
Estimating Agile Iterations by Extending

Function Point Analysis

A. Udayan Banerjee, B. Kanakalata Narayanan, and C. Mahadevan P
NIIT Technologies Ltd, No.31/2, Rupena Agarhara, Hosur Main Road, Bangalore-560068, India

Abstract - Estimation is critical to software development

irrespective of the development methods being used. Waterfall

methods work on the concept of signed off requirements, while

agile methods are designed to handle changing requirements

through increased customer participation and frequent

releases. Statistical estimation methods like Function Point

Analysis (FPA) are more appropriate in scenarios where

requirements are explicitly documented, while agile projects

are typically estimated using analogous non standard sizing

methods like Story Points.

Organizations outsourcing software development want

vendors to adopt agile methods but estimate using standard

techniques like FPA and upfront commit to schedules,

features, effort. The key characteristic of agile projects which

impacts estimation is its iterative incremental lifecycle which

includes evolutionary design, requirement refinement,

increasing code base and constant code refactoring. In this

paper we propose a mechanism for estimating the size of agile

iterations in Function Points by extending FPA [11]

techniques along with Caper Jones activity scope for software

projects [17, 20]. We have applied this technique on three

agile projects and observed that there is a linear correlation

between effort consumed and the estimated iteration size.

Keywords: Agile, Function Points, Estimation, Iterative

Development, Outsourcing.

1 Introduction

 As an answer to the challenges of modern software

development, different lightweight approaches have been

established since the mid 1990s that can be subsumed under

the brand Agile Methods [1-2]. They “allow for creativity and

responsiveness to changing conditions” [3]. They also

emphasize on customer participation, quick reaction to

requirements‟ changes and continuous releases. These

methodologies are gaining in popularity as preferred means

for developing software as they allow organizations to deliver

software effectively in a changing environment [4].

Agile methods specify that working code should be delivered

in small pieces iteratively catering to a sub set of the

functionality asked for by the user. With every iteration, users

are encouraged to provide feedback, add, remove, change

requirements based on which the subsequent code is refined

and incremented. The main idea behind this approach is that

through emphasis on working code delivered frequently there

is a greater chance of delivering usable software which

provides business value. [4]

Software estimation is a critical component of software

development, irrespective of the development method being

adopted. Estimation defines the transformation of

requirements, skills, people and equipment into cost and effort

[5]. The main software estimation techniques are the

following:

 Analogy based: where a new project is estimated based

on its resemblance to an existing project,

 Expert opinion: where a group of experts gather together

to come to a consensus on how much time is required to

build a piece of software,

 Lines of code based: where the estimate is arrived at

based on the expected lines of code,

 Bottom up methods like work breakdown structure

where each task required for the project is estimated and

the sum of it is the total effort for the project,

 Statistical methods like Function Point Analysis which

quantify the size of the software rather than estimate the

effort directly. These methods use metrics collected from

past projects along with mathematical formulae to

estimate project costs.

Each method has its advantages and disadvantages which are

well researched and documented. Statistical methods offer a

scientific approach to software estimation, as compared to the

other methods, which are more subjective in nature, with the

exception of lines of code based sizing. These methods are

more preferred when software development is outsourced by

organizations to vendors mainly because they help in

quantifying software in a standard way irrespective of the

technology being used and such estimations can be

independently verified. The main disadvantage of statistical

methods is that they require the specifications to be articulated

in a detailed manner to provide accurate estimates [6]. Agile

development projects on the other hand are characterized by

fuzzy or evolving requirements. They are typically estimated

using a combination of analogous methods along with expert

opinion. Agile processes recommend that estimations are best

done by the team executing the project, and revisited each

iteration, using a sizing metric evolved by the team. Story

Points or Ideal days [7] are most popularly used in this

respect. The team looks to past projects or iterations, and

draws on its own experiences to produce estimates [7,8].

Caper Jones [9] states that one of the agile weaknesses is a

widespread failure to measure projects using standard metrics

such as function points.

The purpose of this paper is to propose a mechanism for

calculating the size of agile iterations as Function Points

accommodating for iterative incremental development by

extending Function Point Analysis [10] techniques along with

Caper Jones activity scope for software projects [11,12].

While there have been papers published trying to establish a

theoretical relationship between Function Points and Story

Points [13, 14], we have gone one step further and tried to

establish a working model for sizing agile iterations using

FPA, in the outsourcing context. Through this we present a

standard and consistent approach to sizing agile iterations.

