
Model-based Generation of Workunits,
Computation Sequences, Series and

Service Interfaces for BOINC based Projects
Christian Benjamin Ries

Computational Materials Science
and Engineering (CMSE)

University of Applied Sciences
Bielefeld, Germany
www.visualgrid.org

Christian Schröder
Computational Materials Science

and Engineering (CMSE)
University of Applied Sciences

Bielefeld, Germany
Christian.Schroeder@fh-bielefeld.de

Vic Grout
Creative and Applied Research for

the Digital Society (CARDS)
Glyndŵr University, United Kingdom

v.grout@glyndwr.ac.uk

Abstract—Berkeley Open Infrastructure for Network Com-
puting (BOINC) is a popular Grid Computing (GC) frame-
work which allows the creation of high performance computing
installations by means of Public Resource Computing (PRC).
With BOINC’s help one can solve large scale and complex
computational problems. A fundamental element of BOINC is
its so-called workunits (WUs), each computer works on its own
WUs independently from each other and sends back its result
to BOINC’s project server. Handling of WUs is a challenging
process: (1) the order of used input files is important, (2) even
more contributory components has to know how these input files
are structured and on which data format are they based for an
accurate WU processing. Small modifications can have a high im-
pact to a BOINC project. Indeed scientific applications, BOINC’s
components, and third-party applications all have to be adjusted
to have a correctly running project with desired the functionality.
This can be a highly error-prone and time-consuming task. Inthis
paper we present a Unified Modeling Language (UML) model to
give a high abstraction for BOINC’s WU handling. Only a model
description and a corresponding code-generator are necessary to
construct a WU handling infrastructure with less development
and implementation effort: (a) one model to fit most WU cases
and (b) essential interfaces for WU access.

Keywords—BOINC, Code Generation, Modelling, UML, Work

I. I NTRODUCTION

SEt-up of a Berkeley Open Infrastructure for Network
Computing (BOINC) project can be a challenging and

sophisticating task. Despite the fact that it is necessary to
implement a scientific application (SAPP) [10] and to establish
a fully operable server infrastructure [7], moreover it is neces-
sary to describe how SAPP and all BOINC components han-
dle computational jobs. Here, participating clients retrieve a
project specific SAPP from a BOINC project (BP) server along
with so-called workunits (WUs), i.e. a number of parameter
usually provided in data files of ASCII or binary format that
are optionally needed by the application to perform specific
tasks. The idea in this paper is to have a Unified Modeling

This project is funded by the German Federal Ministry of Education and
Research.

Language (UML) model and code-generation (CG) facilities,
which have to support developers with the ability to generate
all required WU configurations, interfaces for opening and
accessing WUs, and creating one or more computational series
and sequences, i.e. different computational jobs with varied
runtime configurations.

A. Unified Modeling Language & Object Constraint Language

One of the primary goals of UML is to advance the
state of the industry by enabling object visual modeling tool
interoperability [15]. Since version 2.2, UML has 14 different
diagram types subdivided in three categories: (1) structure
diagrams, (2) behavior diagrams, and (3) interaction diagrams.
In this paper we use theClassand State Machinediagrams.
Class diagrams are used to specify system related elements,
e.g. a class can describe a SAPP. An instantiated class element
is seen as an object and mostly it is an executable instance.
UML state machines help to model discrete behavior through
finite state-transitions systems. It can be used to visualize the
current state of one system, and orthogonal regions allow to
model client-server state-machines where each side is working
independently. The Object Constraint Language (OCL) is used
to express constraints and properties of UML model elements
[16].

B. BOINC’s Workunit System

BOINC uses a fine-grained file based system to set-up
WUs for a BOINC project (BP). WUs are packages with
descriptions of input and output data needed by the SAPP
to perform specific tasks [1]. Before a WU can be added to
a BP, it is necessary to create several input files with planned
to use datasets for one computation. Two additional template
files are required: (1) an input template to describe which files
are used as input, how they are ordered and which flags for
them are set, and (2) a result template to describe how output
files must be named by the SAPP, or how big in bytes they
can be [3].

C. Research Topics

To make the handling of WUs easier some questions arise
and we will work on them within this paper.

• Which UML elements are necessary to create a model
for WU creation?

• How can we model a sequential queue for WU progress-
ing? The answer to this question should make it possible
to have WUs with the need of pre-processed results by
one or more other WUs.

