
Comparison of software development productivity based
on object-oriented programming languages

Cuauhtémoc López-Martín1, Arturo Chavoya2, and María Elena Meda-Campaña3
1, 2,3 Information Systems Department, CUCEA, Guadalajara University, Jalisco, Mexico

1 cuauhtemoc@cucea.udg.mx, 2 achavoya@cucea.udg.mx, 3emeda@cucea.udg.mx

Abstract - The reasons for measuring software productivity
are to identify how to reduce software development costs,
improve software quality, and improve the rate at which
software is developed. In this paper, a data set of 572 software
individual projects developed from 2005 to 2010 with
practices based on a process specifically designed to
laboratory learning environments (Personal Software
Process) is used to know if there is any statistically
significance difference between the productivity of developers
whose projects were written using the object oriented
programming languages C++ and Java. Results suggest that
there is difference between projects developed in these two
programming languages when software projects have been
developed in a disciplined way in a laboratory learning
environment.

Keywords: Software development productivity, Object
oriented programming languages, Empirical software
engineering.

1 Introduction

The abstraction describes on which level the measurements

software projects are carried out; there exist the following five
abstraction levels [8]: organization, process, project,
individual and task. This study is related to the individual
level once software projects were individually developed by
practitioners.

There are at least the following four options to collect as
well as to report software production data [16]: developer self
report, project or team manager, outside analysts or observers,
and automated performance monitors. This study was related
to the first option. In order to reduce bias, each developer used
the same personal practices based upon Personal Software
Process (PSP). The PSP was selected because the levels of
software engineering education and training could be
classified in the small as well as in the large software projects
[1]. In the case of small software projects, the PSP whose
practices and methods are used for delivering quality products
on predictable schedules can be useful [6]. Moreover, it has

been suggested that a higher productivity over the entire
system life cycle use to be associated with the use of a
disciplined programming methodology [2]; even, productivity
increases when extensive use of modern programming
practices are applied (as top-down design, modular design,
design reviews, code inspections, and quality-assurance
programs) [17].

In accordance with the use of PSP for gathering data,
some previous researches have approached their efforts to PSP
automate [9] [14] and yet others have incorporated PSP
concepts into their programming courses [11].

There have been diverse measures of productivity ([5] [16]
[18]), in them have been indicated that the measure of
productivity most commonly used is that of size over effort
productivity = size / effort. That is the one used in this study;
the size is measured using number of lines of code developed
by unit of effort.

There have been two main directions on the study of
productivity in software engineering literature [18]: (1)
researches have been focused on the measure or estimation of
productivity, and (2) emphasis has been laid on the discovery
of methods or significant factors for productivity
improvement. The approach of this study is related to second
direction.

Because of the type of programming language is one of the
two main factors found having significantly influence on the
productivity [7], the sample of this study integrates those
projects coded in C++ or Java. The hypotheses of this research
are the following:

H1: There is a statistically significant difference in the
development productivity between the projects coded
in C++ and those coded in Java when the projects are
developed in a disciplined way in a laboratory
learning environment.

H2: There is not a statistically significant difference in
the development productivity between the projects
coded in C++ and those coded in Java when the
projects are developed in a disciplined way in a
laboratory learning environment.

1.1 Software measurement

 Measures of source code size can be classified in physical
source lines and in logical source lines [13]. The count of
physical lines gives the size in terms of the physical length of
the code as it appears when printed. Lines of code have been
used by previous researches focused on productivity analysis
of large projects [3] [4] [10] [16] [17] and even more recently
when productivity has been related to individual projects [15].

In this study, the independent variable in the prediction
models is New and Changed (N&C) code and it is considered
as physical lines of code (LOC). N&C is composed of added
and modified code [6]. The added code is the LOC written
during the current programming process, while the modified
code is the LOC changed in the base software project when
modifying a previously developed project. The base project is
the total LOC of the previous project while the reused code is
the LOC of previously developed projects that are used
without any modification.
 A coding standard should establish a consistent set of
coding practices that is used as a criterion when judging the
quality of the produced code [6]. Hence, it is necessary to
always use the same coding and counting standards. The
software projects developed of this study followed such
guidelines.

2 Experimental design
 Because measuring software productivity presupposes an

ability to construct a measurement project comparable to those
employed in experimental designs for behavioral studies, it is
necessary to insure that the measures employed are reliable,
valid, accurate, and repeatable. It means that to measure
software production implies understanding of the relationship
between measurement and instrumentation employed to
collect and measure data [16]. Hence, in this paper data
collected were related to the same instruments (logs), phases,
and standards suggested by PSP.
 The experiment was done inside a controlled environment
having the following characteristics:

1. All of the developers were experienced, working on
software development inside their enterprises at which they
were working; however, no one of them had received a course
related to personal practices for developing software at
individual level.