2 Estimating Agile Projects with Story

Points

 In agile projects the features to be developed are expressed

in the form of user stories [15] and one of the popular

methods of sizing stories is using Story Points, a subjective

unit of estimate derived by agile teams. In this method a team

compares a user story to one or more similar stories and gives

the story a size in terms of „Story Points‟ or „Ideal Person

days‟. The number of story points associated with a story

represents the overall size of the story. There is no set formula

for defining the size of a story [13]. Each team defines story

points as they see fit. One team may decide to define a story

point as an ideal day of work and another team may define a

story point as a measure of the complexity of the story [13].

Story points have emerged as industry best practice for

measuring an agile development team‟s velocity i.e. the

number of user stories delivered in an iteration [7].

The stories that may be taken up by a team in an iteration is

dependent on the experience of the team, the cohesiveness of

the team, the knowledge they have on the product, the

technology complexity involved etc. These numbers vary

from team to team. Michael Cohn [16] says that it is very

difficult to establish a direct correlation between story points

and hours and further says that the relationship between story

points and hours is typically a distribution centered on a mean

(Figure 1). Even for a given team, same story point sized

stories may take different times during different points in the

release life cycle. A team which has been working for a long

time on a specific product may be able to deliver more stories

than a newly formed team [13]. Thus while story points

provide a way for agile teams to flexibly estimate user stories,

it is not always possible to extend these metrics across teams

or at an organization level [17].

Figure 1: Hours to develop a 1 and 2 point story [16]

3 Challenges of Estimating Iteration Size

Using Statistical Methods

 In this section we attempt to show how the very nature of

iterative development makes it difficult to apply traditional

statistical methods like FPA to estimate projects. Each agile

iteration is a mix of new stories, refactoring of existing

stories, testing and bug fixes to existing stories. It is not

executed like a mini waterfall based project where a

requirement is executed, completed and signed off with a

fixed schedule in a single iteration.

One of the initial activities done at the start of a project or

release is Release Planning, where the development team

along with the customer or Product owner get together to

understand the requirements (product backlog) and estimate

roughly the size of the requirements and the number of

iterations it will take to fulfill them. Team commits to a

probable release date and the best and worst case list of

features that may be released by the release date. The team

may use Story Points to size the release or use statistical

methods like Function Points depending on the extent of

clarity they have regarding the requirements.

Iteration Planning and the Definition of Done: Every

iteration, the team commits on the number of stories that can

be accommodated. While agreeing to develop stories, the

team formulates a „Definition of Done‟ (DoD) which is a list

of activities that will be performed by the team in that

iteration towards the selected stories. DoD is a simple list of

activities (writing code, coding comments, unit testing,

integration testing, release notes, design documents, etc.) that

add verifiable/demonstrable value to the product and can be

undertaken in an iteration [18]. The team may formulate a

definition of done for the release which is a super set of the

DoD for an iteration. For example a team may decide that

they would leave integration and stress testing (which is in

scope for the release) for later iterations and only take up unit

testing and functional testing on each story in the current

iteration. Based on the activities pending, teams may later

visit user stories which where were developed in initial

iterations to complete and polish them the extent needed to

make a formal release.

Hence, the key problem in estimating the size and the effort

required in an iteration using FPA is that all activities required

to be completed towards a function or user story in a project

lifecycle may not necessarily be taken up in a single iteration.

The same story may be visited several times over subsequent

iterations either to refine it or to add more complexity or

undertake additional activities like end to end testing.

Change Management in agile Projects: In order to

accommodate change, agile methods recommend that the

customer or product owner is able to re-prioritize stories,

introduce additional complexity or add new stories into the

product backlog. During the iteration planning meeting the

team is expected to understand the new prioritized backlog

and decide which items they can take up in the iteration as per

the DoD. Hence in an agile project life cycle estimation is

something that frequently occurs and is continuously revised

and updated.

Evolutionary Design: While agile teams deliver working

code in each sprint, they do not generally have a well defined

design phase as in waterfall based projects and instead work

around evolutionary design practices. Most teams start by

having a basic working design which is refined and re-

factored as the project progresses. Sometimes more than one

design alternative may be tried out, which could cause

significant code changes to user stories which are already

developed in early iterations [4]. Another reason for design or

code refactoring may be driven by business or regulatory

needs which may demand adjustments in delivered code.