• How can BOINC’s validator and assimilator access re-
sult’s data on a higher abstraction level? In addition,
is it possible to have only one interface or description
which makes it possible to allow access by all BOINC
components? Here, BOINC’s validator is responsible for
validating a WU and developers of a BP can implement
their own validator routines. The default behavior of
BOINC’s assimilator is storing of results within a file
system.

• How can we track the lifetime of WUs when they are
used in different scenarios, e.g. one WU is used within a
sequential performed queue?

This paper can be seen as the conjunction of previous work
[6], in which BOINC’s services are described with UML to
be deployable on server farms. This is why «Application» is
added in Fig. 1 where previous work is followed in this paper.

The remainder of this paper is organised as follows. Section
II describes the problematic of BOINC’s architecture to handle
different defined WUs for varied kinds of computations. Next,
Section III proposes our idea as to how we can fill the gap
of BOINC’s problematic to utilize it with an easier and less
vulnerable interface. In Section IV we use our UML model
and apply it to a small case-study. Finally, Section V concludes
this paper and Section VI suggests future work.

II. PROBLEMATIC OF BOINC’S ARCHITECTURE

WUs are packages with descriptions of input and output
data [1]. These WUs are fundamental pieces for BOINC
and contain information on how these data are defined and
formatted, i.e. binary data or plain text and functionalities to
describe how several data items can be used. The flexibility
to define arbitrary structured WUs and input files can be a
complex issue. It has been shown, that WUs within a BP are
crucial elements and are essential for the BP success [9], [11].
At the time a BP is being established it must be defined how
all BOINC components have to handle WUs, otherwise WUs
will stop immediately wrongly configured and, as a result,
without proper working components. A BOINC administrator
needs answers to several questions before a BP can be set-
up as a fully operable system. Certainly we think about our
computational concern and how we can solve this problem
firstly. In this paper we will not discuss this difficulty, previous
work has focused on this field of activity [5], [10]. In this paper
we will discuss a solution for the following questions:

• Is all information about WU’s structure available at the
beginning of it’s use or are they gathered continuously

during BOINC’s runtime? Here, it is also important to
define how continuously created WUs differ from each
other. It is necessary to know if their content differs and
if they must be restructured or not, e.g. if different sigma
values have to be set for statistical computations.

• How should WUs be opened and how should all poten-
tially contained sub-elements be handled by a SAPP? Are
the nested data defined as plain-text, or as encrypted text,
or maybe a binary format?

• It is not only the WU input files that are important.
The result files are also essential for the success of a
computation. In the later BOINC process they must be
validated and subsequently stored by an assimilator to
make results usable for particular later cases.

• The assimilation process is used to store results, but what
if one WU does not have enough results? E.g. one WU
is distributed to three hosts, a minimum of two results
must be returned but in one scenario two hosts are too
late — deadline is reached — and only one result is
available. In this case, BOINC’s transitioner will flag the
missing results asoverdue, then directly flagged asready
for assimilationby BOINC’s validator [2] and after this
the assimilation process could create a duplicated WU
for a retry. This can be done periodically until the WU is
completely returned and successfully validated, or after
some failed tries the available results can be stored in a
database or on the file system which can be defined for
failed results.

• Under some circumstances a computation relies on dif-
ferent sets of runtime parameters or they must adhere to
a sequence of different runs, i.e. a result of a WU must
be used as input for another WUs. In this case, the results
must be converted to the right format of a new WU and it
can be necessary to modify mentioned attributes for the
different purposes of a WU, e.g. an unit conversion can
be required before a WU result is usable for subsequent
computations.

BOINC’s architecture relies heavily on a fragile methodology;
if one or more software components are misconfigured or
disabled the WU handling chain will be stopped on the
failed element, i.e. if the validator is not working properly
no validation of returned WU results is executed and as a
consequence the WU will never complete.

