
Sterilization of Stego-images through Histogram Normalization

Goutam Paul1 and Imon Mukherjee2
1Dept. of Computer Science & Engineering,
Jadavpur University, Kolkata 700 032, India.

Email: goutam.paul@ieee.org
2Dept. of Computer Science & Engineering,

St. Thomas’ College of Engineering & Technology, Kolkata 700 023, India.
Email: mukherjee.imon@gmail.com

Abstract— Steganalysis is very popular in order to defeat
the steganographic algorithm. But sometimes it is not pos-
sible to detect the hidden data without having any prior
knowledge of the embedding algorithm or the knowledge
of the key used. That is why image sterilization may play
an important role in the field of secret communication to
remove any steganographic information embedded in an
image. In this paper, we propose a novel technique of
image sterilization based on histogram normalization. The
technique is general in the sense that it works for any LSB-
based steganography algorithm and it does not need to know
how the algorithm embeds information inside the image.
We ran simulations over stego images created by different
state-of-the-art algorithms and on average the technique
succeeded in sterilizing around 77% to 91% of stego pixels
depending on the algorithm targeted.

Keywords: Information Hiding, Security, Histogram, Steganaly-
sis, Steganography, Sterilization.

1. Introduction and Motivation
The word Steganography [11] originated from the Greek

word “Steganos”, meaning “covered information”. It is the
technique of hiding messages inside inoccuous media so
that the hidden message cannot be detected by an adversary
having access to the media. In [7], the history of steganog-
raphy is traced from ancient Greece up to the modern times.
It is reported that the Germans have successfully utilized
this technology during the Second World War. Academic
research in steganography has grown tremendously in last
few decades and currently many steganographic algorithms
exist in the literature.

Steganalysis [15], [2] is the art and science to defeat
steganography. Steganalysis is performed without the prior
knowledge of the steganographic algorithm or the secret key
used for embedding the information into the cover media.
This is why determining whether the secret message exists
in the media is a difficult and challengable task.

Steganography can be applied to a variety of multimedia
contents like images, audio, video, text etc. The media before
embedding any secret information is called cover and after

inserting the information is called stego. In this paper, we
focus on steganography in digital image which is a very
popular cover media for steganography.

Here we are proposing a new approach to sterilize the
hidden information from the stego media based on image his-
togram. Our objective in this work is to develop an algorithm
to revert as many stego pixels of an image as possible to
their original cover form, which we call image sterilization.
Image sterilization may have an important application in
defense and security domain. For example, suppose that a
spy wants to inform his team about the venue of performing
a bomb blast in some target place using some image based
steganographic technique. During the time of transmission,
if sterilization of the stego information is performed by the
security personals, then the attackers would be completely
unaware about the venue and their plan may be jeopardized.
One obvious method of performing sterilization would be
to replace the least aignificant bits (LSBs) of all the pixel
intensities by zero (or one). But this immediately gives a clue
to the recipient that the image might has been modified by an
adversary. Our algorithm does not leave any such signature
and preserves the pseudo-randomness of the sequence of the
LSBs in an image.

2. Steganographic Techniques in Spatial
Domain

Before going into the details of our sterilization tech-
nique, we briefly describe here the major categories of
steganographic algorithms in the spatial domain. Different
algorithms operating in the spatial domain can be considered
as different methods for selecting the pixel positions. These
are classified into three categories: non-filtering algorithms,
randomized algorithms and filtering algorithms [8].

2.1 Non-filtering Algorithm
The non-filtering steganographic algorithm [8] is the most

popular and the most vulnerable steganographic technique
based on LSB. The embedding process is done as a sequen-
tial substitution of each LSB of the pixel for each bit of the



message. Hence a large amount of information can be stored
into the cover media.

The only requirement in this method is sequential LSB
reading, starting from the first pixel in order to extract the
secret message from the cover media (viz. image). As the
message is embedded in the initial pixels of the image,
leaving the remaining pixels unchanged, this technique gives
an unbalanced distribution of the changed pixels.

2.2 Randomized Algorithm
This technique solves the limitation of the previous tech-

nique. Each of the sender and the receiver has a password
denominated stego key which is generated through a pseudo-
random number generator [8]. This creates an index se-
quence to denote the pixel positions. The message bit is
embedded in the pixel of the cover media following the index
sequence produced by the pseudo-random number generator.

The two main features of this technique are: (i) use of
password to have access to the message and (ii) well-spread
message bits over the image, that are difficult to detect
compared to the previous case.

2.3 Filtering Algorithm
The filtering algorithm [8] filters the cover image by using

a default filter and hides information in those areas that
get a better rate. The filter is used to the most significant
bits of every pixel, leaving the less significant bits to hide
information. The filter gives the guarantee of a greater
difficulty of detecting the presence of hidden messages. The
retrieval of information is ensured because the bits used for
filtering are not changed.

