Comparison of software development productivity basd
on object-oriented programming languages
Cuauhtémoc Lopez-Martint, Arturo Chavoya?, and Maria Elena Meda-Campafia

1 23|nformation Systems Department, CUCEA, Guadaldjimiversity, Jalisco, Mexico
1cuauhtemoc@cucea.udg.rﬁm,chavoya@cucea.udg.n'ri”lemeda@cucea.udg.mx

Abstract - The reasons for measuring software productivity
are to identify how to reduce software development costs,
improve software quality, and improve the rate at which
software is developed. In this paper, a data set of 572 software
individual projects developed from 2005 to 2010 with
practices based on a process specifically designed to
laboratory learning environments (Personal Software
Process) is used to know if there is any datistically
significance difference between the productivity of developers
whose projects were written using the object oriented
programming languages C++ and Java. Results suggest that
there is difference between projects developed in these two
programming languages when software projects have been
developed in a disciplined way in a laboratory learning
environment.

Keywords: Software development productivity,
oriented programming languages, Empirical
engineering.

1 Introduction

The abstraction describes on which level the measeints
software projects are carried out; there existfolewing five
abstraction levels [8]: organization, process, ¢xtbj
individual and task. This study is related to tineividual
level once software projects were individually deped by
practitioners.

There are at least the following four options tdlexd as
well as to report software production data [16veleper self
report, project or team manager, outside analystdbservers,
and automated performance monitors. This study retated

to the first option. In order to reduce bias, edeteloper used
the same personal practices based upon PersonaaBof
Process (PSP). The PSP was selected because #ie dév
software engineering education and training could b

classified in the small as well as in the largewsafe projects
[1]. In the case of small software projects, thePR&hose
practices and methods are used for delivering yyatoducts
on predictable schedules can be useful [6]. Moreavéias

been suggested that a higher productivity over éhére
system life cycle use to be associated with the afse
disciplined programming methodology [2]; even, proilvity
increases when extensive use of modern programming
practices are applied (as top-down design, moddéeign,
design reviews, code inspections, and quality-asegr
programs) [17].

In accordance with the use of PSP for gathering,dat
some pevious researches have approached their effoRSE
automate[9] [14] and yet others have incorporated PSP
concepts into their programming courses [11].

There have been diverse measures of productivaiy 1p]
[18]), in them have been indicated that the measufre
productivity most commonly used is that of size roeffort
productivity = size / effort. That is the one usedhis study;
the size is measured using number of lines of deleloped

Object by unit of effort.
software There have been two main directions on the study of

productivity in software engineering literature [18(1)
researches have been focused on the measureroatisti of
productivity, and (2) emphasis has been laid ondikeovery
of methods or significant factors for productivity
improvement. The approach of this study is reldatedecond
direction.

Because of the type of programming language isofiee
two main factors found having significantly influenon the
productivity [7], the sample of this study integmtthose
projects coded in C++ or Java. The hypothesesi®fdlsearch
are the following:

Hy: There is a statistically significant differenae the
development productivity between the projects coded
in C++ and those coded in Java when the projeets ar
developed in a disciplined way in a laboratory
learning environment

H,: There is not a statistically significant diffecenin
the development productivity between the projects
coded in C++ and those coded in Java when the
projects are developed in a disciplined way in a
laboratory learning environment.

1.1 Software measurement

Measures of source code size can be classifiptiyisical
source lines and in logical source lines [13]. Tdwaint of
physical lines gives the size in terms of the ptalsiength of
the code as it appears when printed. Lines of ¢@de been
used by previous researches focused on productvigyysis
of large projects [3] [4] [10] [16] [17] and everone recently
when productivity has been related to individualjects [15].

In this study, the independent variable in the mtazh
models is New and Changed (N&C) code and it is iciened
as physical lines of code (LOC). N&C is composedcdfied
and modified code [6]. The added code is the LOGtewr
during the current programming process, while thadifred
code is the LOC changed in the base software pgrejaen
modifying a previously developed project. The bpsgect is
the total LOC of the previous project while thesed code is
the LOC of previously developed projects that asedu
without any modification.

A coding standard should establish a condisset of
coding practices that is used as a criterion whelgipg the
quality of the produced code [6]. Hence, it is reseey to
always use the same coding and counting standdiuss.
software projects developed of this study followsdch
guidelines.

2 Experimental design

Because measuring software productivity presuppases
ability to construct a measurement project comgdarebthose
employed in experimental designs for behavioradisty it is
necessary to insure that the measures employecekable,
valid, accurate, and repeatable. It means that ¢asore
software production implies understanding of tHatrenship
between measurement and instrumentation employed
collect and measure data [16]. Hence, in this pajsta
collected were related to the same instrumentss)Jquhases,
and standards suggested by PSP.