2. All developers were studying a postgraduate program
related to computer science.

3. Each developer wrote seven project assignments.
However, only four of them were selected from each
developer. The first three projects were not considered
because they had differences in their process phases and logs,
whereas in latest four projects phases are the same: plan,
design, design review, code, code review, compile, testing and
post-mortem, and they are based upon the same logs.

4. Each developer selected his/her own programming
language whose code standard had the following

characteristics: each compiler directive, variable declaration,
constant definition, delimiter, assign sentence, as well as flow
control statement was written in a line of code.

5. Developers had already received at least one formal
course about the object oriented programming language of
their choice and they had good programming experience in
that language. The sample of this study reduced the bias
because it only involved developers whose projects were
coded in C++ or Java. One reason for selecting these kinds of
languages is because object-oriented languages facilitate high
productivity [16].

6. As this study was an experiment with the aim to reduce
bias, we did not inform developers about our experimental
goal.

7. Developers filled out an Excel sheet for each task and
submitted it electronically for examination.

8. Each PSP course had a group of fifteen developers or
less.

9. All of developers coincided with the counting standard
depicted in Table 1.

10. Developers were constantly supervised and advised
about the process.

11. The code written in each project was designed so to be
reused in subsequent projects.

12. The developed projects had complexity similar to
those suggested in the original PSP [6]. From a set of 18
individual projects, a subset of seven was randomly assigned
to each of all developers. A brief description by project is the
following:

• Estimating the mean of a sample of n real numbers.
• Estimating the standard deviation of a sample of n

real numbers.
• Matrix addition integrated by real numbers.
• Summing the diagonal of a real numbers square

matrix.
• Translating from a quantity to letters.
• Calculating the correlation (r) between two series of

real numbers.
• Computing the linear regression equation parameters

a and b (y=a+bX).
• Calculating z-values from a sample of real numbers.
• Calculating the size of a sample.
• Calculating the y-values from a sample of real

numbers using the normal distribution equation.
• Calculating the estimation standard error (from

y=a+bX).
• Calculating the coefficient of determination (r2) from

a linear regression equation.
• Calculating both upper and lower limits from a

sample of real numbers based upon its standard
deviation and mean

• Calculating the coefficient of variation from a
distribution.

• Estimating the values based upon statistical empirical
rule.

• Counting the physical lines of code of a software
project omitting comments and blank lines.

• Both storing and searching records from a file.
• Both deleting and modifying records from a file.
• Data used in this study belong from those developers,

whose data for all seven exercises were correct,
complete, and consistent.

Table 1. Counting standard
1) Count type Type

Physical/logical Physical
2) Statement type Included
a) Executable Yes
b) No executable

Declarations Yes, one by text line
Compiler directives Yes, one by text line
Comments and Blank lines No

3) Clarifications
{ and } Yes

3 Data analysis
 Data from 572 individual software projects developed
by 143 practitioners between the years 2005 to 2010 were
used to be compared in this study (Appendix A). Once the
sample of 572 software projects was developed with C++
(288 projects) and Java (284 projects), we analyzed if there
was any statistical difference in their productivity values.
Table 2 shows that since the p-value of the F-test is less than
0.05, there is a statistically significant difference between the
productivity of the two languages at the 95.0% confidence
level. This difference result can graphically be observed in the
means plot of Figure 1, which shows that those projects coded
in Java had a better productivity that those coded in C++ with
(28 versus 25 N&C lines of code by hour).

Table 2. ANOVA for productivity by programming language

Source
Sum of
squares

Degrees of
freedom

Mean
square

F-ratio P-value

Between groups 1689.47 1 1689.4 8.15 0.0045
Within groups 118136. 570 207.25
Total 119825. 571

Figure 1. Plot of means for programming languages

 The validity of an ANOVA is based on the analysis of the
following three assumptions of residuals [12]:
 1) Independent samples: Each project was developed
independently and by a single practitioner, so the data are
independent.
 2) Equal standard deviations: In a plot of this kind the
residuals should fall roughly in a horizontal band centered and
symmetric about the horizontal axis (as shown in Figure 2),
and
 3) Normal populations: A normal probability plot of the
residuals should be roughly linear (as shown in Figure 3).
 Hence, the three assumptions for residuals in the
productivity data set were considered as met.