Again this is an aspect affecting estimation of an iteration.

Testing and Bug Fixes: In agile projects the code delivered

in a iteration is tested by the product owner and bugs may be

recorded which are typically taken up by project teams in

subsequent iterations. Most agile teams have dedicated

iterations where they do not accommodate any new user

stories, but only work on refining and bug fixing on existing

user stories in order to make them release worthy. This again

adds another dimension to the estimation process.

Complexity is handled by most agile teams iteratively. So a

complex user story may be broken up to show a simple

working code which is iteratively enhanced with each

iteration. An example of this is providing a multi language

capable website. In early iterations a single language page

may be developed, which is subsequently enhanced and tested

for multiple languages..

Hence, upfront committing to a function point count to be

delivered in a iteration is very difficult for an team as all these

varied dimensions are also to be considered.

4 Estimation in the OutSourcing Context

 Outsourcing with off-shoring software projects is a

popular trend in organizations whose core activity is not

developing software with the chief motive being cost

reduction [19]. Most companies outsourcing software use

competitive methods to request quotes from vendors and

chose the vendor who most closely meets their expectations

in terms of cost, quality, skill levels etc. The pre-dominant

estimation method preferred in an outsourced scenario is

Function Point Analysis (FPA) with the development process

being waterfall based and vendors working on the concept of

formal signed off requirements.

FPA is very popular when development work is outsourced

because it is a standard technique [10] and is considered a

scientific approach to sizing software and an absolute metric

which can be computed, irrespective of the team executing

the project. The organizational productivity benchmark

typically computed in hours per function point (technology

specific) is applied to the Function Point count to arrive at the

effort and the schedule for a project. It enables companies to

verify if the vendor estimates are realistic and within accepted

range.

4.1 Agile Estimation in an Outsourcing Context

 With agile development methods gaining popularity

organizations want to realize the benefits of such methods

while continuing with the trend of outsourcing. Organizations

have started expecting their vendors to execute projects using

agile development techniques.

Given their variable nature it is difficult to fix scope, budget

and schedule in agile projects. It is recommended to work

with a fixed budget or schedule keeping the scope variable or

within a range of possible features that could be delivered

[20]. However, these techniques work well only if the projects

are in-house developments of the company concerned or if

there is a high degree of trust between a customer and a

software vendor. In a competitive situation, organizations

expect vendor companies to provide an upfront effort estimate

and commit to schedules, features and resources even while

developing projects the agile way. These estimates may have

to be done during contracting and much before a team is

assembled to execute the project. Since story points are not

counted by scientific methods, they are not accepted as a

credible estimation technique in this context and customers

typically want function point based estimates.

Offshore vendors assemble bid teams consisting of

representative members to help in creating estimates for agile

projects during contracting stage either using Function Point

Analysis or work breakdown structure or other suitable

methods.. Such estimates are at a macro level and may vary

significantly once the project execution commences and micro

level details are obtained.

A common problem during project execution is the

expectation on the team to produce iteration level estimates. It

is possible that members of a team assembled for a project and

may not have worked with one another before or may not be

ones with similar experience or may not have worked in the

problem domain or technology [4]. This problem is further

complicated when there are multiple agile teams executing a

large project. So teams may not be skilled enough to produce

estimates and with the absence of organizational metrics or a

standard way to estimate the iterative development process, it

is very difficult to size agile iterations with team inputs.

Another aspect that agile methods implicitly assume is an

atmosphere of trust. They assume that developers truthfully

estimate for stories and as iterations progress, take up more

and more stories and increase their pace of working and

become better at estimating [21, 22]. Secondly customers or

product owners are expected to believe in the subjective

developer estimates and give the team enough time to achieve

a predictable pace of working and delivering user stories.

This is again a difficult situation in a competitive vendor

customer relationship.

5 Proposed Solution

 Since function point based counts are standard and

accepted we propose in this paper to extend the techniques of

function point analysis to help in estimating agile iterations.

The key considerations being

 Accommodate for increasing complexity and

iterative design

 Accommodate for the same story to be worked upon

in multiple iterations based on the Definition of

Done

We have used FPA method of calculating project complexity

using a value adjustment factor [10,23] and the Caper Jones

suggested activity scope percentage for software projects [11,

12] to quantify the size of the stories taken up in agile project

iteration in the form of Function Points. Through this we

propose to provide a scientific basis for computing the size of

an iteration, such that the estimates can be verified, validated

and defended.

