Model-based Generation of Workunits,
Computation Sequences, Series and
Service Interfaces for BOINC based Projects

Christian Benjamin Ries
Computational Materials Science
and Engineering (CMSE)
University of Applied Sciences
Bielefeld, Germany
www.visualgrid.org

Abstract—Berkeley Open Infrastructure for Network Com-
puting (BOINC) is a popular Grid Computing (GC) frame-
work which allows the creation of high performance computirg
installations by means of Public Resource Computing (PRC).
With BOINC’s help one can solve large scale and complex
computational problems. A fundamental element of BOINC is
its so-called workunits (WUs), each computer works on its ow
WUs independently from each other and sends back its result
to BOINC’s project server. Handling of WUs is a challenging
process: (1) the order of used input files is important, (2) esn
more contributory components has to know how these input file
are structured and on which data format are they based for an
accurate WU processing. Small modifications can have a higimi-
pact to a BOINC project. Indeed scientific applications, BONC's
components, and third-party applications all have to be adjisted
to have a correctly running project with desired the functionality.
This can be a highly error-prone and time-consuming task. Inthis
paper we present a Unified Modeling Language (UML) model to
give a high abstraction for BOINC’s WU handling. Only a model
description and a corresponding code-generator are necemy to
construct a WU handling infrastructure with less development
and implementation effort: (a) one model to fit most WU cases
and (b) essential interfaces for WU access.

Keywords—BOINC, Code Generation, Modelling, UML, Work

I. INTRODUCTION

Christian Schroder
Computational Materials Science
and Engineering (CMSE)
University of Applied Sciences
Bielefeld, Germany
Christian.Schroeder@fh-bielefeld.de

Vic Grout
Creative and Applied Research for
the Digital Society (CARDS)
Glyndwr University, United Kingdom
v.grout@glyndwr.ac.uk

Language (UML) model and code-generation (CG) facilities,
which have to support developers with the ability to gereerat
all required WU configurations, interfaces for opening and
accessing WUSs, and creating one or more computationakserie
and sequences, i.e. different computational jobs withedari
runtime configurations.

A. Unified Modeling Language & Object Constraint Language

One of the primary goals of UML is to advance the
state of the industry by enabling object visual modelind too
interoperability [15]. Since version 2.2, UML has 14 difet
diagram types subdivided in three categories: (1) strectur
diagrams, (2) behavior diagrams, and (3) interaction diaog:

In this paper we use th€lassand State Machinaliagrams.
Class diagrams are used to specify system related elements,
e.g. a class can describe a SAPP. An instantiated classrleme
is seen as an object and mostly it is an executable instance.
UML state machines help to model discrete behavior through
finite state-transitions systems. It can be used to visaidhie
current state of one system, and orthogonal regions allow to
model client-server state-machines where each side isimgrk
independently. The Object Constraint Language (OCL) isluse
to express constraints and properties of UML model elements

Et-up of a Berkeley Open Infrastructure for NetworK16].
Computing (BOINC) project can be a challenging and
sophisticating task. Despite the fact that it is necessary B. BOINC’s Workunit System

implement a scientific application (SAPP) [10] and to essdol BOINC uses a fine-grained file based system to set-up

a fully operable server infrastructure [7], moreover it écas- ; .
sary to describe how SAPP and all BOINC components ha\r/1v-US for a BOINC project (BP). WUs are packages with

. . L . -~ “descriptions of input and output data needed by the SAPP
dle computational jobs. Here, participating clients estei a to perform specific tasks [1]. Before a WU can be added to
project specific SAPP from a BOINC project (BP) server alon P P :

with so-called workunits (WUs), i.e. a number of parametfr BP, it is necessary to create several input files with pldnne

usually provided in data files of ASCII or binary format tha 0 use datasets for one computation. Two additional teraplat

are optionally needed by the application to perform speci |ic|:eS are required: (1) an input template to describe whies i
P y y bp b PECite used as input, how they are ordered and which flags for

tasks. The idea in this paper is to have a Unified MOde“r}Hem are set, and (2) a result template to describe how output
This project is funded by the German Federal Ministry of Edion and files must be named by the SAPP, or how blg n bytes they
Research. can be [3].

C. Research Topics during BOINC's runtime? Here, it is also important to
define how continuously created WUs differ from each
other. It is necessary to know if their content differs and
if they must be restructured or not, e.g. if different sigma
values have to be set for statistical computations.