Each of the aforesaid three categories of steganographic
techniques in spatial domain is susceptible to image steril-
ization described in subsequent sections.

3. Image Sterilization
A 24-bit color image [3] consists of a number of pixels

and each pixel contains three intensity values (of 8 bits each),
one for each of red, green and blue color components.

One of the most popular steganography techniques is the
Least Significant Bit (LSB) insertion [13]. Since changing
the LSB changes the pixel intensity value by at most 1
(see Table 1), if one changes the LSBs of some pixels, the
resulting picture would be visually indistinguishable from
the original image.

128 64 32 16 8 4 2 1
⇓ ⇓

MSB LSB

Table 1: Weights of different bit positions of the pixel
intensity value.

Histogram of a digital image in spatial domain can be
defined as:

Hrk = nk (1)

where, rk is the kth intensity value and, nk is the number
of pixels with intensity rk [0 ≤ rk ≤ 255]. Now, consider
Fig. 1 that shows the sample histogram of a portion of a
stego image.

Fig. 1: A sample histogram of a portion of a stego image

We can normalize the histogram in order to remove the
hidden information from stego-images based on following
concept.

Table 2: LSB embedding in a pixel.
48 48 49 48 48 77 76 76 77
48 49 49 49 48 48 48 77 77
48 48 77 77 76 77 76 76 77
48 76 76 76 77 77 77 48 49
48 77 77 76 77 77 76 48 49
48 48 49 77 77 77 77 49 49
49 49 48 77 77 77 77 49 48
49 49 49 49 77 77 77 77 49

Consider Table 2 that shows some sample intensity values
of one component (either blue, red or green) of an arbitrary
image. There are two groups - one shown in red , another in
blue. Suppose that the intensity of a pixel in the original
image is 48. After stego insertion, the value may either
remain as 48 (if 0 is inserted) or be changed to 49 (if 1
is inserted), as shown below in Table 3.

Table 3: Embedding message bit 1 into the LSB of a pixel
with intensity value 48.

48 = 0 0 1 1 0 0 0 0
⇓

0 0 1 1 0 0 0 1 = 49

The LSB flipping function [4] for a stego image is defined
by F1 = 0↔ 1, 2↔3, 4↔5, . . . , etc. We form groups of rk
values based on this flipping function, where the intensity
values 2j and 2j + 1, for 0 ≤ j ≤ 127, belong to the



same group. So the maximum possible number of groups for
each component of an image is 128. Suppose that an image
contains N pixels with c groups. Let ni be the number of
pixels in the ith group, 1 ≤ i ≤ c. Thus, N =

∑
ni. The set

of pixels (based on their intensity values) for the ith group
is represented by

Gi = {xi,k : 1 ≤ k ≤ ni},

such that

xi,j − xi,mε{−1, 0,+1}, 1 ≤ j 6= m ≤ ni. (2)

Fig. 2 shows the normalized version of histogram shown in
Fig. 1 using Algorithm 1.

Fig. 2: Normalized version of the histogram shown in Fig.
1

In Algorithm 1, we present our procedure for image
sterilization, called StegoSterilize. The basic idea behind our
image sterilization technique is to replace an intensity value
X with some other value Y such that one cannot extract
the hidden message from the cover media. This technique
can be applied to both 24-bit color images as well as 8-bit
gray-scale images. Each group in the histogram contains at
most two intensity values, of the form 2j (we call them even
pixels) and 2j+1 (we call them odd pixels). Let no and ne
be the number of even and odd pixels in a group. If ne ≥ no,
we replace all 2j + 1 intensity values by 2j, otherwise we
do the opposite replacement. In other words, we force all
pixels in a group to be either odd or even depending on the
majority of the pixels being odd or even.

Fig. 3: Comparative representation of Histogram (before and
after sterilization of the same sample)

Input: A stego image.
Output: The sterilized version of the input

stego image.

Read the intensity values from the the stego
image;
Draw the histogram of the stego image;
for each color component do

Form the groups based on Equation (2);
for each group do

Count the odd and even pixels with
intensity values of the form 2j + 1
and 2j respectively from the
histogram of the stego image; Let no
and ne be the respective counts;
if ne ≥ no then

Replace all 2j + 1 intensity
values by 2j;

end
else

Replace all 2j intensity values by
2j + 1;

end
end

end
Output the transformed image;

Algorithm 1: StegoSterilize

Fig. 3 shows the changes in the histogram (blue color for
before sterilization and red color for after sterilization)

4. Accuracy Measurement
To estimate the accuracy of our technique, we need to

take as inputs some sample stego images for which we
know which pixel values are actually changed due to the
LSB embedding. For any stego image I , let

S := the number of stego pixels,
S′ := the number of stego pixels (out of S) having different
intensity value from their cover counterpart,
S′′ := the number of recovered stego pixels (out of the S′)
due to the sterilization process.