The experiment was done inside a controlled enwient
having the following characteristics:

1. All of the developers were experienced, working on

software development inside their enterprises attwithey
were working; however, no one of them had recewedurse
related to personal practices for developing sofiwat
individual level.

2. All developers were studying a postgraduate program

related to computer science.

3. Each developer wrote seven project assignments.
However, only four of them were selected from each

developer. The first three projects were not cared
because they had differences in their process plerst logs,
whereas in latest four projects phases are the :sptas,
design, design review, code, code review, comfeigjng and
post-mortem, and they are based upon the same logs.

4. Each developer selected his/her own programming
following

language whose code standard had the

characteristics: each compiler directive, variatelaration,
constant definition, delimiter, assign sentencewels as flow
control statement was written in a line of code.

5. Developers had already received at least one formal
course about the object oriented programming lageusf
their choice and they had good programming expegien
that language. The sample of this study reduced bihe
because it only involved developers whose projeetse
coded in C++ or Java. One reason for selectingetkggls of
languages is because object-oriented languagédsatechigh
productivity [16].

6. As this study was an experiment with the aim taiced
bias, we did not inform developers about our expental
goal.

7. Developers filled out an Excel sheet for each st
submitted it electronically for examination.

8. Each PSP course had a group of fifteen developgers o
less.

9. All of developers coincided with the counting stardi
depicted in Table .1

10.Developers were constantly supervised and advised
about the process.

11.The code written in each project was designed szeto
reused in subsequent projects.

12. The developed projects had complexity similar to
those suggested in the original PSP [6]. From ao$et8
individual projects, a subset of seven was randasbigned
to each of all developers. A brief description lvgjpct is the
following:

» Estimating the mean of a samplenafal numbers.

» Estimating the standard deviation of a samplen of
real numbers.

» Matrix addition integrated by real numbers.

* Summing the diagonal of a real numbers square
matrix.

Translating from a quantity to letters.

Calculating the correlatiorr) between two series of

real numbers.

Computing the linear regression equation parameters

a andb (y=a+bX).

Calculatingz-values from a sample of real numbers.

» Calculating the size of a sample.

» Calculating they-values from a sample of real
numbers using the normal distribution equation.

» Calculating the estimation standard error (from
y=a+bX).

« Calculating the coefficient of determinatiorf)(from

a linear regression equation.

Calculating both upper and lower limits from a

sample of real numbers based upon its standard

deviation and mean

» Calculating the coefficient of variation from a
distribution.

» Estimating the values based upon statistical eogiri
rule.

to

« Counting the physical lines of code of a software The validity of an ANOVA is based on the analysfshe

project omitting comments and blank lines. following three assumptions of residuals [12]:
« Both storing and searching records from a file. 1) Independent samples: Each project was developed
« Both deleting and modifying records from a file. independently and by a single practitioner, so daga are

« Data used in this study belong from those deveklpeindependent. . o
whose data for all seven exercises were correct, 2) Equal standard deviations: In a plot of thisckithe

complete, and consistent. residuals should fall roughly in a horizontal barehtered and
] symmetric about the horizontal axis (as shown igufé 2),
Table 1.Counting standard and
1) Count typ Type 3) Normal populations: A normal probability plof the
Physical/logical Physical residuals should be roughly linear (as shown inuf&g).
2) Statement tyy Includec Hence, the three assumptions for residuals in the
@) Executabl Yes productivity data set were considered as met.
b) No executable
Declaration Yes, one by text lir
Compiler directive Yes, one by text lir) .
Comments and Blank lines No Residual Plot for Productivity
3) Clarifications 50 F ; -
{ and} Yes [; i]
| : :
3 Data analysis s 1Of ! .
Data from 572 individual software projects develdp % 0L E]
by 143 practitioners between the years 2005 to 20&fe []
used to be compared in this study (Appendix A). ©tite a0 0 2
sample of 572 software projects was developed Wi+ i]
(288 projects) and Java (284 projects), we analyzéuere 50 E .
was any statistical difference in their productivitalues. C++ Java
Table 2 shows that since the p-value of the Fitelgss than Language
0.05, there is a statistically significant diffecenbetween the
productivity of the two languages at the 95.0% mteice Figure 2. Equal standard deviation plot from prograng
level. This difference result can graphically bes@iyed in the languages
means plot of Figure 1, which shows that thosegatsjcoded
in Java had a better productivity that those cdde@++ with Normal Prebability Plot
(28 versus 25 N&C lines of code by hour). 999 —
Table 2. ANOVA for productivity by programming lamgge z:]
Source Sum of | Degrees of| Mean F-ratio| P-value e 80 -
square | freedon |[squarn 8
Between groups 1689.47 1 1689.4 8.15 | 0.0045 § 7
\Within group: |118136 57C 207.55 g 20 -
[Total 119825 571 5 4
Means and 95.0 Percent LSD Intervals 1 T
01 E, @ X X X =
HE] 0 20 40 60 80
[] Productivity
29 -
-*E I I] Figure 3. Normality plot from programming languages
3 27|]
g I]
o X]
25 i)
[I] 4 Conclussions
2BE = Owning that there are relevant reasons for meagurin
Cr Language Java software productivity and based upon the assumptianthe