How should WUs be opened and how should all poten-
tially contained sub-elements be handled by a SAPP? Are
the nested data defined as plain-text, or as encrypted text,
or maybe a binary format?

o It is not only the WU input files that are important.
The result files are also essential for the success of a
computation. In the later BOINC process they must be
validated and subsequently stored by an assimilator to
make results usable for particular later cases.

The assimilation process is used to store results, but what
if one WU does not have enough results? E.g. one WU
is distributed to three hosts, a minimum of two results
must be returned but in one scenario two hosts are too
late — deadline is reached — and only one result is
available. In this case, BOINC's transitioner will flag the

To make the handling of WUs easier some questions arise
and we will work on them within this paper.

o Which UML elements are necessary to create a model
for WU creation?

« How can we model a sequential queue for WU progress-*
ing? The answer to this question should make it possible
to have WUs with the need of pre-processed results by
one or more other WUs.

« How can BOINC's validator and assimilator access re-
sult's data on a higher abstraction level? In addition,
is it possible to have only one interface or description
which makes it possible to allow access by all BOINC
components? Here, BOINC's validator is responsible for
validating a WU and developers of a BP can implement °
their own validator routines. The default behavior of
BOINC's assimilator is storing of results within a file
system.

o How can we track the lifetime of WUs when they are

::eﬂé?]tﬂlﬁere?t sce(r;anos, e?.g. one WU is used within a missing results asverdue then directly flagged a®ady
q performed queue: for assimilationby BOINC's validator [2] and after this
This_ paper can be seen as the conjunctif)n of p_revious Work the assimilation process could create a duplicated WU
[6], in which BOINC's services are described with UML t0 o 4 retry. This can be done periodically until the WU is
be deployable on server farms. This is why «Application» is completely returned and successfully validated, or after
added in Fig. 1 where previous work is followed in this paper. some failed tries the available results can be stored in a

The remainder of this paper is organised as follows. Section gatabase or on the file system which can be defined for
Il describes the problematic of BOINC’s architecture todian failed results.

different defined WUs for varied kinds of computations. Next , ynder some circumstances a computation relies on dif-
Section Il proposes our idea as to how we can fill the gap ferent sets of runtime parameters or they must adhere to
of BOINC's problematic to utilize it with an easier and less 5 sequence of different runs, i.e. a result of a WU must
vulnerable interface. In Section IV we use our UML model pe ysed as input for another WUs. In this case, the results
and apply it to a small case-study. Finally, Section V codehi must be converted to the right format of a new WU and it

this paper and Section VI suggests future work. can be necessary to modify mentioned attributes for the
different purposes of a WU, e.g. an unit conversion can

. o _ be required before a WU result is usable for subsequent
WUs are packages with descriptions of input and output computations.

data [1]. These WUs are fundamental pieces for BOINC

and contain information on how these data are defined aB®INC's architecture relies heavily on a fragile methodplp
formatted, i.e. binary data or plain text and functionafitto if one or more software components are misconfigured or
describe how several data items can be used. The flexibilitisabled the WU handling chain will be stopped on the
to define arbitrary structured WUs and input files can befailed element, i.e. if the validator is not working properl
complex issue. It has been shown, that WUs within a BP ame validation of returned WU results is executed and as a
crucial elements and are essential for the BP success [g], [Iconsequence the WU will never complete.

At the time a BP is being established it must be defined hOWBO|NC’S WU consists of two temp'ate f”es' additional input
all BOINC components have to handle WUs, otherwise WUfes and, during computation, created output files. Teneplat
will stop immediately wrongly configured and, as a resulfjles are based on an XML [12] format and therefore they are
without proper working components. A BOINC administratofot really human readable and XML-tags can be misspelled
needs answers to several questions before a BP can be @&l easily. More important is the fact that all input files shu
up as a fully operable system. Certainly we think about oy described within this template file and must have a specific
computational concern and how we can solve this probleggder. In the header of the input template the numbering of
firstly. In this paper we will not discuss this difficulty, Mieus input files is defined. After this part each file has optional
work has focused on this field of activity [5], [10]. In thisper attributes, e.g. a file is sticky and will not be deleted aftee
we will discuss a solution for the following questions: computation on one host. A similar approach is used for the
« Is all information about WU'’s structure available at thelescription of result files. These files and the part of BOMWNC’
beginning of it's use or are they gathered continuousfyamework for WU creation are elementary and every BOINC

