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Abstract—As a new strain of computer malware is 
discovered, it triggers a meticulous process of analyzing its 
behavior and developing appropriate defenses. A systematic 
process which identifies regions of commonality and 
variability with known samples can ease the burden of 
malware analysis. We address this challenge using an 
interdisciplinary approach which applies biological sequence 
analysis methods to computer malware. Specifically, we have 
developed a method which has the goal of classifying a digital 
artifact (possibly malware) based on its similarity to known 
digital artifacts (or known malware samples) using methods 
and tools of bioinformatics. Our approach is analogous to 
classifications of biological sequences, which are routinely 
performed using online databases of known biological 
sequences. 

Keywords:   clustering, classification, malware, plagiarism 

1.  Introduction 
Consider the evolution of a biological pathogen, which can be 
tracked using DNA markers. This operation often involves 
examining nucleotide sequences in DNA using powerful 
bioinformatics tools to identify regions of local or global 
similarity, or interactions with specific enzymes, which may 
be a consequence of functional, structural, or evolutionary 
characteristics of the pathogen’s genetic makeup. This is 
biological stylometry at work!  
 
In field of computer security, there is significant interest in 
understanding malware behavior to develop effective 
detection, prevention and recovery mechanisms [1] [2]. 
Unfortunately, malware analysis is still much of an acquired 
tradecraft, and the results depend heavily on the quality of 
personnel involved. Malware analysis typically involves 
reverse engineering compiled digital artifacts, configuration 
files, metadata or foraging through other information. The 
results from such analysis provide clues for malware origin, 
behavior, locating other variants, signature patterns, and 
proper malware classification (e.g. Trojan, worm, virus, 
zombie, fork bomb, bot, etc.).  
 

In the field of bioinformatics, the Basic Local Alignment 
Search Tool (BLAST) tool discovers areas of local similarity 
between DNA or protein sequences [5] [8] [10] [14] [15] [16]. 
Local similarity comparisons have advantages over global 
similarity in studying the functional and evolutionary 
relationships among specimens. For example, ape and human 
DNA shares several areas of local similarity. When compared 
globally the DNA similarity is harder to discover due to years 
of evolutionary changes. In particular, BLAST compares a 
given DNA nucleotide sequences to a database of known 
sequences which can be from a wide variety of organisms. 
Based on the results of discovered local similarities, a given 
specimen can be inferred to have functional and evolutionary 
relationships with a known sample. Such local alignments help 
identify related members of gene families.  
 
Computer malware analysis has interesting parallels with the 
study of biological pathogens. The similarity does not just stop 
with bio inspired names of computer malware and their high-
level behaviors, but also extends to how we analyze and study 
them. The objective of our work is thus to utilize an 
interdisciplinary approach to determine the pedigree of a 
digital artifact of unknown origin. In this paper, we implement 
bioinformatics inspired methods in the study of three 
application areas: (a) document clustering using similarity 
detection (b) rapid malware classification, (c) plagiarism 
detection. 
 
In the present research we apply BLAST to study synthetic 
DNA sequences that represent digital artifacts. The ability to 
use bioinformatics tools to study digital artifacts opens up 
several avenues of interesting studies ranging from literary 
stylometry; digital forensics; sources code clone detection; 
malware functional characteristics and evolutionary 
relationships; and most importantly attribution of digital 
artifacts to compilers, platforms, chipsets, versions, and 
possibly the author! 
 
We assume that the reader is not familiar with bioinformatics 
tools, and in section two include an overview of BLAST and 
the technology involved. Our methods for the analysis of 
digital artifacts are in section three and include the description 
of how the data is manipulated to appear as DNA to the 



bioinformatics tools. The results of several experiments are 
contained in section four. These results include the three areas 
described above: malware, file type, and plagiarism. The final 
section includes our ideas for additional research as well as 
our conclusions for our work thus far. 