5.1 Function Points and General System

Characteristics

 Function Points are counted in a two step process. The

first step is to classify each feature in the system against one

of the major functions i.e. External Inputs / External Outputs /

External Queries / Internal Logical Files / External Interfaces

and arrive at the function point count, which is called the raw

or unadjusted function point [10], [23]. The raw function

points are adjusted by computing a value adjustment factor

based on the possible impact of a set of fourteen general

system characteristics (GSC) of the system to be developed.

These factors are listed in for reference in Table 1 [10, 23, 24]

GSC Description

Data

Communications

How many communication facilities are

there to aid in the transfer or exchange of

information with the application or

system?

Distributed Data

Processing

How are distributed data and processing

functions handled?

Performance Was response time or throughput

required by the user?

Heavily Used

Configuration

How heavily used is the current hardware

platform where the application will be

executed?

Transaction Rate How frequently are transactions executed

GSC Description

daily, weekly, monthly, etc.?

On-line Data

Entry

What percentage of the information is

entered On-Line?

End -User

Efficiency

Was the application designed for end-

user efficiency?

On-line Update How many ILF‟s are updated by On-Line

transaction?

Complex

Processing

Does the application have extensive

logical or mathematical processing?

Reusability Was the application developed to meet

one or many user‟s needs?

Installation Ease How difficult is conversion and

installation?

Operational Ease How effective and/or automated are start-

up, back-up, and recovery procedures?

Multiple Sites Was the application specifically

designed, developed, and supported to be

installed at multiple sites for multiple

organizations?

Facilitate

Change

Was the application specifically

designed, developed, and supported to

facilitate change?

Table 1: General System Characteristics

Each characteristic has associated descriptions that help

determine the degrees of influence of the characteristics. The

degree of influence ranges on a scale of zero to five, from no

influence to strong influence. The IFPUG Manual provides

detailed evaluation criteria for each GSC [10]. The GSC is

scored based on their influence on the system being counted

and this provides the value adjustment factor. The unadjusted

Function Point count is multiplied by the value adjustment

factor to arrive at the Adjusted Function Point count. The

resulting score can increase or decrease the Raw Function

Point count by up to 35% [10, 23, and 24].

The GSC can be adjusted to size code complexity by varying

the degree of influence of the relevant parameters. For

example the FP size of a feature‟s adherence to performance

guidelines may be estimated by varying the degree of

influence of the „Performance‟ GSC. A re-usable application

having the requirement to be configurable or having the

ability to be installed in multiple sites (or tested on multiple

devices for a mobile application) may be sized by varying the

influence of „Multiple Sites‟ and/or the „Facilitate Change‟

characteristic.

5.2 Activity Scope as described by Caper Jones

 Caper Jones in a paper [11, 12, 25] has described that

software projects include many more activities than just

coding or programming and has published a list of activity

patterns for different kinds of projects. This is a list of around

25 typical activities that are undertaken in software projects

and the percentage of effort associated with each activity. He

recommends that teams understand which of the most likely

activities would be performed in a project and use the activity

effort percentage as a guide to estimating software projects.

(Ref: Table 2)

Table 2: Caper Jones list of the 25 most applied activities in

Software Projects with their % contribution to the estimate

Activity % Weightage

Requirements 3.84

Architecture 2.25

Project Plan 1.33

Project Management 6.75

Initial Design 3.84

Prototype 4.5

Detail design 4.5

Design Reviews 3.02

Coding 13.5

Unit testing 4.5

Configuration management 0.41

Code inspection 4.5

Formal integration 2.71

Functional testing 4.5

Integration testing 3.84

System testing 3.38

QA 4.5

Field testing 3.02

Independent verification & validation 5.42

Independent third party test 3.38

Acceptance testing 1.94

Installation & training 1.94

User documentation 9.67

Reuse acquisition 1.13

Package purchase 1.63

Total 100%

5.3 Extension of 5.1 and 5.2 to accommodate

Agile Iterative Development

 Our proposition is to use the concepts in section 5.1 and

5.2 to express the size of an agile iteration in Function Points.

Release Planning: Compute the size of all the stories in a

release using Function Points based on the information

available and estimate the effort / schedule using the

organizational productivity baseline creating the macro level

estimate.