II. PROBLEMATIC OF BOINC’S ARCHITECTURE

<<stereotype=> <<stereotype>>
W‘ RangeRule RangeSimple
Appp = x é “+rule : String +start : Float = 1.0f
<<stereotype>> . =
Carian % +ranges <<stereotype>> 4 +stop : Float = 1.0f
% +step : Float = 1.0f
1 0. Range
+name : String
+deadline : Integer = -1 * +getValue() : Any
0.*|+activated : Boolean = false <<stereotype>>
= =<stereotype>>) Input
? InterfaceDataSource ~[*2°®5 T o String 1 0.+ \/+attributes
2t +getPath() : String [~ | +copyfile : Boolean = false 0.1 <<stereotype>>
1.4 : .. + ¥
(<5tereoty!)e>> P +files|+sticky : Boolean = false &> Datafield
Workunit 1.* {ordered}+nodelete : Boolean = true +name : String
+id : Integer + {orderdd +report_on_rpc : Boolean = false +type : FileType
+name : 5tring +unigue : Boolean = false +data : Any
+rsc_fpops_est: Float 0. % N +optional : Boolean = false
+rsc_fpops_bound : Float 1.+ Fuse \ oA
+rsc_memory _bound : Float L 1..* {ordered <<stereotype>> % :UtPE”E‘ ¢ b”)"
+rsc_disk_bound : Float L +results Output X Brnin s AR
: *
+delay _bound : Float X o s +name : String o1 xJ D,-“/b#ie\ds
+min_quorum : Integer = 2 <<stereotype>> +generated_locally : Boolean = true -
+target_nresults : Integer 0.1 WorkunitAssociation +upload_when present : Boalean = true 1
+max_error_results : Integer +max_nbytes : Integer = 1024 : <<stereotype>>
+max_total_results : Integer I 0. <<access>> _ _ Zx+url : String | FileType
+max_success_results : Integer N A +copy_file : Boolean = true ! |<<Constant=> +File
5 ;
1 LY <<5tereutype>l:- +optional : Boolean = false ' <<Constant=>> +5tring
b +no_validate : Boolean = false k
1 ' InterfaceAssimilate = | <<Constant>> +Integer
| +no_delete : Boolean = false ' <=Constant>> +Double
':v‘:“ireo.:;:::) Avi N d <<Constant>> +Float
bl L = <<stereotype>> i
+state : Integer = UNKNOWN InterfaceWorkunit SEAgesIES <<stereotype>>
+maximum_sequence : Integer = 1 +ereatel) - Boolean ! InterfaceDataset
+seqid : Integer = 1 +eancal() : Boolean <<stereotype>> +open(name : String) : Any
+check() : String +information() : String InterfaceValidate +exists(name : String) : Any

Fig. 1. Unified Modeling Language (UML) class diagram to &dxsttworkunit structures. In the top area differ&angesfor values withininputs Datafields
can be assigned. On the right hand-siatafield allows to configure an arbitrary format for input and outplesfj the enumeratiofrileTypesprovides
different standard formats. In case obatafield has#File as value fortype no associateattributesor fields are allowed. Three stereotyped interfaces helps
to access input and output files: (1) «InterfaceDatasetp «lferfaceValidate», and (3) «InterfaceAssimilate» sé@ations enable one to set-up different
workunit processing scenarios: (1) static processingc@2Yinuous processing, and (3) dynamic processing as gelig.i 2.

administrator or developer must give attention to this pssc A. Input-/Output Files and Datafields
Several steps are required to add WUs for one BP: (1) one : o i
or more input files must be copied to BOINC's download «Input» is used to describe input files and «Output» de-

sc&ibes result files. A WU can own several file instances and

hierarchy, (2) mentioned template files must be created, agach of them can have distinct «Datafields». «Datafields» are

(3) all input files must be arranged in the right order WhelrJ]sed to describe data for input files, the data format is not

BOINC's functionalities for WU creation are called. Each

- . estricted and for this reason two methods are defined: (1)
change within one of these steps has an impact on the othér ..)
open()is used to access data, and &jre()is used to add
steps and must be adapted.

datasets. The reason for these methods is, that the embedded
data can have different formats, i.e. values have to be ptexaty
during saving or specific embedded function calls must be