BOINC’s WU consists of two template files, additional input
files and, during computation, created output files. Template
files are based on an XML [12] format and therefore they are
not really human readable and XML-tags can be misspelled
very easily. More important is the fact that all input files must
be described within this template file and must have a specific
order. In the header of the input template the numbering of
input files is defined. After this part each file has optional
attributes, e.g. a file is sticky and will not be deleted afterone
computation on one host. A similar approach is used for the
description of result files. These files and the part of BOINC’s
framework for WU creation are elementary and every BOINC

Fig. 1. Unified Modeling Language (UML) class diagram to abstract workunit structures. In the top area differentRangesfor values withinInput’s Datafields
can be assigned. On the right hand-sideDatafield allows to configure an arbitrary format for input and output files, the enumerationFileTypesprovides
different standard formats. In case oneDatafield has#File as value fortype no associatedattributesor fields are allowed. Three stereotyped interfaces helps
to access input and output files: (1) «InterfaceDataset», (2) «InterfaceValidate», and (3) «InterfaceAssimilate». Associations enable one to set-up different
workunit processing scenarios: (1) static processing, (2)continuous processing, and (3) dynamic processing as seen in Fig. 2.

administrator or developer must give attention to this process.
Several steps are required to add WUs for one BP: (1) one
or more input files must be copied to BOINC’s download
hierarchy, (2) mentioned template files must be created, and
(3) all input files must be arranged in the right order when
BOINC’s functionalities for WU creation are called. Each
change within one of these steps has an impact on the other
steps and must be adapted.

III. M ODELING OF WORK PACKAGES FORBOINC

For computations with BOINC it is necessary to have one
or more WUs which contain descriptive information on how
to execute these computations. WUs could contain several
files, e.g. additional configurations, data sets, definitions of
algorithms and arbitrary extra files. Fig. 1 shows one part of
our UML definition for WU definition. Here, we can define
WU’s input and output files and multiple data fields for these
files.

The three stereotypes «Workunit», «Input», and «Output»
are directly based on BOINC’s WU system. All tag-values
of these three stereotypes are directly mapped to attributes of
BOINC’s templates, the only exception is tag-valueunique. If
uniqueis true all input files are renamed to be unique within
a BP. The other presented stereotypes are extensions to fulfil
our UML model.

«Workunit» must be associated by «Series» and that must
be associated to «Application» [6]. This association unites
previous work with this paper.

A. Input-/Output Files and Datafields

«Input» is used to describe input files and «Output» de-
scribes result files. A WU can own several file instances and
each of them can have distinct «Datafields». «Datafields» are
used to describe data for input files, the data format is not
restricted and for this reason two methods are defined: (1)
open() is used to access data, and (2)store() is used to add
datasets. The reason for these methods is, that the embedded
data can have different formats, i.e. values have to be encrypted
during saving or specific embedded function calls must be
used during data access in case a file is packed as a ZIP-
archive [18]. These functions can set by a developer to supply
special opening and storing methods for currently unknown
data types. There is no reason to allow a «Datafield» to be used
by «Input» and «Output» at the same time, as a consequence
only one owner of the root «Datafield» is allowed. This root
and all other instances of «Datafield» have two associations
which can be used to create tree structures with several pieces
of information for a WU embedded in a «Input» file. With
this methodology different structures are possible, e.g. aXML
structure can be created as shown in Listing 1. The use of these
associations is restricted, if one «Datafield» is associated by
attributes, then it can not have additional associations. Each
«Datafield» has the tag-valuesname, type, data, andoptional.
Namemust be user-defined at any time when a «Datafield» is
used, the other tag-values are optional and their use depends on
the task. Listing 1 shows the use of the first three tag-values:

name person, interests, and topicsare names,

Fig. 2. Our UML model allows us to define «Series» in three different ways:
(1) all WUs must be available before a BP is started, (2) during runtime WUs
are created and added continuously, and (3) a mix of the first and second;
some WUs are available at the beginning and during runtime additional WUs
are added to one BP.

Fig. 3. First part of our UML statechart diagram to monitor instances of
«Workunit» and «Series». State’s top region is responsiblefor WU monitoring
and creates new WUs when data is available or next WU in a sequence has to
be performed. The bottom region monitors a «Series» and handles canceling
events for a «Series» instance or if its finished and results can be merged.

Fig. 4. Second part of our UML statechart diagram for WUs. During
computation of one WU, clients can decide to cancel current WU, and
therefore it has a changed WU state. When it is finished it willbe validated,
if this validation failed the exit pseudostate is used. The followed assimilation
state can decide to retry this WU and a new WU is created with same «Input»
values. If this WU is in a sequence, “Next” is used otherwise the statechart
is finished.

type “C.B.Ries” and “Research, Sport”are of the enu-
meration typeFileType::String, and

data mentioned string values are the real embedded infor-

mation.