Definition of Done for a release: Discuss and come to an

agreement on the definition for done (DoD) for a release and

map it to the activities as per Caper Jones activity scope. The

weights given by Caper Jones are an indicator and they may

be adjusted as each team sees fit. Table 3 shows definition of

done for one of our reference projects. The percent of the

applicable activities in our sample project was 87.57% and

we normalized the same to100%.

Table 3 : Activities as applicable to a reference project for a

release

Sizing an Iteration: In every iteration, an agile team works

on new stories and existing stories. The size of an iteration is

the size of the quantum of work done in the iteration. We

propose to size an iteration as follows:

 Compute the total size of the stories in an iteration in

Function Points

 Identify the percentage of activities to be undertaken

towards new and existing stories, i.e. the Definition of

Done (DoD) for the New stories and DoD for existing

stories in an iteration as mapped to Caper Jones

applicable activity scope (DoD for the release)

 Apply this percentage to the total size of the stories to

arrive at the iteration size.

DoD for New Stories:. As explained in section 3, the team

may not necessarily undertake all the activities related to a

Sl No Activity Group Activity % Weightage % Applicable Normalized %

1 Requirements Requirements 3.84 3.84 4.4

2 Architecture Architecture 2.25 2.25 2.6

3 Planning Project Plan 1.33 1.33 1.5

4 Planning Project Management 6.75 6.75 7.7

5 Design Initial Design 3.84 3.84 4.4

6 Design Prototype 4.5 4.5 5.1

7 Design Detail design 4.5 4.5 5.1

8 Design Design Reviews 3.02 3.02 3.4

9 Coding Coding 13.5 13.5 15.4

10 Coding Unit testing 4.5 4.5 5.1

11 Coding Configuration management 0.41 0.41 0.5

12 Code Review Code inspection 4.5 4.5 5.1

13 Integration Formal integration 2.71 2.71 3.1

14 Testing and QA Functional testing 4.5 4.5 5.1

15 Testing and QA Integration testing 3.84 3.84 4.4

16 Testing and QA System testing 3.38 3.38 3.9

17 Testing and QA QA 4.5 4.5 5.1

18 Testing and QA Field testing 3.02 3.02 3.4

19

Independent

Testing

Independent verification &

validation 5.42 5.42 6.2

20

Independent

Testing Independent third party test 3.38 3.38 3.9

21 User Acceptance Acceptance testing 1.94 1.94 2.2

22 User Acceptance Installation & training 1.94 1.94 2.2

23 Documentation User documentation 9.67 0 0.0

24 Reuse acquisition 1.13

25 Package purchase 1.63

Total 100 87.57 100.0

story in the same iteration. New story refers to the first time a

story is worked upon in an iteration.

Table 4: Activities as applicable to new stories in a iteration

Activity Group % Weight

As Applicable for

New Stories (%)

Requirements 4.4 4.4

Base

Architecture

2.6

Planning 9.2 9.2

Design 18.1 12.7

Coding 21.0 14.7

Code Review 5.1

Integration 3.1 1.5

Testing and QA 22.0 11.0

Independent

Testing

10.0

User Acceptance 4.4

Total 53.5

For example Table 4 depicts the activities that were

undertaken towards new stories in an iteration for a reference

project. Since the applicable activities are 53.5% of the total

activities to be undertaken for the project, the size of the new

stories has been measured as 53.5% of the final size of the

same stories that were to be delivered as part of the release.

The rationale for only undertaking 53.5% of the total work in

the specific iterations is as follows.

With reference to Table 4: Only a percentage of the design as

delivered at the end of the project was undertaken in the

iteration and this was refined in subsequent iterations. This

also meant that code towards realizing the design was also

spread across multiple iterations with bulk of the initial

coding being done in the current iteration. Similarly code

review for new stories was formally done in subsequent

iterations hence this activity was not sized in the current

iteration. Testing for the stories was carried out across

iterations with about 50% of the testing activity being

undertaken in the current iteration and Independent testing

being taken up in the subsequent iteration. The remaining

46.5% of function points remaining towards realizing the

same set of stories for the release were spread across the

remaining iterations. This number is not a fixed percent but

an example to depict the iterative development cycle.

DoD for existing stories:E very iteration team would also be

working on stories delivered in earlier iterations, either for

refactoring code on account of design evolutions or an

account of testing and bug fixes. Again using the Caper Jones

activity scope identify the relevant activities applicable for the

iteration towards existing stories (DoD of existing stories)

and use the percentage to revise the size estimate of the

stories.