For computations with BOINC it is necessary to have ori¢sed during data access in case a file is packed as a ZIP-
or more WUs which contain descriptive information on howrchive [18]. These functions can set by a developer to suppl
to execute these computations. WUs could contain seve$BECial opening and storing methods for currently unknown
files, e.g. additional configurations, data sets, definitioi datatypes. There is no reason to allow a «Datafield» to be used
algorithms and arbitrary extra files. Fig. 1 shows one part B¥ «Input» and «Output» at the same time, as a consequence
our UML definition for WU definition. Here, we can defineonly one owner of the root «Datafield» is allowed. This root
WU's input and output files and multiple data fields for thesand all other instances of «Datafield» have two associations
files. which can be used to create tree structures with severatpiec

The three stereotypes «Workunits, «Input», and «Outpu® information for a WU embedded in a «Input» file. With
are directly based on BOINC's WU system. All tag-valuelis methodology different structures are possible, eXjvia
of these three stereotypes are directly mapped to attslafte Structure can be created as shown in Listing 1. The use of thes
BOINC's templates, the only exception is tag-valugque If ass_omatlons is _restrlcted, if one «I:?qtafleld» is as_sad:lh';e
uniqueis true all input files are renamed to be unique withirfttrioutes then it can not have additional associations. Each

a BP. The other presented stereotypes are extensions fo fffgatafield» has the tag-valueame type data andoptional
our UML model. Namemust be user-defined at any time when a «Datafield» is
«Workunit»> must be associated by «Series» and that mi4Sed: the other tag-values are optional and their use depend
be associated to «Application» [6]. This association snitde task. Listing 1 shows the use of the first three tag-values

previous work with this paper. name person interests andtopicsare names,

IIl. M ODELING OF WORK PACKAGES FORBOINC

Static Continuous Dynamic
Serie Serie Serie
. 1 ID 1
I P O g Em
" Eup s
0 Time 0 Time 0 Time

Fig. 2. Our UML model allows us to define «Series» in threeedéht ways:
(1) all WUs must be available before a BP is started, (2) durimtime WUs
are created and added continuously, and (3) a mix of the firdtsecond,;
some WUs are available at the beginning and during runtindétiadal WUs
are added to one BP.

<<Petach>>

P

<<WorkunitProcessing>>
<<Scatter>>

| Sp——

oo

r.,}

dataAvailable, nextSequence <<Scdtter>>

[<<Workunit5tate> >

Idle

<<WorkunitState>>
Process

o)

<<SeriesState>>
cancel

Cancellation

(

<<SeriesState>>

Processing

-

Fig. 3.

First part of our UML statechart diagram to monitostances of

«Workunit» and «Series». State’s top region is responsiolg/U monitoring
and creates new WUs when data is available or next WU in a segqus to
be performed. The bottom region monitors a «Series» andlésmeanceling
events for a «Series» instance or if its finished and resaltsbe merged.

<<WorkunitProcessing>>

N

<<WorkunitState>>Y}(<<OnClient>>"{<<WorkunitState>>
Created Computation Finished

Fig. 4.

v

<<Validation>>
Validator

<kNotValidated>>

<<Failed

<<Assimilation>>
Assimilator
oo

\
|
|
|
|
|
|
|
|
|
oo |
|
|
|
|
|
|
|
|
|

Second part of our UML statechart diagram for WUs. idgir

computation of one WU, clients can decide to cancel currerd, VEnd

therefore it has a changed WU state. When it is finished it belivalidated,
if this validation failed the exit pseudostate is used. Tdll¥ved assimilation
state can decide to retry this WU and a new WU is created wittesanput»

values. If this WU is in a sequence, “Next” is used otherwise $tatechart
is finished.

type

“C.B.Ries” and “Research, Sport"are of the enu-
meration typeFileType::String and

mation.
<person name"C.B.Ries">
<interests topics="Research, Sport"/>
</person>
Listing 1. Example of «Datafield» usage to define a XML strretu

B. Rule-based Creation of Datafield Values

During WU creation data fields of input files or the input
files themselves can be specified by «Range». Thereforesvalue
can be generated by «Range» specializations: (a) «RangeRul
and (b) «RangeSimple». With «RangeRule» a rule-set for
value creation can be defined. For this purpose the tag-value
rule can be filled with a user-defined rule, e.g. each WU
within a specific «Series» can have a corresponding mode for
algorithms. «Range» defines an operatigtValue()which is
used to query the related «Datafield» value. As shown in Fig.
1 each rule can only modify one «Datafield». «RangeSimple»
is used to have a range-loop for one specific «Datafield»,
for this reason three tag-values are defined: it (2)
stop and (3)step In combination with different additional
rules each call ofjetValue()can increment the lower-bound
valuestart by stepto the upper-boundtop One «Range» can
be owned by several «Series», as a consequence it must be
possible to retrieve which «Series» is calliggtValue() For
this reason tag-valuactivatedis specified. When this tag-
value is valued byrue, the association between «Range» and
«Series» can be used to query the currently used «Series».
This allows «Range» to access all information of a «Series»
with associated «Workunits».