2. Bioinformatics Background 
DNA is the biological blueprint used for building proteins and 
other cellular components of living organisms. It is comprised 
of a long stretch of adenine (A), guanine (G), cytosine (C), and 
thymine (T) molecules, commonly referred to as “bases” due 
to their chemical nature. They are also referred to as 
nucleotides. DNA is represented computationally by character 
strings containing only the characters A, G, C and T. The 
seminal paper of Watson and Crick in April 25 of 1953 [3] 
described the molecular structure of DNA as a double helix. 
This discovery revolutionized the study of Biology. In double 
stranded DNA each strand runs anti-parallel to the other and 
each strand can be used as a template to construct the other 
strand using Chargaff’s base pairing rule [3] [4] which states 
that Adenine (A) will only pair with Thymine (T), and 
Guanine (G) will only pair with Cytosine (C). 
 
Each strand has an associated direction, which is indicated by 
its 5’ (5 prime) and 3’ positions; the direction is from 5’ to 3’. 
The positions of the 5’ and 3’ ends of the strands are opposite, 
and thus they are anti-parallel. The following shows a 
representation of a small piece of double-stranded DNA. It 
shows the complementary base pairing and the anti-parallel 
nature of the strands. 

 
5’ GAATTCGGCC 3’ 
   |||||||||| 
3’ CTTAAGCCGG 5’ 

 
The computational representation of DNA only includes one 
of the strands; and the other strand is implied and can be 
computed as necessary using the base-pairing rules. The strand 
direction is also implied -- the 5’ position is at the beginning 
of the string and the 3’ position is at the end of the string.  
 
DNA is the key information source in many bioinformatics 
research projects, including those trying to determine the 
relatedness of two organisms by a comparative study. 
GenBank is an international nucleotide sequence database and 
currently holds sequences from about 407,000 organisms. 
 
BLAST is a widely used bioinformatics tool [5] [8] [10] [14] 
[15] [16] that compares a given DNA sequence with other 
known DNA sequences (e.g. GenBank sequences) that reside 
in a BLAST database and determines similarities between 
them. A BLAST database is collection of known biological 
sequences, optimized for similarity querying by the BLAST 
tool. The result set returned in response to a given query 
sequence includes local alignments between the query 
sequence and “subject” sequences in a BLAST database; an 
example alignment is shown in Figure 1. A local alignment 

indicates a region of similarity between two sequences. The 
regions involved can be in any part of either sequence. Within 
these regions, every base is aligned to exactly one base in the 
other sequence or to a gap position inserted between bases in 
the other sequence. Gaps are introduced to represent deletions 
or insertions of bases, which may have occurred over time. A 
local alignment is distinguished from a global alignment, 
which is an alignment of two entire sequences (rather than 
alignments of arbitrary regions within two sequences). 
 
For each determined alignment, BLAST returns the name of 
the query and subject sequence and the positions within the 
sequences that were aligned. BLAST also returns a statistical 
measure of the likelihood that the identified alignment is a 
randomly expected occurrence; this is called the expect value 
(E-value). An E-value near zero indicates a nearly zero 
probability that the alignment represents a random occurrence 
[6]. A BLAST parameter allows you to specify a threshold E-
value. Specifying an E-value near zero asks BLAST to return 
only highly similar alignments.  
 

 
 
Fig. 1.  A BLAST alignment between two highly similar DNA sequences, 
which has an expect value (E-value) of zero. 
 

3. METHODS 
 
The premise of this project is that a digital artifact may be 
represented by a “synthetic” DNA sequence and that BLAST 
should be able to find similarities between that sequence and a 
set of sequences representing other digital artifacts, which are 
stored in a BLAST database. (Note that BLAST has 
previously been used to examine sequences, which do not 
represent actual biological sequences. A previously reported 
use was examining journal papers [7])  

A. DNA representation of an arbitrary digital artifact 
BLAST supports both nucleotide (DNA) and protein 
sequences. However, BLAST attaches biological significance 
to the amino acids in a protein sequence (BLOSUM and PAM 
scoring matrices [12] have this logic encoded in them). On the 
other hand, when BLAST is analyzing DNA sequences there 
is minimal scoring logic related to chemical properties of the 
nucleotides. For this study the DNA format was chosen, so 
that chemical properties would not be a significant factor in 
the BLAST analysis. As a result, all digital artifacts are 
transformed into a corresponding DNA representation for 
processing by BLAST. This transformation is obtained by 



following a mapping between digital bits and characters 
representing nucleotides. 
 