Table 5: Activity break up for a set of stories across multiple

iterations

Table 5 shows as an example the activity break up for a set of

new stories of total size 118.81 FP spread across 4 iterations

and user acceptance testing (UAT). Since only 97.3% of the

activities as per Caper Jones scope was applicable, the total

applicable size is 115.6 FP. The new stories were taken up in

„Iteration N‟ and the code was reworked / re-factored across

the next 3 iterations before it was released for user acceptance

testing. Code Review for the stories were taken up in Iteration

N+1 and Iteration N+2 (to accommodate for the review

process and rework on account of review comments), while

the design evolution took place across 3 iterations with about

70% of design being undertaken in Iteration N. Similarly

testing was spread across 4 iterations, with about 50% of the

testing happening in Iteration N and the remaining % spread

across the other 3 iterations. Table 5 thus gives the size of a

set of stories as spread across the multiple iterations in the

project. This table is an example and in this manner

development teams could calculate the size of new and

existing stories in each iteration.

Sizing Code Complexity: As described in Section 5.2: GSC

can be adjusted to size the impact of varying code

complexity. We propose to size the impact of increasing code

complexity as follows:

 In the initial iterations size stories with minimal

complexity based on the system general

characteristics as applicable for the iteration.

 In later iterations when the same stories have to be

enhanced for complexity like for example tuning an

application to meet performance criteria, the same

story may be sized by varying the appropriate GSC.

 The size impact on account of the enhanced

complexity would be a difference between the two

sizes.

Base Architecture: Activity towards creating a base

architecture for the application will be spread across initial

Iteration

N

Iteration

N+1

Iteraion

N+2

Iteration

N+3 UAT

Size using FPA 118.81 118.81 118.81 118.81 118.81

Applicable Size

in FP 115.60 115.60 115.60 115.60 115.60

Requirements 4.40% 4.40%

Design 18.10% 12.67% 2.72% 2.72%

Coding 21.00% 14.70% 3.15% 3.15%

Code Review 5.10% 2.55% 2.55%

Integration 3.10% 1.55% 0.78% 0.78%

Testing and QA 22.00% 11.00% 3.67% 3.67% 3.67%

Independent

Testing 10.00% 5.00% 1.67% 1.67% 1.67%

Planning 9.20% 9.20%

UAT 4.40% 2.20% 2.20%

Total Applicable

activity 97.30% 53.52% 17.86% 14.52% 7.53% 3.87%

Applicable Size

in FP 63.59 21.22 17.26 8.95 4.59

iterations and the activity percentage associated needs to be

accommodated in the sizing for an iteration. Since this affects

the whole release and is not dependant on a specific set of

stories, its size would be a percentage of the total FP size of

the release.

Change Management: Changes can be accommodated again

using the same techniques as mentioned above i.e.

 Estimate the total size of the change in FP

 Calculate the spread of the change in FP across

iterations based on the definition of done

 Estimate the impact of the change on other user

stories in FP.

We have applied these techniques on 3 reference projects that

we implemented for a client, who is one of the world‟s

leading provider of technology and services to hotels and

hotel chains.

6 Reference Projects

 Our reference project‟s objective was to enable our

client to provide their customers with hotel booking

capabilities on mobile devices. This product was to be white

labeled and used by their customers namely various hotel

chains and properties across the world. This application was

developed for deployment on Android phones, iPhone and

iPad and on mobile browsers.

The development was undertaken as three separate projects

on account of the varying technologies and development

skills required. The activity scope of these projects included

Requirement Analysis, Architecture, Design, Development

and Testing including Performance Testing and Usability

Testing. The client wanted the application to be developed

using agile-SCRUM practices. Each project had its own team

for the complete project engagement and undertook all the

required software development life cycle activities. The

application was to be deployed and tested on multiple devices

for each project and it also had to support 3 languages

(English / Spanish and Japanese). The applications had to

meet stringent performance requirements. The code

developed was formally reviewed by the client‟s technical

team. Each project had 6 iterations of 3 weeks each and a user

acceptance testing phase for 6 weeks. The teams were a mix

of experienced and junior developers and they were working

together for the first time.

We first estimated the size of the projects as delivered to the

customer in Function Points (Table 6).