C. Continuous Creation of Workunits for Series

As seen in Fig. 2 a BP can have different scenarios for WU
creation:

« Static All WUs are created before a «Series» will be
created. Only these known WUs are handled by a BP.

« Continuous This configuration has no WUs at the be-
ginning of a «Series». WUs are created on demand, e.g.
when new data packages are available or when a time
slot is reached.

« Dynamic In this configuration the previous two possibil-
ities are merged.

These three approaches are supported by our model. «Inter-
faceDataSource» (IDS) is an interface which is implemented
by a «Service» component for WU creation [6]. This com-
ponent could have several connections to data sources. When
these data sources signals new available data packages, IDS
provides with the help ofietPath()a file path which is usable
for «Input» and a corresponding «Datafield» K&#e astype

Fig. 3 shows the first statechart diagram for our mod-
elling approach. Depending on your BOINC scenario you can
define how WUs are created. For all mentioned scenarios
the statechart will always start at the initial point in the
top-left corner. Immediately the process is subdividea int
two parts with two transitions stereotyped by «Scatter» and

data mentioned string values are the real embedded infatbetach». The BOINC’s WUs are independently processed on

the client side from other processes. In addition to this WUso often canceled by BOINC clients or WUdelay bound

are structure elements and that's why they are not conceiiedreached. For this occurrence the WU can be copied and

to have a behavior. Other components have to deal with theaded to a «Series».

and as a consequence these components can have behavidvhen a WU is part of a sequence, the WU’s name has

definitions. While all WUs are public within BOINC’s domaina special format to distinguish WUs. A similar approach for

any component has access and can modify them. rBOINC is used [4]. rBOINC defines a specialized WU name
«Detach» creates two orthogonal regions for the lifetim@nd we modify this format tdNNN-SEQ-XX-YY” :

monitoring of one «Series» and all associated WUs. The top. NNN is the name of the WU, and

region is responsible for WU monitoring and the bottom regio « SEQ is a start pattern for a sequence description.

monitors the current «Series». The transition betweere®ldIjere the embedded strifgXX-YY-" is defined as follows:

and "Process” is triggered WataAvailableandnextSequence xx is the current sequence id amdf is used for the maximum

In this transitiondataAvailables called by the IDS, and there-nymper of sequences. This WU name format is used to select
upon the file path is used to define a new WU. Fig. 4 shows thgguenced WUs in section IlI-F.

statechart of a single WU. In that statechart “Assimilatibas

a “Next” named exit pseudostate aneixtSequende triggered E. State of Workunit Computation

when this exit is entered. As a result a new WU is created. It«WorkunitState» is associated by «Workunit» (WU) and
is defined that this exit pseudostate can only be used whefrém the beginning of its existence the state of a WU can
WU is part of a sequence as described in the next section. #s queried at any time. The tag-vals&te holds the current

at the initial point of this statechart, all available ansvn&Us state and can be valued with the following variables:

are scattered and within this statechart are monitoredtdfne , cREATED WU is created.

region is left when no more WUs are in process. The bottom, Fa|LED WU has failed and can not be finished.

region monitors the lifetime of a «Series» and “Processing”, coMPUTATION WU is in progress and one or more
is only left under two circumstances: (1) the «Series» has t0 ¢jients work on it.

be canceled and (2) processing is complete and all resuits ca, pONE Enough clients have worked on one WU and it
be merged, which can be done in “Finishing”, e.g. an average can be moved to the validation and assimilation process.

over all results of a monte-carlo simulation can be caledat , AL IDATION WU has to be validated.
o ASSIMILATION WU has to be assimilated.
D. Sequences of Workunits « CANCELED WU is canceled by an administrator or by

other processes, e.g. when sequenced WUs have failed or
are canceled.
FINISHED WU is finished and ready for later use, e.g.