A digital artifact is considered to be a sequence of byte values. 
The initial step is thus to convert the sequence of bytes from 
an arbitrary digital artifact into a DNA representation. The 
conversion is completely reversible. Four DNA characters are 
created for each byte in the digital artifact.  Each DNA 
character represents two bits of the byte. The four characters 
represent bits six and seven, four and five, two and three and 
zero and one, respectively.  The following mapping is used: 
 

00 ßà T 
01 ßà G 
10 ßà C 
11 ßà A 

 
There are twenty-four possible ways to perform such a 
mapping.  Any of those mappings could be used to provide a 
consistent and comparable DNA representation of a digital 
artifact. This mapping has the property that the values for G 
and C; and T and A are complementary, considering bit values 
of zero and one to be complements.  
 
A method was developed which uses this mapping to allow for 
the comparison and clustering of arbitrary digital artifacts. 
Steps in the method are guided by the alignments discovered 
by BLAST among the DNA representations of those artifacts. 
The method includes three steps: 1) preprocessing, 2) 
sequence analysis, and 3) visualization. The steps can be 
applied for several use cases.  
 
Digital artifact clustering: A set of digital artifacts to be 
clustered is converted into DNA representations. A pairwise 
comparison by BLAST produces alignments between artifacts 
with similar structures. The alignments are used to build a 
clustered graph representation of the similarities between the 
artifacts. The visualization is performed using Cytoscape (a 
popular bioinformatics graph visualization tool) [9] [13]. 
 
Digital artifact identification: Consider an artifact of unknown 
origin and a BLAST database of sequences of known digital 
pedigree. The unknown artifact is converted to a DNA format, 
and compared to the sequences in the database using BLAST. 
The resulting alignments are used to identify the most likely 
type of that artifact. Again, the results are visualized for 
foraging through the various reported alignments.  

A. Preprocessing 
The input to this step is an arbitrary set of digital artifacts to be 
examined. The artifacts are converted to a DNA format and a 
BLAST database is created using the steps shown in Figure 2.  
 

 
Fig. 2.  Preprocessing Step for Digital Artifact Analysis. The various digital 
files are converted to DNA sequences and are merged into a FASTA sequence 
file. This is converted into the database used by BLAST. 
The specific type of file that is created by this step is a FASTA 
format file [11]. This is a flat text file, which can contain 
multiple DNA sequences.  Each sequence is introduced by an 
identification line which has the “>” character as the first 
character on the line and then has information which identifies 
the sequence. Each identification line is followed by one or 
more lines containing the DNA characters which define the 
sequence. The following shows the beginning of a FASTA file 
representing the digital artifact “zeus_005_f04.exe”: 
 
>lcl|/home/jayp/bigtest/zeus_005_f04.exe 
GTAGGGCCCGTTTTTTTTTATTTTTTTTTTTTTTGTTTTTTT
TTTTTTAAA 
 
Given a FASTA file containing one or more DNA sequences -
- the “makeblastdb” tool from NCBI’s BLAST tools [15] [16] 
can be used to create a BLAST database containing those 
sequences. 

B. Sequence Analysis 
Once the database has been created, the artifacts can be 
analyzed for pairwise similarity using BLAST. We have used 
NCBI’s BLAST version 2.25 [16] for our analyses. 
Bioinformatics practitioners call this type of search an “all 
versus all” BLAST comparison, used in Biology to look for 
orthologs (similar genes) across multiple species [14]. In our 
case, we are looking for similarities among a set of digital 
artifacts. The result of this step is a BLAST report of the 
determined alignments between the artifacts.  
 
The same FASTA sequence file, which was used to create the 
BLAST database, is now used to query against the database. 
Thus, BLAST will determine the similarities between each 
sequence and every sequence in the database; which is the 
same set of sequences. Thus, the “all versus all” comparison. 
The overall flow is depicted in Figure 3. 

