
BLAST Your Way through Malware
Malware Analysis Assisted by Bioinformatics Tools

Jay Pedersen, Dhundy Bastola, Ken Dick, Robin Gandhi, William Mahoney
School of Interdisciplinary Informatics

College of Information Science and Technology
University of Nebraska at Omaha

Omaha, Nebraska
{jaypedersen, dkbastola, kdick, rgandhi, wmahoney} @unomaha.edu

Abstract—As a new strain of computer malware is
discovered, it triggers a meticulous process of analyzing its
behavior and developing appropriate defenses. A systematic
process which identifies regions of commonality and
variability with known samples can ease the burden of
malware analysis. We address this challenge using an
interdisciplinary approach which applies biological sequence
analysis methods to computer malware. Specifically, we have
developed a method which has the goal of classifying a digital
artifact (possibly malware) based on its similarity to known
digital artifacts (or known malware samples) using methods
and tools of bioinformatics. Our approach is analogous to
classifications of biological sequences, which are routinely
performed using online databases of known biological
sequences.

Keywords: clustering, classification, malware, plagiarism

1. Introduction
Consider the evolution of a biological pathogen, which can be
tracked using DNA markers. This operation often involves
examining nucleotide sequences in DNA using powerful
bioinformatics tools to identify regions of local or global
similarity, or interactions with specific enzymes, which may
be a consequence of functional, structural, or evolutionary
characteristics of the pathogen’s genetic makeup. This is
biological stylometry at work!

In field of computer security, there is significant interest in
understanding malware behavior to develop effective
detection, prevention and recovery mechanisms [1] [2].
Unfortunately, malware analysis is still much of an acquired
tradecraft, and the results depend heavily on the quality of
personnel involved. Malware analysis typically involves
reverse engineering compiled digital artifacts, configuration
files, metadata or foraging through other information. The
results from such analysis provide clues for malware origin,
behavior, locating other variants, signature patterns, and
proper malware classification (e.g. Trojan, worm, virus,
zombie, fork bomb, bot, etc.).

In the field of bioinformatics, the Basic Local Alignment
Search Tool (BLAST) tool discovers areas of local similarity
between DNA or protein sequences [5] [8] [10] [14] [15] [16].
Local similarity comparisons have advantages over global
similarity in studying the functional and evolutionary
relationships among specimens. For example, ape and human
DNA shares several areas of local similarity. When compared
globally the DNA similarity is harder to discover due to years
of evolutionary changes. In particular, BLAST compares a
given DNA nucleotide sequences to a database of known
sequences which can be from a wide variety of organisms.
Based on the results of discovered local similarities, a given
specimen can be inferred to have functional and evolutionary
relationships with a known sample. Such local alignments help
identify related members of gene families.

Computer malware analysis has interesting parallels with the
study of biological pathogens. The similarity does not just stop
with bio inspired names of computer malware and their high-
level behaviors, but also extends to how we analyze and study
them. The objective of our work is thus to utilize an
interdisciplinary approach to determine the pedigree of a
digital artifact of unknown origin. In this paper, we implement
bioinformatics inspired methods in the study of three
application areas: (a) document clustering using similarity
detection (b) rapid malware classification, (c) plagiarism
detection.

In the present research we apply BLAST to study synthetic
DNA sequences that represent digital artifacts. The ability to
use bioinformatics tools to study digital artifacts opens up
several avenues of interesting studies ranging from literary
stylometry; digital forensics; sources code clone detection;
malware functional characteristics and evolutionary
relationships; and most importantly attribution of digital
artifacts to compilers, platforms, chipsets, versions, and
possibly the author!

We assume that the reader is not familiar with bioinformatics
tools, and in section two include an overview of BLAST and
the technology involved. Our methods for the analysis of
digital artifacts are in section three and include the description
of how the data is manipulated to appear as DNA to the

bioinformatics tools. The results of several experiments are
contained in section four. These results include the three areas
described above: malware, file type, and plagiarism. The final
section includes our ideas for additional research as well as
our conclusions for our work thus far.