In [4] a system for remote creation of chained WUs is
shown, where one result can be used as input for other WUs.
In our model we can handle a similar task. «WorkunitAssoci- * . . .
ation» enables one to define a «Series» with sequential com- fo create a new «Series» or 1o use their computational
putations. «InterfaceAssimilate» delegates these caatipns results. o)
and can have an association to «WorkunitAssociation». A8F the UML model it is important what the state of a WU is,
mentioned in the previous section the “Next” exit pseudests?S @ matter of fact the state value is responsible for degidin
in Fig. 4 is used when one WU is assimilated and hy¢hich actions are perform_ed_ dl_mng the WU processing, i.e.
additional WUs to be performed. The following pseudocod@hen a WU fails the assimilation process has to decide if

demonstrates how the assimilation process can decide if dhghould be performed again. The accessory meittoztk()
WU is in a sequence and if a WU follows: is used to query the current state of a WU and returns

a descriptive text value, i.e. the string contains the aurre

Let ws As workunitAssociation .workunit. workunitState giate with additional more precise information such as the
If ws.seqid < ws.maximum_sequencEhen

For ro In Output timestampof the last check or how long a WU is currently
Set workunitAssociation .input = ro processing. The other two tag-valuasximum_sequenaad
Where o seqid are used for the «WorkunitAssociation» in the next
workunitAssociation .input.name = ro.useAs.name .
EndFor section.
Endlf . . .
ws.seqid = ws.seqid + 1 F. Cancelation of Series and Workunits

i .) A WU can be canceled at any time. This is done by
A new WU is filled with «Datafield» values of one «Outpubye it eworkunit::cancel@nd it is necessary to cancel WUs
when they are associated bgeAs AS, a consequenceseAs which are related to a cancelled WU, i.e. when the current
mus'_[only_ be set when_ «Output> is us_ed for_ one «Inpufpy) is cancelled and has associated WUSs, these must be also
ponf|gurat|on. The fact is, when noseAsis available then . ncejied because they can never be processed with missing
it makes no sense to check for a sequence. «Input» values. «WorkunitAssociation» has an addition@aLO

In the case when all results of a WU are required, BOINC§,eration to query which WUs are in the current sequence:
assimilator can create additional WUs with a duplicated-con

figuration, e.g. a WU is missed to complete a sequence and i¥eadline of one workunit.

WorkunitAssociation :: querySequencedWorkunits (
seqid : Integer, name : String) : Set(Ilnput);
querySequencedWorkunits =
self.series—>select(s | s.workuni>select(
w | w.workunitState .seqid > seqid
AND
— NNN-SEQ-XX-YY
w.name.substring (1,
w.name. strpos(*SEQ")) = name

The fifth «Series» is not started until the other «Series»
has finished. It is important to notice that the SAPP is always
the same, only the input files are changed. In the first four
computations only two files are necessary: (1) configuration
for the mode of configuration and (2) the mentioned ZIP-
archive with movie sequences. The last computation isealter
and needs five files: (1) configuration as before with differen

) values and (2) all four input files which are created by the
) other four computations.

With this OCL statement, WUs can be selected which areThis use-case describeglgnamic seriesvhere some WUs
later defined within a sequence and as a consequence thaegilable on BP’s start and additional WUs created during
can be cancelled. Following cancelled WUs can have othentime. In the case that one of the first four series is cauicel
associated WUs and they must be cancelled. The call tbE fifth series can never be started because of missing input
Workunit::cancel()is used to cancel one WU. «Series» cadata. This is solved by our statechart construction in Fig. 3
be cancelled with this concept, it is enough to aahcel() where the “Cancelation” state is responsible for canaglit
during the iteration of all associated WUs. related WUs and «Series» instances.

G. Service Interfaces V. CONCLUSION

BOINC has several components which need to access «In;

) X . . In this paper we describe a UML model for WU creation
put», «Output» and their embedded «Datafield» fields. Flg.a;\d how t%eplifetime of WU series and individual WUs can be

shows three interfaces to access them: (1) «Interfaceaatasmonitored_ We have shown that only one model description is

Eﬁ) Elr:terf??ﬁ_\/ah?atet» antljl]E?’) :_Inte:f?ceAssm;nate»gN necessary to allow BOINC related components to access WU'’s
© e Oof tis SUCIUTE &t TUnclionaites can be getetia jny ang output files, i.e. BOINC's validator and assintitat
and this makes the access more comfortable. Changes in r&%’\

del A ticall ved and interf | st not be changed to access the WU, all necessary code
\T’;\?idefo?rues:u omatically resolved and intertaces are aWaygments can be generated with one model description. With

our model it is possible to set-up different computational
scenarios where WUs are generated statically, continyousl