 

 
Fig. 3.  Sequence Analysis Step. In this middle step the FASTA file and the 
BLAST database are examined and the sequence alignments between the 
original artifacts are reported. 
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As described in Section 2, BLAST has an “E-value” 
parameter. Specifying an E-value close to zero asks BLAST to 
return only highly similar alignments. We examined E-values 
ranging from 10-6	
   to 10-300	
   with “all versus all” BLAST 
comparisons. As the negative exponent decreased towards 
-300, the number of small alignments reduced dramatically, 
while the larger alignments remained stable . This indicates 
that BLAST considers longer alignments to be less likely to be 
random occurrences.  
A BLAST report includes information concerning each 
alignment. This includes:  
• Names of the sequences involved in the alignment 
• Starting and ending positions of the alignment. 
• Measures of the statistical significance including E-value 

C. Visualization 
The final step is the visualization of the results of the BLAST 
alignment.  The visualization step consists of examining the 
BLAST report and creating a graph that represents those files 
where the sequences aligned with each other.  The BLAST 
report is parsed and the alignment information is saved in a 
Simple Interaction Format (SIF) file. This graph format is used 
as input by the Cytoscape visualization tool [9] [13]. The 
overall flow of the visualization step is depicted in Figure 4. 

 

 
Fig. 4.  Visualization of Similar Files. The output from the BLAST step is 
used to create input for Cytoscape. This provides various visualizations for the 
alignments of the DNA sequence 
 
The visualization graph is constructed by considering every 
digital artifact to be a node in the graph, and edges 
representing the BLAST alignments between the artifacts.  
Such a graph will contain components that can be considered 
as clusters.  The size of the clusters and the density of 
relationships among nodes in a cluster will vary depending on 
the E-value, which was used when performing sequence 
analysis. 
 
This step optionally creates files, which show the alignments 
in “original format” (instead of DNA characters). This can be 
useful to examine what BLAST is determining aligns in its 
original form (rather than as DNA characters). Such inspection 
is particularly useful for text-based digital artifacts such as 
documents and source code. 

4. Results 
Several experiments were designed to evaluate the usefulness 
of this approach including document clustering, malware 

classification and plagiarism identification  

A. Document Clustering 
A set of 1,202 digital artifacts of fifteen different types were 
collected to test the document clustering process. The artifacts 
included text and binary files and both benign and malicious 
executables and benign and malicious JavaScript files. The 
types and counts of artifacts were as follows: 
 
14 executable files 33 JavaScript 319 Java 
229 Java “.class” 203 natural language 192 C 
45 Scala 46 Perl 9 CGI (Perl) 
15 Python 31 C# 24 HTML 
18 PNG (image) 17 MP3 (audio) 7 ZIP 
 
Among the 14 executable files, were 7 benign files and 7 
malware files (4 Zeus Trojans and 3 Zeus Version Two 
Trojans as identified by MalwareDomainList.com). Also 
included were 33 JavaScript source files, of which 25 were 
malicious including 13 obfuscated and 12 de-obfuscated files.  
The malware JavaScript examples were obtained from 
http://redleg-redleg.blogspot.com/p/examples-of-malicious-
javascript.html 
 
The preprocessing, sequence analysis and visualization steps 
defined in the method section were followed. The E-value 
parameter of BLAST was set to 10-300.  This resulted in the 
creation of a graph, which contained 9,932 edges between the 
artifacts. The visualization of much of the graph, including its 
largest clusters is in Figure 5. 
 
The graph contained clusters with very similar files, some of 
the clustering highlights included: 
 
• A cluster with 23 HTML files (of the 24 in the data set) 
• A cluster with 18 C# files (of the 31 in the data set) 
• A cluster with 16 MP3 files (of the 17 in the data set) 
• A cluster with 127 Java class files from a single project; 

another cluster with 16 Java class files from a different 
project; another cluster with 22 Java class files from three 
highly related projects (all implementing the same class 
assignment) 

• A cluster with 10 Windows executable files including 4 
Zeus Trojan executable files (but none of the Zeus version 
two executable files). 

• A cluster with all 3 Zeus version two executable files was 
generated 

• A cluster with 45 Java files from the same project, another 
with 19 Java files from a different project, one cluster 
with 14 Java files from one project.  

• One cluster with a mixture of 50 Java and Scala source 
files (29 Java, 21 Scala); the Scala files had been 
converted directly from the project the Java files belonged 
to and were thus highly similar. 