2. Bioinformatics Background
DNA is the biological blueprint used for building proteins and
other cellular components of living organisms. It is comprised
of a long stretch of adenine (A), guanine (G), cytosine (C), and
thymine (T) molecules, commonly referred to as “bases” due
to their chemical nature. They are also referred to as
nucleotides. DNA is represented computationally by character
strings containing only the characters A, G, C and T. The
seminal paper of Watson and Crick in April 25 of 1953 [3]
described the molecular structure of DNA as a double helix.
This discovery revolutionized the study of Biology. In double
stranded DNA each strand runs anti-parallel to the other and
each strand can be used as a template to construct the other
strand using Chargaff’s base pairing rule [3] [4] which states
that Adenine (A) will only pair with Thymine (T), and
Guanine (G) will only pair with Cytosine (C).

Each strand has an associated direction, which is indicated by
its 5’ (5 prime) and 3’ positions; the direction is from 5’ to 3’.
The positions of the 5’ and 3’ ends of the strands are opposite,
and thus they are anti-parallel. The following shows a
representation of a small piece of double-stranded DNA. It
shows the complementary base pairing and the anti-parallel
nature of the strands.

5’ GAATTCGGCC 3’
 ||||||||||
3’ CTTAAGCCGG 5’

The computational representation of DNA only includes one
of the strands; and the other strand is implied and can be
computed as necessary using the base-pairing rules. The strand
direction is also implied -- the 5’ position is at the beginning
of the string and the 3’ position is at the end of the string.

DNA is the key information source in many bioinformatics
research projects, including those trying to determine the
relatedness of two organisms by a comparative study.
GenBank is an international nucleotide sequence database and
currently holds sequences from about 407,000 organisms.

BLAST is a widely used bioinformatics tool [5] [8] [10] [14]
[15] [16] that compares a given DNA sequence with other
known DNA sequences (e.g. GenBank sequences) that reside
in a BLAST database and determines similarities between
them. A BLAST database is collection of known biological
sequences, optimized for similarity querying by the BLAST
tool. The result set returned in response to a given query
sequence includes local alignments between the query
sequence and “subject” sequences in a BLAST database; an
example alignment is shown in Figure 1. A local alignment

indicates a region of similarity between two sequences. The
regions involved can be in any part of either sequence. Within
these regions, every base is aligned to exactly one base in the
other sequence or to a gap position inserted between bases in
the other sequence. Gaps are introduced to represent deletions
or insertions of bases, which may have occurred over time. A
local alignment is distinguished from a global alignment,
which is an alignment of two entire sequences (rather than
alignments of arbitrary regions within two sequences).

For each determined alignment, BLAST returns the name of
the query and subject sequence and the positions within the
sequences that were aligned. BLAST also returns a statistical
measure of the likelihood that the identified alignment is a
randomly expected occurrence; this is called the expect value
(E-value). An E-value near zero indicates a nearly zero
probability that the alignment represents a random occurrence
[6]. A BLAST parameter allows you to specify a threshold E-
value. Specifying an E-value near zero asks BLAST to return
only highly similar alignments.

Fig. 1. A BLAST alignment between two highly similar DNA sequences,
which has an expect value (E-value) of zero.

3. METHODS

The premise of this project is that a digital artifact may be
represented by a “synthetic” DNA sequence and that BLAST
should be able to find similarities between that sequence and a
set of sequences representing other digital artifacts, which are
stored in a BLAST database. (Note that BLAST has
previously been used to examine sequences, which do not
represent actual biological sequences. A previously reported
use was examining journal papers [7])

A. DNA representation of an arbitrary digital artifact
BLAST supports both nucleotide (DNA) and protein
sequences. However, BLAST attaches biological significance
to the amino acids in a protein sequence (BLOSUM and PAM
scoring matrices [12] have this logic encoded in them). On the
other hand, when BLAST is analyzing DNA sequences there
is minimal scoring logic related to chemical properties of the
nucleotides. For this study the DNA format was chosen, so
that chemical properties would not be a significant factor in
the BLAST analysis. As a result, all digital artifacts are
transformed into a corresponding DNA representation for
processing by BLAST. This transformation is obtained by

following a mapping between digital bits and characters
representing nucleotides.

A digital artifact is considered to be a sequence of byte values.
The initial step is thus to convert the sequence of bytes from
an arbitrary digital artifact into a DNA representation. The
conversion is completely reversible. Four DNA characters are
created for each byte in the digital artifact. Each DNA
character represents two bits of the byte. The four characters
represent bits six and seven, four and five, two and three and
zero and one, respectively. The following mapping is used:

00 ßà T
01 ßà G
10 ßà C
11 ßà A

There are twenty-four possible ways to perform such a
mapping. Any of those mappings could be used to provide a
consistent and comparable DNA representation of a digital
artifact. This mapping has the property that the values for G
and C; and T and A are complementary, considering bit values
of zero and one to be complements.