Table 6: Size of each reference project with total effort in FP

Project Size in

FP

Effort (Person

Months)

Project 1 Android 468.2 31.8

Project Size in

FP

Effort (Person

Months)

Project 2 iOS for iPhone

and iPad

608.69 47.7

Project 3 Mobile Web

Project

457.2 37.5

We applied the techniques outlined in Section 5 to size the

iterations of each project. The initial iteration did not have

any existing stories to be worked upon. For all the three

projects, in the initial two iterations, the architecture and the

reference framework for the entire application were put in

place and the size of the iterations were adjusted accordingly.

The size of the initial iteration was a percentage of the total

size of the new stories along with the size of the percent of

work undertaken towards creating the base framework.

Subsequent iterations had a combination of new and existing

stories. All the stories were worked upon in the first 5

iterations and the last iteration i.e. iteration 6 was dedicated

towards testing and bug fixing , refining and polishing the

code to make it release worthy.

Table 7: Productivity calculation for Project 1 and its

variation

We checked to see if the effort expended was comparable to

the size computed using our methods. We calculated the

productivity of each iteration and checked for the variation.

Table 7 shows the size of each iteration (including UAT) and

the productivity variation for Project 1 while Table 8 , Table

9 show the same metrics for Project 2 and Project 3.

Table 8: Productivity calculation for Project 2 and its

variation

Iteration Size (FP) Effort Productivity Variation

Iteration1 55.94 4.20 12.0 11%

Iteration 2 53.98 4.13 12.2 13%

iteration 3 80.86 5.7 11.2 4%

Iteration4 87.00 5.6 10.2 -5%

Iteration5 91.44 5.5 9.6 -11%

Iteration6 75.07 4.4 9.4 -13%

UAT 23.88 2.3 15.3

468.2 31.8 10.8

Project 1 Android

Iteration Size (FP) Effort Productivity Variation

Iteration1 55.94 4.6 13.2 8%

Iteration 2 74.4 5.9 12.7 4%

iteration 3 113.50 8.9 12.6 3%

Iteration4 117.30 8.7 11.9 -3%

Iteration5 118.90 8.7 11.7 -4%

Iteration6 97.6 6.9 11.3 -7%

UAT 31 3.9 20.4

608.60 47.7 12.2

Project 2 iOs

Table 9: Productivity calculation for Project 3 and its

variation

As we can see the productivity varies between +/- 15% of the

mean showing that there is a direct correlation between effort

expended in an iteration and size computed using this

method. Another trend which can be clearly observed is that

in the initial iterations the team was new and having lesser

experience in the technologies and hence they worked with

lower productivity as compared to later iterations. We have

discarded the effort spent in user acceptance testing in our

computation. The graphs below (Figure 2, Figure 3) also

show that there was a direct correlation between the effort

expended in iteration and the size of the iteration computed

using this method in all the reference projects.

Figure 2: Cumulative Size versus Cumulative Effort for

Project 1

There is a slight flattening of the curve at the top which is on

account of user acceptance testing being conducted by the

client and our role being limited to providing support and

undertaking bug fixes.

Figure 3: Cumulative Size versus Cumulative Effort for

Project 2

7 Conclusion and Future Work

 As we can see from the data above this approach to

estimating the iteration size in agile projects has promise and

needs further exploration. We have applied this method only

on projects for mobile devices. We need to extend this idea to

larger projects. In order to standardize this technique multiple

projects will have to be sized using this method to see if

organization productivity benchmarks can be computed

reliably and used in new project estimations. The advantage

of using this approach is that we can statistically arrive at a

method of computing the number of stories which can be

realistically taken up in an iteration based on the

organization‟s productivity baseline. However this idea needs

to be verified by applying it on a live project from the outset.

In cases where requirements are not reasonably well

documented in early stages, it may be useful to initially size

iterations using story point methods and subsequently apply

the extended function point technique to validate if the effort

to stories ratio is consistent and feasible.

We have not done research on how a team‟s morale may be

affected due to an estimator making the estimates as opposed

to the team as prescribed by the agile manifesto. We need to

examine if such estimates will have the required buy in from

execution teams, through independent studies.

Another area that needs exploration is the pre-game phase or

iteration zero as called by some, where the initial work on a

project happens like putting the team together, doing release

planning, capturing basic requirements, setting up the

infrastructure etc. We have not identified a method of

estimating the size of this phase.