<person name="C. B . Ries ">
< i n t e r e s t s t o p i c s=" Research , Spor t " / >

</ person>

Listing 1. Example of «Datafield» usage to define a XML structure.

B. Rule-based Creation of Datafield Values

During WU creation data fields of input files or the input
files themselves can be specified by «Range». Therefore values
can be generated by «Range» specializations: (a) «RangeRule»
and (b) «RangeSimple». With «RangeRule» a rule-set for
value creation can be defined. For this purpose the tag-value
rule can be filled with a user-defined rule, e.g. each WU
within a specific «Series» can have a corresponding mode for
algorithms. «Range» defines an operationgetValue()which is
used to query the related «Datafield» value. As shown in Fig.
1 each rule can only modify one «Datafield». «RangeSimple»
is used to have a range-loop for one specific «Datafield»,
for this reason three tag-values are defined: (1)start, (2)
stop, and (3) step. In combination with different additional
rules each call ofgetValue()can increment the lower-bound
valuestart by stepto the upper-boundstop. One «Range» can
be owned by several «Series», as a consequence it must be
possible to retrieve which «Series» is callinggetValue(). For
this reason tag-valueactivated is specified. When this tag-
value is valued bytrue, the association between «Range» and
«Series» can be used to query the currently used «Series».
This allows «Range» to access all information of a «Series»
with associated «Workunits».

C. Continuous Creation of Workunits for Series

As seen in Fig. 2 a BP can have different scenarios for WU
creation:

• Static All WUs are created before a «Series» will be
created. Only these known WUs are handled by a BP.

• Continuous This configuration has no WUs at the be-
ginning of a «Series». WUs are created on demand, e.g.
when new data packages are available or when a time
slot is reached.

• Dynamic In this configuration the previous two possibil-
ities are merged.

These three approaches are supported by our model. «Inter-
faceDataSource» (IDS) is an interface which is implemented
by a «Service» component for WU creation [6]. This com-
ponent could have several connections to data sources. When
these data sources signals new available data packages, IDS
provides with the help ofgetPath()a file path which is usable
for «Input» and a corresponding «Datafield» has#File astype.

Fig. 3 shows the first statechart diagram for our mod-
elling approach. Depending on your BOINC scenario you can
define how WUs are created. For all mentioned scenarios
the statechart will always start at the initial point in the
top-left corner. Immediately the process is subdivided into
two parts with two transitions stereotyped by «Scatter» and
«Detach». The BOINC’s WUs are independently processed on

the client side from other processes. In addition to this WUs
are structure elements and that’s why they are not conceived
to have a behavior. Other components have to deal with them
and as a consequence these components can have behaviour
definitions. While all WUs are public within BOINC’s domain
any component has access and can modify them.

«Detach» creates two orthogonal regions for the lifetime
monitoring of one «Series» and all associated WUs. The top
region is responsible for WU monitoring and the bottom region
monitors the current «Series». The transition between “Idle”
and “Process” is triggered bydataAvailableandnextSequence.
In this transitiondataAvailableis called by the IDS, and there-
upon the file path is used to define a new WU. Fig. 4 shows the
statechart of a single WU. In that statechart “Assimilation” has
a “Next” named exit pseudostate andnextSequenceis triggered
when this exit is entered. As a result a new WU is created. It
is defined that this exit pseudostate can only be used when a
WU is part of a sequence as described in the next section. As
at the initial point of this statechart, all available and new WUs
are scattered and within this statechart are monitored. Thetop
region is left when no more WUs are in process. The bottom
region monitors the lifetime of a «Series» and “Processing”
is only left under two circumstances: (1) the «Series» has to
be canceled and (2) processing is complete and all results can
be merged, which can be done in “Finishing”, e.g. an average
over all results of a monte-carlo simulation can be calculated.