. L L or mixed by these two approaches. WUs can be added to a
Our case-siudy modifies a movie, i.. a movie is fragmentspocess before a BP is started or they can be added on-demand

in §ingle image sequences and basic image processing o%lfing the runtime of a BP. With the help of UML statechart
gorithm are applied to these sequences, some results coyld - s we can set-up a BP configuration where we can
be seen on the project website [8]. Fig. 5 shows our USgsfine howoverdueor absentWUs are handled. It is possible
case where one V|d<_ao IS added BB Ries W'th the help of 4, recreate them or if it is wished, the related computationa
inotify [13] one BP is triggered bylataAvailableand WUs o ias and related WUs are aborted

are Cre‘?‘ed on demand. Du_ring WU .addi.ng it has to be clearr, proposed UML modeling approach can help to reduce
Wg('fh kind ch data fqrmatdls uts)ed, €. 1N OLIH use-case rors during administration of BPs. As a matter of fact, in
add a compht_ate moy|ef anWLsJu squentl|mpr>]§mentat|9ns %ﬁitional BPs it is necessary to reconfigure and reimpfeme
to prepare this movie for WU creation. In this scenario Wy e 4 parts when only one configuration is changed, i.e. if
create ZIP-archives automatically and fill them with a numb?ne format of computational results is changed then alteela

of image sequences. components such as BOINC’s validator and assimilator have

Five «Series» are defin(_ad, in this case or_mly the first foudh 1o similarly changed. Furthermore, adding or removing
can be p_rocessed immediately. As shown In Equa_t|on 1t %ut files for one computation has an impact on several
fifth «Series» needs the result of the first four «Series». BOINC parts: (1) non well readable XML input files must
be changed, (2) the call of BOINC's WU creation tools has
to be altered, (3) altered files has to be copied to BOINC's
download hierarchy, and (4) (maybe) input files have to be
generated or prepared. Our modeling approach solves ak the
problems with the help of UML and OCL.

IV. CASE-STUDY

Series 1 (normalize)
Series 2 (painting)
Series 3 (negate)
Series 4 (edge)

= Series 5 (merge) (1)

All «Series» instances have a different runtime configarati
e.g. in «Series» number four the image is manipulated by
an edge algorithm. The fifth «Series» merges all previous
results where for each image sequence they are added tw/U's performance can have restrictions, e.g. the use of
a 2 x 2 raster image. On the right-hand side of Fig. floating-point operations or allocation of hard disk spaaa c
these different configurations are shown where the bottdm limited. Currently it is not clear if UML can help to detect
configuration shows the mode “edge” for image manipulatiquerfectly fitted values for this purpose. During our useecas
and in the top configuration “merge” is assigned. tests we noted a large number of failed WUs because of

VI. FUTURE WORK

addMovie("BigBuckBunny.mov")

<<InterfaceDataSource==

C.B.Ries B S DataSource
+getPath(): String
datafvailable
Workurits Compute series (5) §

WU contains:

- results of (1)-(4)

- mode configuration

E.g.

<configuration=>
<mode>merge</mode>
=<positions>2x2</positions>

</configuration=>

5 Series with different converting modes:
Mode 1 -= normalize algorithm

Mode 2 -= painting algorithm
Mode 3 -= negate algorithm
Mode 4 -= edge algorithm
Mode 5 -= merge (1)-(4)

<<5Scatter>>
WUs for series (5)

9)__. o R <

Pool of available
workunits, ready
for computation.

>
<<Scatter>=>
WUs for series (1)-{4)

Fig. 5. Use-case to modify a movi€.B.Riesadds a new movie to one server, running applications prehaenovie and fragment it into image sequences,

Each WU contains:
- set of sequences
- mode configuration
E.g.
<configuration>
<size >320x240</size>
<mode>edge</mode>
</configuration=

Compute series (1)-(4)

thereupon these images are zipped into ZIP-archiegaSourcenotifies a BP which automatically adds all announced WUs i® BP. Adding of one
ZIP-archive implies four added WUs to this BP but with diffet configurations, each «Series» instance has a differede rfor computationnormalize

painting negate and edge These WUs are processed and the computational resultssaceas input for a fifth «Series», again with a changed mode for

computation:merge

wrongly adjusted boundary values for the restrictions men-
tioned. The set-up of this values has to be more precise and[g]t
best automatic. In future work we will work on this objective