A method was developed which uses this mapping to allow for
the comparison and clustering of arbitrary digital artifacts.
Steps in the method are guided by the alignments discovered
by BLAST among the DNA representations of those artifacts.
The method includes three steps: 1) preprocessing, 2)
sequence analysis, and 3) visualization. The steps can be
applied for several use cases.

Digital artifact clustering: A set of digital artifacts to be
clustered is converted into DNA representations. A pairwise
comparison by BLAST produces alignments between artifacts
with similar structures. The alignments are used to build a
clustered graph representation of the similarities between the
artifacts. The visualization is performed using Cytoscape (a
popular bioinformatics graph visualization tool) [9] [13].

Digital artifact identification: Consider an artifact of unknown
origin and a BLAST database of sequences of known digital
pedigree. The unknown artifact is converted to a DNA format,
and compared to the sequences in the database using BLAST.
The resulting alignments are used to identify the most likely
type of that artifact. Again, the results are visualized for
foraging through the various reported alignments.

A. Preprocessing
The input to this step is an arbitrary set of digital artifacts to be
examined. The artifacts are converted to a DNA format and a
BLAST database is created using the steps shown in Figure 2.

Fig. 2. Preprocessing Step for Digital Artifact Analysis. The various digital
files are converted to DNA sequences and are merged into a FASTA sequence
file. This is converted into the database used by BLAST.
The specific type of file that is created by this step is a FASTA
format file [11]. This is a flat text file, which can contain
multiple DNA sequences. Each sequence is introduced by an
identification line which has the “>” character as the first
character on the line and then has information which identifies
the sequence. Each identification line is followed by one or
more lines containing the DNA characters which define the
sequence. The following shows the beginning of a FASTA file
representing the digital artifact “zeus_005_f04.exe”:

>lcl|/home/jayp/bigtest/zeus_005_f04.exe
GTAGGGCCCGTTTTTTTTTATTTTTTTTTTTTTTGTTTTTTT
TTTTTTAAA

Given a FASTA file containing one or more DNA sequences -
- the “makeblastdb” tool from NCBI’s BLAST tools [15] [16]
can be used to create a BLAST database containing those
sequences.

B. Sequence Analysis
Once the database has been created, the artifacts can be
analyzed for pairwise similarity using BLAST. We have used
NCBI’s BLAST version 2.25 [16] for our analyses.
Bioinformatics practitioners call this type of search an “all
versus all” BLAST comparison, used in Biology to look for
orthologs (similar genes) across multiple species [14]. In our
case, we are looking for similarities among a set of digital
artifacts. The result of this step is a BLAST report of the
determined alignments between the artifacts.

The same FASTA sequence file, which was used to create the
BLAST database, is now used to query against the database.
Thus, BLAST will determine the similarities between each
sequence and every sequence in the database; which is the
same set of sequences. Thus, the “all versus all” comparison.
The overall flow is depicted in Figure 3.

Fig. 3. Sequence Analysis Step. In this middle step the FASTA file and the
BLAST database are examined and the sequence alignments between the
original artifacts are reported.

File%

File%

File%

Makefasta% FASTA%
Sequence%

Make%
BLAST%DB% BLAST%

Database%

Preprocessing%

BLAST&
Database&

FASTA&
Sequence&

BLAST&
BLAST&
Report&

Sequence&Analysis&

As described in Section 2, BLAST has an “E-value”
parameter. Specifying an E-value close to zero asks BLAST to
return only highly similar alignments. We examined E-values
ranging from 10-6	
 to 10-300	
 with “all versus all” BLAST
comparisons. As the negative exponent decreased towards
-300, the number of small alignments reduced dramatically,
while the larger alignments remained stable . This indicates
that BLAST considers longer alignments to be less likely to be
random occurrences.
A BLAST report includes information concerning each
alignment. This includes:
• Names of the sequences involved in the alignment
• Starting and ending positions of the alignment.
• Measures of the statistical significance including E-value

C. Visualization
The final step is the visualization of the results of the BLAST
alignment. The visualization step consists of examining the
BLAST report and creating a graph that represents those files
where the sequences aligned with each other. The BLAST
report is parsed and the alignment information is saved in a
Simple Interaction Format (SIF) file. This graph format is used
as input by the Cytoscape visualization tool [9] [13]. The
overall flow of the visualization step is depicted in Figure 4.