• One cluster contained 61 C files and header files from the 
same assignment 
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One cluster with 3 deobfuscated JavaScript files and another 
with 2 deobfuscated JavaScript files. (of the 12 deobfuscated 

JavaScript files) 

 
 

 
Fig. 5.  Document Clustering at E-value 10-300. Each almost exclusively consisted of files of the same type.  
For example, Java source files from different projects cluster together, while MP3 files and HTML cluster into separate groups. 

 
The following was also observed: 
 
• Of the 1202 files, there were 453 which had no 

alignments with any other files (approximately 38%).  
This is not unexpected due to the very high local 
similarity requirement enforced by using E-value 10-300. 
Of the non-clustered files, there were 182 natural 

language files.  If natural language files are excluded from 
consideration, there were 27% of the remaining files, 
which remained un-clustered. 

• Obfuscated JavaScript had few alignments to other files. 
• The following file types had almost no alignments to any 

other files: ZIP files, PNG files and natural language files.  
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In general, the clusters that formed had strong similarity of file 
type and frequently consisted of files from the same 
programming project. There were cases where a single Java 
programming project resulted in multiple clusters, but the 
clusters always exclusively consisted of Java source files. 
There were a significant number of files, which did not align 
and join with other files in a cluster. This appeared to be 
especially prevalent with natural language files. 
 
The four Zeus Trojan executable files clustered with benign 
executable files, but Zeus Version Two Trojans executable 
files did not. 
 
Additional testing was performed to see how the results would 
differ when examining the same 1202 files but using “looser” 
E-values of 10-250, 10-200, and 10-150, which reduced the amount 
of local similarity required. 
 
The following were some of the differences observed when 
clustering at E-value 10-200: 
 
• There were 30,680 edges in the network (compared to 

9,932 previously). 
• A cluster of all 14 executable files was created; including 

the Zeus and Zeus version two Trojan executable files. 
The Zeus version two executable files were no longer 
distinguished from other executable files). 

• A large cluster of 259 files was generated consisting of 
189 Java class files but also contains 35 related Java files 
and 35 Scala files. All files were related to implementing 
the same programming project. 

• A cluster of 143 Java files from the same project was 
created. 

• A cluster containing 91 C files from multiple 
programming assignments was created (of the 192 total C 
files). 

• A cluster of 6 of the 8 benign JavaScript files was created 
(compared to two separate clusters which contained 5 
benign JavaScript files previously). 

• There were several clusters that were nearly identical to 
those of the 10-300 E-value case: 
o A cluster containing 23 C# source files (of the 31 

total C# files) 
o A cluster containing 23 HTML files (of the 24 total 

HTML files) 
o A cluster with 19 Java files from the same project. 

 
When further increasing the E-value to 10-150, the following 
was observed: 
 
• There were 177,011 edges in the network 
• There were 235 files, which had no alignments to any 

other files; of these, 169 were natural language files.  If 
we exclude natural language files, then 6.6% of the 
remaining files were un-clustered. 

• One cluster contained 453 files which included Java class 

files but also some C source code, Java source code and 
Scala source code and C# source code. 

 
The observations indicate that the specificity of the clustering 
based on file type starts to break down at a higher E-value 
setting. In summary, as the E-value increased from 10-300 to 
10-150, the number of alignments returned by BLAST increased 
substantially, and the level of similarity between files in 
clusters appeared to be reduced.  For example, Java files from 
different projects, which were separated into different clusters 
at E-Value 10-300 were being clustered together at E-Value  
10-150.  Similar results were seen for C source files and Java 
class files (byte code files).  

B. Rapid Malware Classification 
This experiment repurposed the BLAST database created by 
the document clustering test.  It relies on the fact that there are 
Zeus and Zeus version two malware executable files within 
the database. The premise is that Zeus and Zeus version two 
malware executable files found “in the wild” should align 
closely with their counterparts in the database. 
 
Recall that the 1,202 digital artifacts in the BLAST database 
were of the following types: 
 
14 executable files 33 JavaScript 319 Java 
229 Java “.class” 203 natural language 192 C 
45 Scala 46 Perl 9 CGI (Perl) 
15 Python 31 C# 24 HTML 
18 PNG (image) 17 MP3 (audio) 7 ZIP 
 
The experiment was to find another Trojan executable and see 
if it could be identified as such by examining its BLAST 
alignments with that BLAST database. 
 