Figure 2. Equal standard deviation plot from programming
languages

Figure 3. Normality plot from programming languages

4 Conclussions
Owning that there are relevant reasons for measuring

software productivity and based upon the assumption that the
programming language has influence in the software

development productivity, this study compared software
projects code in two object-oriented programming languages.
The software projects were developed following a disciplined
process in a controlled environment.

After an statistical analysis based upon ANOVA, the
accepted hypothesis is the following:

H1: There is a statistically significant difference in the
development productivity between the projects coded
in C++ and those coded in Java when the projects are
individually developed in a disciplined way in a
laboratory learning environment.

After ANOVA, a plot of means showed that projects coded
in Java showed a better productivity than those coded in C++.
This result was validated based on the three assumptions of
residuals.

Future research is related to comparison between these two
programming languages when they are used in industrial
software projects.

5 References
[1] Bagert D. J., Hilburn T. B., Hislop G., Lutz M., McCracken

M., Mengel S. "Guidelines for Software Engineering
Education". CMU/SEI-99-TR-032, ESC-TR-99-002, Software
Engineering Institute, Carnegie Mellon University. 1999

[2] Bailey, J., Basili, V. "A Meta-Model for Software
Development Resource Expenditures". 5th. Intern. Conf. Soft.
Engr., IEEE Computer Society, pp. 107-116. 1981

[3] Boehm B., Abts Ch., Brown A.W., Chulani S., Clarck B. K.,
Horowitz E., Madachy R., Reifer D. & Steece B. "COCOMO
II ", Prentice Hall. 2000

[4] Cusumano M., Kemerer, C.F. "A Quantitative Analysis of
U.S. and Japanese Practice and Performance in Software
Development", Management Science. Pages 1384-1406. 1990

[5] Fenton N.E. & Pfleeger S. L. “Software Metrics: A Rigorous
and Practical Approach". PWS Publishing Company. 1997

[6] Humphrey W. "A Discipline for Software Engineering".
Addison Wesley. 1995

[7] Jiang, Z., Comstock C. "The Factors Significant to Software
Development Productivity". World Academy of Science,
Engineering and Technology. Pages 160 – 164. 2007.

[8] Kai, P., 2011. Measuring and predicting software
productivity: A systematic map and review. Information and
Software Technology, Elsevier, Volume 53, Issue 4, pages
317-343

[9] Johnson, P.M, Kou, H., Agustin, J., Chan, Ch., Moore, C.,
Miglani, J., Zhen, S., & Doane, E.J. "Beyond the Personal
Software Process: metrics collection and analysis for the
differently disciplined". Conference on Software engineering
education and training: process and methodology. Pages 641 –
646. 2003.

[10] Lawrence, M.J. "Programming Methodology, Organizational
Environment, and Programming Productivity", Journal of
Systems and Software, Elsevier. Vol. 2, Pages 257-269. 1981

[11] Maletic J.I., Howald, A., Marcus A. "Incorporating PSP into a
traditional software engineering course: an experience report".
International Conference of Software Engineering Education
and Training. Pp. 89 – 97. 2001.

[12] Montgomery D. C.. "Design and Analysis of Experiments".
John Wiley, 2009.

[13] Park, R.E. "Software Size Measurement: A Framework for
Counting Source Statements". Software Engineering Institute,
Carnegie Mellon University. CMU/SEI-92-TR-020. 1992.

[14] Postema, M. Dick, M., Miller, J., Cuce, S. “Tool Support for
Teaching the Personal Software Process". Computer Science
Education, Vol. 10, No. 2, Pages 179-193. 2000.

[15] Rombach D., Münch J., Ocampo A., Humphrey W.S., Burton
D. "Teaching disciplined software development". Journal
Systems and Software, Elsevier, pp. 747- 763.. 2008.

[16] Scacchi, W. "Understanding Software Productivity".
International Journal of Software Engineering and Knowledge
Engineering. Revised and reprinted in Advances in Software
Engineering and Knowledge Engineering, D. Hurley (ed.),
Pages 37-70. 1995.

[17] Vosburg, J., Curtis, B., Wolverton, R., Albert, B., Malec, H.,
Hoben S., Liu, Y. "Productivity Factors and Programming
Environments", Proc. 7th. Intern. Conf. Soft. Engr., IEEE
Computer Society, Pages 143-152. 1984

[18] Zhizhong, J., Naudé, P., Comstock, C. An Investigation on the
Variation of Software Development Productivity,
International Journal of Computer and Information Science
and Engineering, Pages 72-81. 2007.