D. Sequences of Workunits

In [4] a system for remote creation of chained WUs is
shown, where one result can be used as input for other WUs.
In our model we can handle a similar task. «WorkunitAssoci-
ation» enables one to define a «Series» with sequential com-
putations. «InterfaceAssimilate» delegates these computations
and can have an association to «WorkunitAssociation». As
mentioned in the previous section the “Next” exit pseudostate
in Fig. 4 is used when one WU is assimilated and has
additional WUs to be performed. The following pseudocode
demonstrates how the assimilation process can decide if one
WU is in a sequence and if a WU follows:

Let ws As w o r k u n i t A s s o c i a t i o n . workun i t . w o r k u n i t S t a t e
I f ws . s e q i d < ws . maximum_sequenceThen
For ro In Output

Set w o r k u n i t A s s o c i a t i o n . i n p u t = ro
Where

w o r k u n i t A s s o c i a t i o n . i n p u t . name = ro . useAs . name
EndFor

EndIf
ws . s e q i d = ws . s e q i d + 1

A new WU is filled with «Datafield» values of one «Output»
when they are associated byuseAs. As a consequenceuseAs
must only be set when «Output» is used for one «Input»
configuration. The fact is, when nouseAsis available then
it makes no sense to check for a sequence.

In the case when all results of a WU are required, BOINC’s
assimilator can create additional WUs with a duplicated con-
figuration, e.g. a WU is missed to complete a sequence and is

too often canceled by BOINC clients or WU’sdelay_bound1

is reached. For this occurrence the WU can be copied and
added to a «Series».

When a WU is part of a sequence, the WU’s name has
a special format to distinguish WUs. A similar approach for
rBOINC is used [4]. rBOINC defines a specialized WU name
and we modify this format to“NNN-SEQ-XX-YY” :

• NNN is the name of the WU, and
• SEQ is a start pattern for a sequence description.

Here the embedded string"-XX-YY-" is defined as follows:
XX is the current sequence id andYY is used for the maximum
number of sequences. This WU name format is used to select
sequenced WUs in section III-F.

E. State of Workunit Computation

«WorkunitState» is associated by «Workunit» (WU) and
from the beginning of its existence the state of a WU can
be queried at any time. The tag-valuestateholds the current
state and can be valued with the following variables:

• CREATED WU is created.
• FAILED WU has failed and can not be finished.
• COMPUTATION WU is in progress and one or more

clients work on it.
• DONE Enough clients have worked on one WU and it

can be moved to the validation and assimilation process.
• VALIDATION WU has to be validated.
• ASSIMILATION WU has to be assimilated.
• CANCELED WU is canceled by an administrator or by

other processes, e.g. when sequenced WUs have failed or
are canceled.

• FINISHED WU is finished and ready for later use, e.g.
to create a new «Series» or to use their computational
results.

For the UML model it is important what the state of a WU is,
as a matter of fact the state value is responsible for deciding
which actions are performed during the WU processing, i.e.
when a WU fails the assimilation process has to decide if
it should be performed again. The accessory methodcheck()
is used to query the current state of a WU and returns
a descriptive text value, i.e. the string contains the current
state with additional more precise information such as the
timestampof the last check or how long a WU is currently
processing. The other two tag-valuesmaximum_sequenceand
seqid are used for the «WorkunitAssociation» in the next
section.

F. Cancelation of Series and Workunits

A WU can be canceled at any time. This is done by
InterfaceWorkunit::cancel()and it is necessary to cancel WUs
which are related to a cancelled WU, i.e. when the current
WU is cancelled and has associated WUs, these must be also
cancelled because they can never be processed with missing
«Input» values. «WorkunitAssociation» has an additional OCL
operation to query which WUs are in the current sequence:

1Deadline of one workunit.

W orkun i tAsso c i a t i o n : : querySequencedWorkun i t s (
s e q i d : In teger , name : St r ing) : Set(I n p u t) ;

querySequencedWorkun i t s =
s e l f . s e r i e s−> s e l e c t (s | s . workun i t−>s e l e c t (

w | w. w o r k u n i t S t a t e . s e q i d > s e q i d
AND
−− NNN−SEQ−XX−YY

w. name . s u b s t r i n g (1 ,
w. name . s t r p o s ("−SEQ")) = name

)
)

With this OCL statement, WUs can be selected which are
later defined within a sequence and as a consequence they
can be cancelled. Following cancelled WUs can have other
associated WUs and they must be cancelled. The call of
Workunit::cancel()is used to cancel one WU. «Series» can
be cancelled with this concept, it is enough to callcancel()
during the iteration of all associated WUs.

G. Service Interfaces

BOINC has several components which need to access «In-
put», «Output» and their embedded «Datafield» fields. Fig. 1
shows three interfaces to access them: (1) «InterfaceDataset»,
(2) «InterfaceValidate» and (3) «InterfaceAssimilate». With
the help of this structure all functionalities can be generated
and this makes the access more comfortable. Changes in the
model are automatically resolved and interfaces are always
valid for use.