programming language has influence in the software
Figure 1. Plot of means for programming languages

development productivity, this study compared safsv [13] Park, R.E. Software Size Measurement: A Framework
projects code in two object-oriented programmimyplaages. Counting Source StatementSoftware Engineering Institu
The software projects were developed following scigiined Carnegie Mellon UniversitCMU/SEI-92-TR-02C. 1992
process in a controlled environment. [14] Poster_na, M. Dick, M., Miller, J., Cuce, Sl'IO‘ol Suppor_t fo
After an statistical analysis based upon ANOVA, the Teachlng the Personal Software Proce€symputer Scient
S . ’ Educatiol, Vol. 10, No. 2, Pages 1-193 2000
accepted hypotheSIS IS the_followmg:_) . [15] Rombach D., Miinch J., Ocampo A., Humphrey W.S. td&ur
Hy: There is a statistically significant differenae the D. "Teaching disciplined software developmentournz
development productivity between the projects coded Systems and Software, Elsevier, pp.- 763. 2008
in C++ and those coded in Java when the projeets aff16] Scacchi, W. "Understanding Software Productivity’

individually developed in a disciplined way in a International Journal of Software Engineering ambWledgt
laboratory learning environment. Engineering. Revised and reprintedAidvances in Softwa
After ANOVA, a plot of means showed that projeatsied Engineering and Knowledge Engineerind. Hurley (ed.,

Pages 3-70.1995
[17] Vosburg, J., Curtis, B., Wolverton, R., Albert, BMalec, H.
Hoben S., Liu, Y. Productivity Factors and Programm

in Java showed a better productivity than thoseedad C++.
This result was validated based on the three agsumspof

residuals. . . Environments", Proc. 7th. Intern. Conf. Soft. EndEEE
Future research is related to comparison betwessettwo Computer Society, Pages 143-152. 1984

programming languages when they are used in indlstr [18] zhizhong, J., Naudé, RComstock, C. An Investigation on

software projects. Variation of Software Development Productiv

International Journal of Computer and InformatiocieSce
and Engineering, Pages 72-81. 2007.

5 References

[1] Bagert D. J., Hilburn T. B., Hislop G., Lutz M., i@cackel
M., Mengel S. Guidelines for Software Engineer
Education". CMU/SEI-99-TR-032, ESC-TR-@®2, Softwar
Engineering Institute, Carnegie Mellon Univers 199¢

[2] Bailey, J., Basili, V. "A Metadvodel for Softwar
Development Resource ExpenditureSth. Intern. Conf. Sof
Engr, IEEE Computer Society, pp. 1-116 1981

[3] Boehm B, Abts Ch., Brown A.W., Chulani S., Clarck B.
Horowitz E., Madachy R., Reifer D. & Steece BEOCOMC
11", Prentice Hal 200(C

[4] Cusumano M., Kemerer, C.FA"Quantitative Analysis (
U.S. and Japanese Practice and Performance in &8¢
Developmint", Management Science. Pa(1384-1406 199(

[5] Fenton N.E. & Pfleeger S. L. “Software Metrics:Rdgorou:
and Practical Approach”. PWS Publishing Compan$.719

[6] Humphrey W. "A Discipline for Software Engineering"
Addison Wesley. 1995

[7] Jiang, Z., Comstock C.The Factors Significant to Softwi
Development Productivity" World Academy of Scienc
Engineering and Technology. Pages 160 — 164. 2007.

[8] Kai, P., 2011. Measuring and predicting softwi
productivity: A systematic map and reviemfdrmation an
Software Technology, Elsevier, Volume 53, Issuepdge:
317-343

[9] Johnson, P.M, Kou, H., Agustin, J., Chan, Ch., ModC.
Miglani, J., Zhen, S., & Doane, E.JBéyond the Persor
Software Process: metrics collection and analysis the
differently disciplined". Conference oBoftware engineerir
education and training: process and methodologye$ 641
646 2003

[10] Lawrence, M.J. Programming Methodology, Organizatio
Environment, and Programming ProductivityJpurnal o
Sygems and Software, Elsevier. V2, Pages 25-269 1981

[11] Maletic J.1., Howald, A., Marcus Alficorporating PSP intc
traditional software engineering course: an expegaeport’
International Conference @oftware Engineering Educati
and Training. Pp. 89 — 97. 2001.

[12] Montgomery D. C.. "Design and Analysis of Experis&n
John Wiley, 200¢

