nucleotide

simultaneously as a first step in the initialization process.

The resulting output matrix of the pre-processing

subsystem is then passed to the Alignment subsystem.

The Alignment subsystem first applies the sequence

matching algorithm that also works on the device (GPU).

The sequence-matching kernel highlights the subsequence

of match between the query and the subject sequences by

weighting the match and the sub-sequences of match.

The proposed framework takes the advantage of the fact

that each nucleotide comparison “initialization then

Matching weight” for both the query sequence and the

subject sequence can be computed independent of each

other. Therefore, a number of n threads in a thread block

are responsible for computing a row in the alignment matrix

H.

Increasing the DNA sequences’ size requires increasing

the number of initialization and sequence matching

operation needed. Using the CUDA architecture makes it

obvious to scale the number of threads needed for the

initialization and the sequence matching kernels.

The GPU based part is scalable as different number of

blocks and threads per block are activated according to the

given query and sequence sizes.

The resulting matrix from the Sequence matching kernel

is then passed from the GPU to the CPU host memory

where the last module “Merging Subsequences” in the

Alignment subsystem will operate.

 The Merging subsequences function running on the

Host “CPU” firstly sorts the subsequences of match

ascending according to their score. It represents the

subsequence as entries in a table of indices and then tries to

link these entries according to an input threshold given by

the user until the optimum alignment could be found. The

algorithm listed in Fig.7 represents how the Merging

subsequences function operates.

 The algorithm first creates a table of indices, which

contains a list of matched subsequences represented by

both lead and trail represented by i and j coordinates” of

each matched subsequence, its score, and Mismatch/gap. A

preprocessing step is then carried out to discard the very

small subsequences of score equals to 2 that represents

“only one match”. The algorithm then sorts the entries of

the matched subsequences using merge sort.

 The user can specify a merging threshold K “the

longest common subsequences between the two DNA

sequences” that indicates how many subsequence to be

merged with the whole entries in the table of indices. The

algorithm then merges the entries in the table of indices

“matched subsequences” according to a set of rules listed

in the DNA sequence alignment sequential algorithm. The

merging operation’s complexity is O (K N) where K is a

constant representing the merging threshold and N is the

size of the table of indices. After the merging process the

alignment of maximum score can be found.

Fig. 6 Implementation Flow of DNA Sequence Alignment Using Graphical Processing Unit (GPU).

Implementation Flow of DNA Sequence Alignment Using Graphical Processing Unit (GPU)

DNA

Sequence

DB

 Output Subsystem

Module 7:
 Reports

Generation

(Host)

Preprocessing Subsystem

Module 3:
Initialize

Kernel

(Device)

Initialization Subsystem

Module 1:
CPU/GPU

Memory

Allocation

Module 2:
Activate DNA

cores (Blocks,

Threads)

Alignment Subsystem

Module 4:
Sequence

Matching Kernel

(Device)

Module 5:
Results Storing

Kernel

(Device)

Module 6:
Merging

Subsequences

(Host)

End

User

1- Apply merge sort to the stored results, it sorts the

subsequences descending according to their score “A

preprocessing step”.

2- Discard small subsequences of score equal 2.

3- Create table of indices according to the sorted

subsequences.

4- Given that Each entry “aligned subsequence” in the table

of indices has a lead and trail and each has i and j

coordinates such that:

 Is the i coordinate of the first subsequence’s lead,

 Is the j coordinate of the first subsequence’s lead,

 Is the i coordinate of the first subsequence’s Trail,

 Is the j coordinate of the first subsequence’s Trail,

 Is the i coordinate of the second subsequence’s lead,

 Is the j coordinate of the second subsequence’s lead,

 Is the i coordinate of the second subsequence’s

Trail,

 Is the j coordinate of the second subsequence’s

Trail,

 = First subsequence’s score,

 = Second subsequence’s score.

 =Gaps

and/or Mismatches between the two subsequences,

 Given a threshold K indicating how many subsequence to

be merged with the whole entries in the table of indices,

Merge the subsequences in the table of indices according

to the following rules:

IF (

)

 (M G) (M G 1))

THEN

 Total score=

ELSE IF (

 M G
 M G)

THEN

 Total score=

5- Add the merged subsequences to the table.