During the writing of this paper implementation with the
support of this model are hard-coded and can not be changt
— they are not flexible during runtime. One idea is to add a
Domain-specific language (DSL) to describe WUs, series and]
sequences of computation. It could be possible to intetpiet
DSL during the runtime of a BP, to change the behaWorok]
this BP and to generate code for all necessary components for
WU handling on-demand. o]

Additional thought should also be spent on how our pre-
sented model can be used for conventional supercomputers,
where other technologies like Message Parsing Interfa¢dM
[14] or OpenMP [17] are used. It should be clear that MPI hélso]
to process workunits like BOINC, although admittedly with
less input files; instead it uses more numerical values wénieh

. ; : 11]

communicated between all involved computation nodes. Tha
fact is that BOINC can be perfectly used to solve embarrgssin
parallel computational problems with less communicatien b
tween all involved nodes. MPI enables one to use a distrlibut%zl
computing environment with several autonomous intergctif3]
nodes to achieve a common goal.

[14]
REFERENCES

[1] D. P. Anderson, C. Christensen, and B. Allen. “Designam@untime [15]

System for Volunteer Computing.” iRroc. ACM/IEEE SC2006, Article
No. 126 [16]

[2] BOINC. “Backend program logic,” Internet: http://baitberkeley.edu/-
trac/wiki/BackendLogic [Version 2] [17]

[3] BOINC. “Submitting jobs,” Internet: http://boinc.tegley.edu/trac/wiki/-
JobSubmission [Version 19] [18]

[4] T. Giorgino, M. J. Harvey and G. De Fabiritiis. “Distrila¢ computing as
a virtual supercomputer: Tools to run and manage largeesB&INC

simulations”. Computer Physics Communicationgol. 181, February,
2010

C. B. Ries. “BOINC - Hochleistungsrechnen mit Berkeleped Infras-
tructure for Network Computing.” Berlin Heidelberg: Spgar-Verlag,
2012

C. B. Ries, C. Schroder, and V. Grout. “Approach of a UMLofie
for Berkeley Open Infrastructure for Network Computing (BIZ),” in
Proc. ICCAIE 2011, pp. 483-488

C. B. Ries, C. Schroder, and V. Grout. “Generation of atednated
Development Environment (IDE) for Berkeley Open Infrastuse for
Network Computing (BOINC),” inProc. SEIN 2011, pp. 67-76

C. B. Ries and C. Schroder. “Public Resource Computing Boinc.”
Linux-Magazin, vol. 3, pp. 106-110, March 2011. Internem-|
boinc.sourceforge.net

C. B. Ries and C. Schroder. “ComsolGrid - A Framework Far-P
forming Large-Scale Parameter Studies Using Comsol Mylsjzs and
Berkeley Open Infrastructure for Network Computing (BONNGNH
Proc. COMSOL Conf.Paris, 2010

C. B. Ries, T. Hilbig, and C. Schrdder. “A Modeling Larage Approach
for the Abstraction of the Berkeley Open Infrastructure Fetwork
Computing (BOINC) Framework,” irProc. IEEE-IMCSIT 2010, pp.
663-670

C. B. Ries. “ComsolGrid - Konzeption, Entwicklung unchplemen-
tierung eines Frameworks zur Kopplung von COMSOL Multipbys
und BOINC um hoch-skalierbare Parameterstudien zu e¥stélM.Sc.
thesis, University of Applied Sciences Bielefeld, Germa210.
W3C. “Extensible Markup Language (XML) 1.0 (Fifth Eidib),” Inter-
net: http://www.w3.0rg/TR/REC-xml/

J. McCutchan, R. Love, and A. Griffis. “inotify - monitog file system
events,” Linux man pages(7)

Message Passing Interface. “The Message Passingfaceer(MPI)
standard,” Internet: http://www.mcs.anl.gov/resegratjects/mpi/ [18th
February 2012]

Object Management Group. “OMG Unified Modeling Langegd®MG
UML) Superstructure.” formal/2010-05-05, May, 2010.

Object Management Group. “Object Constraint Languadersion 2.2,
Feb., 2010

OpenMP. “The OpenMP API Specification for Parallel RFevgming,”
Internet: http://www.openmp.org [18th February 2012]

PKWARE. “APPNOTE.TXT - .ZIP File Format Specificatior\ersion
6.3.2, Sept., 2007