Variations of Function Point counting techniques like MK II

Function Points [27] have to be further explored to see if they

offer alternative methods to size iterative development.

8 References

[1] K. Beck and C. Andres. “Extreme Programming

Explained: Embrace Change”. Addison-Wesley,2nd edition,

2004

[2] A. Cockburn and J. Highsmith. “Agile Software

Development: The People Factor”. IEEE Computer,

34(11):131–133, 2001

[3] M. Doernhoefer. “Surfing the Net for Software

Engineering Notes”. SIGSOFT Software. Engineering. Notes,

31(1):5–13, 2006

[4] Experience of Executing Fixed Price Off-shored Agile

Project , A. Udayan Banerjee*, B. Eswaran Narasimhan *, C.

Kanakalata N *

[5] Agile Estimation Using Functional Metrics, Thomas

Cagley

[6] Improving Estimations in Agile Projects: Issues and

Avenues - Luigi Buglione, Alain Abran

Iteration Size (FP) Effort Productivity Variation

Iteration1 55.94 5.0 14.3 11%

Iteration 2 54.0 4.9 14.4 12%

iteration 3 80.86 6.6 13.0 1%

Iteration4 87.00 6.5 11.9 -8%

Iteration5 85.44 6.5 12.1 -6%

Iteration6 70.07 5.1 11.6 -10%

UAT 23.88 3.1 20.6

457.17 37.5 12.9

Project 3 Mobile Web

55.90

109.90

190.80

277.80

369.20

444.30
468.20

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Cumulative Size vs. Cumulative Effort Project 1

Cumulative Size vs.
Cumulative Effort

Effort in Hours

Size
 in

 FP

55.94
130.34

243.84

361.14

480.04

577.64608.69

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Cumulative Size vs Cumulative Effort
Project 2

Cumulative Size vs
Cumulative Effort
Project 2

[7] M. Cohn, Agile Estimation and Planning: Addison-

Wesley, 2005.

[8] Ceschi, M., Sillitti, A., Succi, G. & De Panfilis, S. (2005)

Project Management In Plan- Based And Agile Companies.

Ieee Software, 22, 21-25.

[9] Jones, Capers; Applied Software Measurement; McGraw

Hill, 2nd edition 1996; ISBN 0-07-032826-9; 618 pages

[10] http://www.ifpug.org/

[11] Software Cost Estimating Methods for Large Projects,

Caper Jones

[12] Software Cost Estimation in 2002 by Capers Jones,

Crosstalk magazine

[13] Using Function Points in Agile Projects - Célio

Santana1,2, Fabiana Leoneo2, Alexandre Vasconcelos2, and

Cristine Gusmão3

[14] Using function points in XP – considerations, Andrew M.

Fuqua

[15] A User Story Primer – Dean Leffingwell With Pete

Behrens

[16] Michael Cohn – Succeeding with Agile

[17] The Scrum Papers: Nut, Bolts, and Origins of an Agile

Framework - Jeff Sutherland and Ken Schwaber

[18] http://www.scrumalliance.org/articles/105-what-is-

definition-of-done-dod

[19] J Sauer. “Agile Practices in Offshore Outsourcing – An

Analysis of Published Experiences”, IRIS 29, Helsingborg,

Denmark, 2006

[20] Fowler, M. & Highsmith, J. (2001) The Agile Manifesto.

Software Development, August

[21] Abrahamsson, P., Warsta, J., Siponen, M. T. &

Ronkainen, J. (2003) New Directions On Agile Methods: A

Comparative Analysis. Ieee, 244-254

[22] Levy, J. V. (2003) If Extreme Programming Is Good

Management, What Were We Doing Before?

Edn, 48, 81-82, 84.

[23] http://www.softwaremetrics.com/fpafund.htm

[24] http://www.qpmg.com/fp-intro.htm

[25] Software Engineering An Introduction – Fakhar Lodhi

[26] Jones, C., Programming Productivity, McGraw-Hill,

New York, (1986)

[27] MK II Function Point Analysis Counting Practices

Manual - 1998

http://www.ifpug.org/
http://www.scrumalliance.org/articles/105-what-is-definition-of-done-dod
http://www.scrumalliance.org/articles/105-what-is-definition-of-done-dod
http://www.softwaremetrics.com/fpafund.htm
http://www.qpmg.com/fp-intro.htm