The accuracy of sterilization for this image is defined as :

Accsteri(I) =
S′′

S′
(3)

We have used a database of 200 (24-bit) color images
in BMP format and 100 gray-scale images (freely available
from [14] and many other internet sources). We have also
prepared 50 different text files containing the story of



Sherlock home’s (downloaded from[1]). Each pixel of a 24-
bit color image contains three components, viz. red, green
and blue. So using LSB embedding, at the most three bits
of data can be embedded in a pixel. If the dimension of
an image is m × n, then maximum number of data bits
possible to be inserted in the 24 bit color image can be
m× n× 3. Since a character is of eight bits, the maximum
number of characters (including white spaces) of the text
would be bm×n×38 c. Thus, each of the 50 text files consists
of at most bm×n×38 c characters depending upon the values
of the dimensions m and n. Similarly for gray-scale image,
each text file should have bm×n8 c characters. We have used
MATLAB 7.7.0 as a software tool for implementation.

Fig. 4 shows a stego (on the left) and the corresponding
sterilized (on the right) versions of the famous image of
Cameraman in gray-scale. Similarly, Fig. 5 shows the stego
and sterilized versions of a 24-bit color image on the left
and right respectively.

In Table 4, we give an example of how the text extracted
from a sterilized image may differ from the original text
that was embedded and is expected to be extracted from
the unsterilized stego counter part. We observe that after
sterilization, the actual message is scrambled enough so that
it cannot be reliably recovered.

Table 4: Sample text embedded in an image before and after
sterilization

I was the means of introducing to his notice
that of Mr Hatherleys thumb and that of

Colonel Warburtons madness.
Embeded Messege (taken from [12]) before Sterilization

⇓

J!ybtsgf!ofbmtÃşnmssnevcjnhp!gjtÃşmnshb
dsgbtÃşnhÃşNs!GbsgfqmfytÃşsgvnb!bme!sh?

uÃşnfÃşBnmpmfm!X?savqsnmtÃşnbdmftr
Embeded Messege (using algorithm 1) after Sterilization

Table 5 shows the ability to sterilize the stego image
using the algorithm described in the previous section for
three different embedding techniques. The first algorithm is
the naive LSB based sequential embedding technique; we
call it algorithm A. Another technique is taken from [10],
which we refer as algorithm B. The third method, denoted by
algorithm C, uses random pixel selection and segmentation
mechanisms [12].

5. Other Performance Parameters
In addition to the accuracy, we compute some other

performance measures as explained below.

5.1 Mean Squared Error (MSE) and Peak
Signal to Noise Ratio (PSNR)

The imperceptibility of hidden information in a stego
image is measured by the image quality in terms of

Table 5: Accuracy(minimum, maximum, average and stan-
dard deviation) of sterilization over hundred gray-scale and
two hundred 24-bit color images for three different algo-
rithms A,B,C.

Grey scale 24 bit color image
R G B

Minimum %
A 72.50 68.01 68.9 69.75
B 79.27 74.41 76.2 75.57
C N.A 84.29 84.36 85.89

Average%
A 78.09 77.16 76.64 78.34
B 79.31 81.20 80.35 81.68
C N.A 91.15 89.28 91.43

Maximum %
A 87.74 90.85 91.01 90.02
B 83.60 88.6 82.72 91.44
C N.A 96.12 95.35 96.07

Standard Deviation
A 0.0351 0.0622 0.0769 0.0729
B 0.0222 0.0483 0.0226 0.0562
C N.A 0.0392 0.0336 0.0431

Mean Squared Error (MSE) and Peak-Signal-to-Noise Ratio
(PSNR) in dB [9], [16]. Consider a discrete image A(m,n),
for m = 1, 2, 3, . . . ,M and n = 1, 2, 3, . . . , N , which
is treated as a reference image. Consider a second image
B(m,n), of the same spatial dimension as A(m,n), that is
to be compared to the reference image.

The MSE is given by

MSE =
1

MN

∑
M,N

((A(m,n)−B(m,n))
2
,

where M and N are the number of rows and columns in the
input images and PSNR is given by

PSNR = 10 log10

(
T 2

MSE

)
,

where T is the maximum intensity value of all pixels. The
MSE represents the cumulative squared error between the
two images. The mean square error measure is very popular
because it can correlate reasonably with subjective visual
tests and it is mathematically tractable.