6- After a round of merging and getting new subsequences,

delete from the table of indices the first subsequence used

in margining each new subsequence.

7- Go to 3 “another round of margining” until there are no

sequences to be merged.

Figure7 DNA Sequence Alignment Sequential Algorithm

The Output Subsystem provides the results by selecting

and reporting the sequence of maximum score and

minimum gaps and mismatches.

To sum up, the proposed framework aims to compare

nucleotides from both the query and the subject sequences,

weight the matched subsequences, and then link the

matching subsequences. Finally, the optimum local

alignment will be the sequence of the highest score.

3 Operation
In order to explain the operation of the proposed system,

let us consider an example; perform sequence alignment on

the given two DNA sequences S= T1C2G3C4A5G6A7 of

length n=7 and T= T1C2C3A4G5C6A7 of length m=7. The

operation shown in Table 1 and Table 2 can be summarized

as follows:

 Activate a total number of threads equals n*m =49 to

perform both the initialization and the sequence

matching processes. This can be carried out either by

distributing these threads among number of blocks or

activating only one block of total number of 49 threads.

When activating the threads per block we consider the

CUDA architecture limitation: a maximum of 512

threads per block and the maximum number of blocks

per grid equals 65535.

 Load the two DNA sequences to the activated threads.

 All threads perform the initialization process “Kernel”

simultaneously according to the rules stated in the

Initialization Kernel. The initialization matrix will

contain the values shown in Table 1.

 After the initialization process, all the threads perform

the sequence matching process “kernel”

simultaneously according to the rules stated in the

Sequence Matching Kernel. The resulting matrix will

be as shown in Table 2.

 Pass the resulting matrix to the Host to fill the initial

entries of the table of indices as shown in Table 3

according to the rules stated in the Merging

subsequences function.

 Perform the preprocessing step to discard very small

subsequences of score equals to 2 and sort the entries

of the table of indices descending according to their

score using merge sort as shown in Table 4.

 Merge the subsequences in the table of indices

according to a threshold K indicating how many

subsequences are used in merging with the whole

entries of the table of indices. Add the merged

subsequences to the table. The worst case in this

sequential part occurs when the threshold K equals to

the total number of entries in the table of indices the

algorithm will try to merge each entry in the table of

indices with the whole entries.

 Delete from the table of indices the first subsequence

used in margining each new subsequence.

TABLE 1
Matrix Values after

Initialization Kernel

 T C G C A G A

T 2 0 0 0 0 0 0

C 0 2 0 2 0 0 0

C 0 2 0 2 0 0 0

A 0 0 0 0 2 0 2

G 0 0 2 0 0 2 0

C 0 2 0 2 0 0 0

A 0 0 0 0 2 0 2

TABLE 2

Matrix Values after
Sequence Matching Kernel

 T C G C A G A

T 4 0 0 0 0 0 0

C 0 4 0 2 0 0 0

C 0 2 0 4 0 0 0

A 0 0 0 0 6 0 2

G 0 0 4 0 0 4 0

C 0 2 0 6 0 0 0

A 0 0 0 0 4 0 2

 Repeat the merging operation consequently.

 If there is nothing to be merged then select the

sequence of maximum score and minimum gaps and

mismatches.

 The resulted tables of indices is shown in Table 5 given

threshold K=3.

 The best alignment starts at lead (0, 0) and ends with

the trail (5,4) with score equals 9 and Gap and

Mismatch equals 1 which is indicated at sequence

number 0 at the final round in the table of indices.

4 Performance Evaluation
The performance of the proposed algorithm is measured

by comparing the execution time of the NVidia GPU/CPU

version of the preprocessing, sequence matching and

subsequences merging running time of the DNA sequence

alignment proposed algorithm versus both the sequential

execution of the same proposed algorithm of sequence

comparison [10], and the sequential Smith-Waterman

algorithm [3] used for DNA sequence alignment

implemented on the same machine.