A malware executable was obtained on March 7, 2012, from a 
reference at MalwareDomain.com, which identified it as a 
Zeus Trojan. Its size and content differed from the four Zeus 
Trojan executable files in the BLAST database. 
 
A biological representation of this executable was generated 
and BLAST was used to determine its alignments with the 
1,202 files in the BLAST database. 
 
At E-value level 10-300, BLAST generated 31 alignments 
which were all to the four Zeus Trojan executable files in the 
database. This was viewed as a positive result. 
 
At E-value level 10-200, BLAST generated 2,364 alignments, 
of which the highest scoring 2355 (99.6%) were to the 4 Zeus 
executable files in the database.  Of the remaining 9 lowest 
scoring alignments -- 7 were to benign executable files and 2 
were to Zeus version two executable files. This was also 
viewed as a positive result. 

C. Plagiarism Detection 
A separate investigation was undertaken to investigate 
possible plagiarism in student program submissions in a C 



programming class taught by one of the authors.  The 
examination was done using E-value 10-300.  Several sets of 
programs files were examined.  The topic of the assignment, 
and whether or not any “boilerplate” code (i.e. assignment 
bootstrapping code) was given to the class influenced the 
results significantly. 
In cases where there was boilerplate code given to the class as 
part of the programming assignment, the student submitted 
programs all tended to cluster together. The alignments were 
observed primarily due to the boilerplate code that was 
common to all of the student files.  Even in this circumstance, 
there were seen clusters with more inter-file alignments.  
There was not a clean separation of into components, but the 
number of alignments between files was a strong indicator of 
those files, which were suspiciously similar in regions other 
than the boilerplate. 
 
When no boilerplate code was given, there tended to be fewer 
alignments. In this case, the alignments that were found 
showed suspiciously similar code between different student 
submissions. 

5. Further Research and Conclusions 
 
The specific uses of bioinformatics tools in this project gives 
only a taste of what the tools could be used for in the future. 
There are tools for classification of biologic objects, such as 
Restriction Enzymes, which may be of use in classifying 
computer artifacts – given a biological representation of those 
artifacts.  One caveat is that there may be strong Biological 
assumptions made by those tools that would not be satisfied by 
biological representations of arbitrary digital artifacts 
 
An intriguing possibility is to create a BLAST database 
containing sequences representing known malware including 
strains of malware executable files and JavaScript malware.  
This could be used as a possible rapid malware identification 
mechanism.  A digital artifact whose biological representation 
aligns closely with any sequences in that database could be 
considered to be a likely malware executable. The “Rapid 
Malware Detection” test that was done indicates that this 
could be an effective identification mechanism. 
 
It may be found that it is beneficial to have different BLAST 
databases for different types of artifacts.  Just as there are 
different biologic databases for nucleotides and proteins, 
perhaps it may be useful to have databases that are specific to 
viruses as opposed to malware JavaScript source files. 
 
The specific outputs produced by this project can be improved 
in various ways: 
 
• The Cytoscape visualization can be improved to change 

the size of a node or the width of an edge based on the 
size of the alignment. Multiple edges between two 
artifacts might be able to be condensed into a single edge 
using a color scheme to indicate the number of alignments 

• A visual map of the alignments of two digital artifacts 
could be produced.  This would be analogous to a 
“homolog map” in Biological domain which shows the 
positions of related genes in the genomes of two species. 

• A Cytoscape plugin could be created to allow an viewing 
the original format of any alignment and remove those not 
of concern or highlight those of concern. 

 
This paper presented a novel method for clustering  digital 
artifacts, identifying a digital artifact as similar to known  
malware, and detecting plagiarism by using a synthetic DNA 
representation of the digital artifacts and using the 
bioinformatics BLAST tool. It demonstrates that the 
classification power of bioinformatics tools that are used in 
biology problems can also be used in other domains. 
 
The success of using BLAST to examine nucleotide 
representations of computer artifacts can be partly attributed to 
the fact that BLAST does not make strong assumptions about 
the chemical differences between nucleotides when processing 
a nucleotide database. This is not true when using BLAST 
with protein databases. It may be possible to use BLAST with 
synthetic protein definitions by providing specialized scoring 
matrices to BLAST which do not make biologic assumptions 
that would not hold. 
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