IV. CASE-STUDY

Our case-study modifies a movie, i.e. a movie is fragmented
in single image sequences and basic image processing al-
gorithm are applied to these sequences, some results could
be seen on the project website [8]. Fig. 5 shows our use-
case where one video is added byC.B.Ries, with the help of
inotify [13] one BP is triggered bydataAvailableand WUs
are created on demand. During WU adding it has to be clear
which kind of data format is used, i.e. in our use-case we
add a complete movie and subsequent implementations has
to prepare this movie for WU creation. In this scenario we
create ZIP-archives automatically and fill them with a number
of image sequences.

Five «Series» are defined, in this case only the first fourth
can be processed immediately. As shown in Equation 1 the
fifth «Series» needs the result of the first four «Series».









Series 1 (normalize)
Series 2 (painting)
Series 3 (negate)
Series 4 (edge)









⇒ Series 5 (merge) (1)

All «Series» instances have a different runtime configuration,
e.g. in «Series» number four the image is manipulated by
an edge algorithm. The fifth «Series» merges all previous
results where for each image sequence they are added to
a 2 × 2 raster image. On the right-hand side of Fig. 5
these different configurations are shown where the bottom
configuration shows the mode “edge” for image manipulation
and in the top configuration “merge” is assigned.

The fifth «Series» is not started until the other «Series»
has finished. It is important to notice that the SAPP is always
the same, only the input files are changed. In the first four
computations only two files are necessary: (1) configuration
for the mode of configuration and (2) the mentioned ZIP-
archive with movie sequences. The last computation is altered
and needs five files: (1) configuration as before with different
values and (2) all four input files which are created by the
other four computations.

This use-case describes adynamic serieswhere some WUs
available on BP’s start and additional WUs created during
runtime. In the case that one of the first four series is canceled,
the fifth series can never be started because of missing input
data. This is solved by our statechart construction in Fig. 3
where the “Cancelation” state is responsible for cancelling all
related WUs and «Series» instances.

V. CONCLUSION

In this paper we describe a UML model for WU creation
and how the lifetime of WU series and individual WUs can be
monitored. We have shown that only one model description is
necessary to allow BOINC related components to access WU’s
input and output files, i.e. BOINC’s validator and assimilator
must not be changed to access the WU, all necessary code
elements can be generated with one model description. With
our model it is possible to set-up different computational
scenarios where WUs are generated statically, continuously
or mixed by these two approaches. WUs can be added to a
process before a BP is started or they can be added on-demand
during the runtime of a BP. With the help of UML statechart
diagrams we can set-up a BP configuration where we can
define howoverdueor absentWUs are handled. It is possible
to recreate them or if it is wished, the related computational
series and related WUs are aborted.

The proposed UML modeling approach can help to reduce
errors during administration of BPs. As a matter of fact, in
traditional BPs it is necessary to reconfigure and reimplement
several parts when only one configuration is changed, i.e. if
the format of computational results is changed then all related
components such as BOINC’s validator and assimilator have
to be similarly changed. Furthermore, adding or removing
input files for one computation has an impact on several
BOINC parts: (1) non well readable XML input files must
be changed, (2) the call of BOINC’s WU creation tools has
to be altered, (3) altered files has to be copied to BOINC’s
download hierarchy, and (4) (maybe) input files have to be
generated or prepared. Our modeling approach solves all these
problems with the help of UML and OCL.

VI. FUTURE WORK

WU’s performance can have restrictions, e.g. the use of
floating-point operations or allocation of hard disk space can
be limited. Currently it is not clear if UML can help to detect
perfectly fitted values for this purpose. During our use-case
tests we noted a large number of failed WUs because of

Fig. 5. Use-case to modify a movie:C.B.Riesadds a new movie to one server, running applications preparethis movie and fragment it into image sequences,
thereupon these images are zipped into ZIP-archives.DataSourcenotifies a BP which automatically adds all announced WUs to this BP. Adding of one
ZIP-archive implies four added WUs to this BP but with different configurations, each «Series» instance has a different mode for computation:normalize,
painting, negate, and edge. These WUs are processed and the computational results are used as input for a fifth «Series», again with a changed mode for
computation:merge.

wrongly adjusted boundary values for the restrictions men-
tioned. The set-up of this values has to be more precise and at
best automatic. In future work we will work on this objective.