Fig. 8 Hybrid system and Smith-Waterman execution times at S1=16 and

S2=16 BP

Fig. 9 Hybrid system and Smith-Waterman execution times at S1=32 and
S2=32 BP

Fig. 10 Hybrid system and Smith-Waterman execution times at S1=64 and

S2=64 BP

TABLE 3

 Initial Table of Indices

ID

S
u

b
se

q
u

en
ce

&

S
u

b
se

q
u

en
ce

L

ea
d

T
ra

il

S
co

re

G
ap

&

M
is

m
at

ch

0 _ (2,4) (4,6) 6 0

1 _ (3,2) (5,4) 6 0

2 _ (0,0) (1,1) 4 0

3 _ (1,2) (1,2) 2 0

4 _ (1,5) (1,5) 2 0

5 _ (3,1) (3,1) 2 0

6 _ (6,3) (6,3) 2 0

7 _ (6,6) (6,6) 2 0

TABLE 4

 Table of Indices after Discarding Very Small
Subsequences

ID

S
u

b
se

q
u

en
ce

&

S
u

b
se

q
u

en
ce

L

ea
d

T
ra

il

S
co

re

G
ap

&

M
is

m
at

ch

0 _ (2,4) (4,6) 6 0

1 _ (3,2) (5,4) 6 0

2 _ (0,0) (1,1) 4 0

TABLE 5

 Complete Round in the Table of Indices at K=3

ID

S
u

b
se

q
u

en
ce

&

S
u

b
se

q
u

en
ce

L

ea
d

T
ra

il

S
co

re

G
ap

&

M
is

m
at

ch

0 2&1 (0,0) (5,4) 9 1

1 2&0 (0,0) (4,6) 8 2

2 0 (2,4) (4,6) 6 0

3 1 (3,2) (5,4) 6 0

0%

1%

10%

100%

1 2 3 4 5

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Threshold K

S1=16, S2=16

Smith Waterman

Hybrid

GPU

0%

1%

10%

100%

1 2 3 4

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Threshold K

S1=32, S2=32

Smith Waterman

Hybrid

GPU

0%

1%

10%

100%

1 2 3 4E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Threshold K

S1=64, S2=64

Smith Waterman

Hybrid

GPU

The list of figures from Fig.8 to Fig.14 shows the Hybrid

system execution time using GPU, Parallel architecture in

[10] and Smith-Waterman at different sequence sizes

starting from 16 bp ‘Base pair’ to 1024 bp.

The GPU execution time for both preprocessing and

sequence matching is recorded at different input sequences’

size and the CPU execution time for the merging

subsequences is calculated for different thresholds as shown

in Table 6.

Results are obtained using Intel Core i5 2430M 2.4GHZ,

4 GB DDR3 Memory and NVidia GeForce GT540M GPU

with

96 CUDA Cores with 1GB device memory. All the

implementations run on Windows7 with Display

Driver285.86.

The methods are implemented using Microsoft Visual

Studio 2010 and NVidia GPU Computing SDK 4.1.

5 Conclusion
The proposed framework combines both a parallel and a

sequential algorithm to speed up the solution of the pairwise

DNA sequence alignment. The architecture of the hybrid

system uses the GPGPUs. It has been observed that the

proposed framework can provide an alignment quality

comparable to that of Smith-Waterman algorithm while

consuming significantly less time.

The target of the proposed framework is to compare all

the nucleotides from both the query and the target

sequences simultaneously then extract the subsequences of

match and try to merge them to find the optimum alignment

according to the maximum score and minimum

gap/mismatch.

The system is considered a step towards a complete

parallel processing architecture to solve computationally

intensive applications of DNA

Figure 11 Hybrid system and Smith-Waterman execution times at
S1=128 and S2=128 BP

Figure 12 Hybrid system and Smith-Waterman execution times at S1=256
and S2=256 BP

Figure 13 Hybrid system and Smith-Waterman execution times at
S1=512 and S2=512 BP

Figure 14 Hybrid system and Smith-Waterman execution times at S1=1024
and S2=1024 BP

Table 6
The Proposed GPU Implementation, The Hybrid System and Smith-Waterman Execution Times for Different Sequence Sizes.