Lower MSE and higher PSNR imply that the difference
between the original image and the test image is small, i.e.,
it is usually not possible to distinguish whether the image
is a stego one or a sterilized one. In our experiments, we
have obtained quite low MSE (0.4179 for gray-scale images
and 0.1807 for color images) between cover and sterilized
images. Similarly, the PSNR of cover and sterilized images
are high (27.82 dB for gray-scale images and 35.12 dB for
color images). Fig. 6 shows the MSE and PSNR of some
selected imges. These results indicate that our technique
is successful in hiding the fact that the image has been
sterilized.

5.2 Histogram Analysis
The main purpose of histogram analysis [5] in our context

is to detect significant changes in frequency of appearance



Stego version Sterilized version

Fig. 4: Stego and sterilized version of the gray-scale image (Cameraman.bmp)

Stego version Sterilized version

Fig. 5: Stego and sterilized version of a 24-bit color image

Mean Squared Error Peak Signal to Noise Ratio

Fig. 6: MSE and PSNR of some selected images



of each color component in an image by comparing the
cover version of the image with its stego and sterilized
counterparts.

Fig. 7 shows the histograms of the Cameraman image in
three stages: before stego insertion (on the left), after stego
insertion (in the middle) and after sterilization (on the right).
We see that our sterilization algorithm does not detectably
distort the histogram of the input image.

6. Conclusion
In this paper, we have provided a novel concept of

image sterilization. We have achieved on an average 77%
to 91% success rate to sterilize the stego information of
an image (the average rate varies with the steganography
algorithm used to create the stego images). We would like
to emphasize that the goal of our technique is not hidden
message recovery, rather we aim at annihilating stego in-
formation transmission without distorting the image visibly.
Our approach is generic and applied to any LSB based
steganography algorithm. There has been some work [6] on
double bit sterilization from the uncompressed image. Future
directions may include multi-bit sterilization with the goal
of sterilizing three or more bits in a pixel.

References
[1] http://221bakerstreet.org
[2] R. Chandramouli and K.P. Subbalakshmi, “Current Trends in Ste-

ganalysis: A Critical Survey”, Control, Automation, Robotics and
Vision Conference, 2004, pages 964-967.

[3] http://www.digicamsoft.com/bmp/bmp.html
[4] J. Fridrich, M. Goljan and R. Du, “Reliable Detection of LSB

Steganography in Color and Grayscale Images”, Proceedings of the
2001 workshop on Multimedia and security: new challenges, pages
27 -30

[5] R. C. Gonzalez and R. E. Woods, “Digital Image Processing”, Pearson
Education, 2008.

[6] I. Mukherjee and G. Paul. “Double Bit Sterilization of Stego-images”,
Accepted in Track: Security and Management, WORLDCOMP, July
18-21, 2011, vol.-1, pages 743-746, Las Vegas, U.S.A.

[7] N. F. Johnson, “Steganography”, Technical Report, November 1995.
Available at http://www.jjtc.com/stegdoc

[8] S. Katzenbeisser and F. Petitcolas, “Information hiding techniques for
steganography and digital watermarking”, Artech House Books, 1999.

[9] http://www.mathworks.com/access/helpdesk/help/toolbox/vipblks/ref
/psnr.html

[10] J. Mielikainen, “LSB Matching Revisited”, IEEE Signal Processing
Letters, vol. 13, no. 5, May 2006, pages 285-287.

[11] K. Nozaki, M. Niimi and Eiji Kawaguchi, “A large capacity steganog-
raphy using color BMP images", Third Asian Conference on Com-
puter Vision Hong Kong, China, January 8âĂŞ10, 1998, Proceedings,
Volume I, pages 112-119, Lecture Notes In Computer Science, Vol.
1351/1997, Springer.

[12] R. Rana and Er. D. Singh, “Steganography-Concealing Messages
in Images Using LSB Replacement Technique with Pre-Determined
Random Pixel and Segmentation of Image”, International Journal of
Computer Science & Communication, vol. 1, no. 2, July-December
2010, pages 113-116.

[13] J. J. Roque and J. M. Minguet, “SLSB: Improving the
Steganographic Algorithm LSB”, Universidad Nacional
de EducaciÃşn a Distancia (Spain) , Available at
http://www.fing.edu.uy/inco/eventos/cibsi09/docs/Papers/CIBSI-
Dia3-Sesion9(1).pdf

[14] www.webshots.com

[15] A. Westfeld and A. Pfitzmann,“Attacks on Steganographic Systems”,
Proceedings of the Third International Workshop on Information
Hiding 1999, pages 61-76, Lecture Notes In Computer Science, vol.
1768, Springer.

[16] http://en.wikipedia.org/wiki/Peak_signalto-noise_ratio



Cover version Stego version Sterilized version

Fig. 7: Histograms of Cameraman.bmp at different stages