During the writing of this paper implementation with the
support of this model are hard-coded and can not be changed
— they are not flexible during runtime. One idea is to add a
Domain-specific language (DSL) to describe WUs, series and
sequences of computation. It could be possible to interpretthis
DSL during the runtime of a BP, to change the behavior of
this BP and to generate code for all necessary components for
WU handling on-demand.

Additional thought should also be spent on how our pre-
sented model can be used for conventional supercomputers,
where other technologies like Message Parsing Interface (MPI)
[14] or OpenMP [17] are used. It should be clear that MPI has
to process workunits like BOINC, although admittedly with
less input files; instead it uses more numerical values whichare
communicated between all involved computation nodes. The
fact is that BOINC can be perfectly used to solve embarrassing
parallel computational problems with less communication be-
tween all involved nodes. MPI enables one to use a distributed
computing environment with several autonomous interacting
nodes to achieve a common goal.

REFERENCES

[1] D. P. Anderson, C. Christensen, and B. Allen. “Designinga Runtime
System for Volunteer Computing.” inProc. ACM/IEEE SC, 2006, Article
No. 126

[2] BOINC. “Backend program logic,” Internet: http://boinc.berkeley.edu/-
trac/wiki/BackendLogic [Version 2]

[3] BOINC. “Submitting jobs,” Internet: http://boinc.berkeley.edu/trac/wiki/-
JobSubmission [Version 19]

[4] T. Giorgino, M. J. Harvey and G. De Fabritiis. “Distributed computing as
a virtual supercomputer: Tools to run and manage large-scale BOINC

simulations”. Computer Physics Communications, vol. 181, February,
2010

[5] C. B. Ries. “BOINC - Hochleistungsrechnen mit Berkeley Open Infras-
tructure for Network Computing.” Berlin Heidelberg: Springer-Verlag,
2012

[6] C. B. Ries, C. Schröder, and V. Grout. “Approach of a UML Profile
for Berkeley Open Infrastructure for Network Computing (BOINC),” in
Proc. ICCAIE, 2011, pp. 483-488

[7] C. B. Ries, C. Schröder, and V. Grout. “Generation of an Integrated
Development Environment (IDE) for Berkeley Open Infrastructure for
Network Computing (BOINC),” inProc. SEIN, 2011, pp. 67-76

[8] C. B. Ries and C. Schröder. “Public Resource Computing mit Boinc.”
Linux-Magazin, vol. 3, pp. 106-110, March 2011. Internet: lm-
boinc.sourceforge.net

[9] C. B. Ries and C. Schröder. “ComsolGrid - A Framework For Per-
forming Large-Scale Parameter Studies Using Comsol Multiphysics and
Berkeley Open Infrastructure for Network Computing (BOINC),” in
Proc. COMSOL Conf., Paris, 2010

[10] C. B. Ries, T. Hilbig, and C. Schröder. “A Modeling Language Approach
for the Abstraction of the Berkeley Open Infrastructure forNetwork
Computing (BOINC) Framework,” inProc. IEEE-IMCSIT, 2010, pp.
663-670

[11] C. B. Ries. “ComsolGrid - Konzeption, Entwicklung und Implemen-
tierung eines Frameworks zur Kopplung von COMSOL Multiphysics
und BOINC um hoch-skalierbare Parameterstudien zu erstellen.” M.Sc.
thesis, University of Applied Sciences Bielefeld, Germany, 2010.

[12] W3C. “Extensible Markup Language (XML) 1.0 (Fifth Edition),” Inter-
net: http://www.w3.org/TR/REC-xml/

[13] J. McCutchan, R. Love, and A. Griffis. “inotify - monitoring file system
events,” Linux man pages(7)

[14] Message Passing Interface. “The Message Passing Interface (MPI)
standard,” Internet: http://www.mcs.anl.gov/research/projects/mpi/ [18th
February 2012]

[15] Object Management Group. “OMG Unified Modeling Language (OMG
UML) Superstructure.” formal/2010-05-05, May, 2010.

[16] Object Management Group. “Object Constraint Language.” Version 2.2,
Feb., 2010

[17] OpenMP. “The OpenMP API Specification for Parallel Programming,”
Internet: http://www.openmp.org [18th February 2012]

[18] PKWARE. “APPNOTE.TXT - .ZIP File Format Specification.” Version
6.3.2, Sept., 2007