0%

1%

10%

100%

1 2 3 4E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Threshold K

S1=128, S2=128

Smith Waterman

Hybrid

GPU 0%

1%

10%

100%

1 2 3 4E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Threshold K

S1=256, S2=256

Smith Waterman

Hybrid

GPU

0%

1%

10%

100%

1 2 3 4

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Threshold K

S1=512, S2=512
Smith
Waterman

Hybrid

0%

1%

10%

100%

1 2 3 4

E
x
ec

u
ti

o
n

 T
im

e
(m

s)
Threshold K

S1=1024, S2=1024

Smith Waterman

Hybrid

GPU

S1 S2 T at K=1 T at K=2 T at K=3 T at K=4 T at K=5 T at K=1 T at K=2 T at K=3 T at K=4 T at K=5

16 16 0.1389 0.3571 0.3277 0.4233 0.9589 0.0141 0.4982 0.6718 0.8997 3.2393 5.19781

32 32 0.4010 0.4964 1.4243 1.0972 1.6248 1.3449 2.3729 7.1229 9.5471 6.1988 17.983

64 64 1.3591 1.3024 1.8715 2.5768 4.2268 2.1330 3.3937 6.6120 13.9064 20.1797 73.4924

128 128 2.3459 14.8844 15.9078 19.8200 12.8086 9.8944 31.1223 58.8689 83.9278 85.9526 291.548

256 256 4.6377 16.6957 58.8322 106.7312 57.8178 29.8864 81.0289 177.6650 212.0680 256.1450 1059.95

512 512 16.7758 33.3471 50.2516 66.9213 386.2223 106.7730 194.8590 299.6170 390.4650 2328.3000 3397.86

1024 1024 41.3386 101.2055 282.8225 305.7553 316.2523 138.7090 260.3110 1115.4600 1488.2800 1852.3400 13817.8

Sequence's Size
Total Hybrid System Time (Parallel Matching GPU

+Sequential Rounds) (ms)

Total Hybrid System "parallel + Sequential Execution

"(ms)
Smith

Waterman

6 References
[1] Michael Schatz, Cole Trapnell, Arthur

Delcher, Amitabh Varshney, “High-throughput

sequence alignment using Graphics Processing Units,”

BMC Bioinformatics, Vol. 8, No. 1, 2007.

[2] T. F. Smith and M. S. Waterman, “Identification of

common molecular subsequences,” J Mol Biol, 147(1),

pp. 195-197, March 1981.

[3] T. Smith and M. Waterman, “Identification of

common molecular subsequences,” J. Mol. Bio.,

(147):195–197, 1981.

[4] J. Setubal and J. Meidanis, Introduction to

Computational Molecular Biology, PWS Publishing

Company, 1997.

[5] Terence Hwa and Michael Lässig, “Similarity

Detection and Localization,” Physical Review

Letters Volume: 76, Issue: 2, 1995.

[6] Jun Sung Yoon and Won-Hyong Chung, “A GPU-

accelerated bioinformatics application for large-scale

protein interaction networks,” Asia Pacific

Bioinformatics Conference, 2011.

[7] Rafia Inam, “An Introduction to GPGPU

Programming - CUDA Architecture,” Mälardalen

University, Mälardalen Real-Time Research Centre,

2011.

[8] NVIDIA CORPORATION, CUDA Programming

Guide,

http://developer.nvidia.com/category/zone/cuda-zone

[9] Svetlin A Manavski and Giorgio Valle1, “CUDA

compatible GPU cards as efficient hardware

accelerators for Smith-Waterman sequence

alignment,” BMC Bioinformatics 2008.

[10] Heba Khaled , Hossam M Faheem , Tayseer Hasan ,

Saeed Ghoneimy,”Design of a Hybrid System for

DNA Sequence Alignment,” Proceedings of The

International MultiConference of Engineers and

Computer Scientists 2008 , pp162-167.

http://www.citeulike.org/user/scole/author/Schatz:M
http://www.citeulike.org/user/scole/author/Trapnell:C
http://www.citeulike.org/user/scole/author/Delcher:A
http://www.citeulike.org/user/scole/author/Delcher:A
http://www.citeulike.org/user/scole/author/Varshney:A
http://developer.nvidia.com/category/zone/cuda-zone
http://lib.bioinfo.pl/auth:Khaled,H
http://lib.bioinfo.pl/auth:Faheem,HM
http://lib.bioinfo.pl/auth:Hasan,T
http://lib.bioinfo.pl/auth:Ghoneimy,S