Fig. 4. Visualization of Similar Files. The output from the BLAST step is
used to create input for Cytoscape. This provides various visualizations for the
alignments of the DNA sequence

The visualization graph is constructed by considering every
digital artifact to be a node in the graph, and edges
representing the BLAST alignments between the artifacts.
Such a graph will contain components that can be considered
as clusters. The size of the clusters and the density of
relationships among nodes in a cluster will vary depending on
the E-value, which was used when performing sequence
analysis.

This step optionally creates files, which show the alignments
in “original format” (instead of DNA characters). This can be
useful to examine what BLAST is determining aligns in its
original form (rather than as DNA characters). Such inspection
is particularly useful for text-based digital artifacts such as
documents and source code.

4. Results
Several experiments were designed to evaluate the usefulness
of this approach including document clustering, malware

classification and plagiarism identification

A. Document Clustering
A set of 1,202 digital artifacts of fifteen different types were
collected to test the document clustering process. The artifacts
included text and binary files and both benign and malicious
executables and benign and malicious JavaScript files. The
types and counts of artifacts were as follows:

14 executable files 33 JavaScript 319 Java
229 Java “.class” 203 natural language 192 C
45 Scala 46 Perl 9 CGI (Perl)
15 Python 31 C# 24 HTML
18 PNG (image) 17 MP3 (audio) 7 ZIP

Among the 14 executable files, were 7 benign files and 7
malware files (4 Zeus Trojans and 3 Zeus Version Two
Trojans as identified by MalwareDomainList.com). Also
included were 33 JavaScript source files, of which 25 were
malicious including 13 obfuscated and 12 de-obfuscated files.
The malware JavaScript examples were obtained from
http://redleg-redleg.blogspot.com/p/examples-of-malicious-
javascript.html

The preprocessing, sequence analysis and visualization steps
defined in the method section were followed. The E-value
parameter of BLAST was set to 10-300. This resulted in the
creation of a graph, which contained 9,932 edges between the
artifacts. The visualization of much of the graph, including its
largest clusters is in Figure 5.

The graph contained clusters with very similar files, some of
the clustering highlights included:

• A cluster with 23 HTML files (of the 24 in the data set)
• A cluster with 18 C# files (of the 31 in the data set)
• A cluster with 16 MP3 files (of the 17 in the data set)
• A cluster with 127 Java class files from a single project;

another cluster with 16 Java class files from a different
project; another cluster with 22 Java class files from three
highly related projects (all implementing the same class
assignment)

• A cluster with 10 Windows executable files including 4
Zeus Trojan executable files (but none of the Zeus version
two executable files).

• A cluster with all 3 Zeus version two executable files was
generated

• A cluster with 45 Java files from the same project, another
with 19 Java files from a different project, one cluster
with 14 Java files from one project.

• One cluster with a mixture of 50 Java and Scala source
files (29 Java, 21 Scala); the Scala files had been
converted directly from the project the Java files belonged
to and were thus highly similar.

• One cluster contained 61 C files and header files from the
same assignment

Cytoscape*
Network*

File*

Make*
Filenet*

BLAST*
Report*

Cytoscape*

Visualiza=on*

One cluster with 3 deobfuscated JavaScript files and another
with 2 deobfuscated JavaScript files. (of the 12 deobfuscated

JavaScript files)

Fig. 5. Document Clustering at E-value 10-300. Each almost exclusively consisted of files of the same type.
For example, Java source files from different projects cluster together, while MP3 files and HTML cluster into separate groups.

The following was also observed:

• Of the 1202 files, there were 453 which had no

alignments with any other files (approximately 38%).
This is not unexpected due to the very high local
similarity requirement enforced by using E-value 10-300.
Of the non-clustered files, there were 182 natural

language files. If natural language files are excluded from
consideration, there were 27% of the remaining files,
which remained un-clustered.

• Obfuscated JavaScript had few alignments to other files.
• The following file types had almost no alignments to any

other files: ZIP files, PNG files and natural language files.

JAVA CLASS
FILES

C
FILES

JAVA
FILES

JAVA CLASS
FILES

C#
FILES MP3

FILES

HTML
FILES

JAVA & SCALA
FILES

EXE
FILES

PYTHON
FILES

JAVASCRIPT
FILES

PERL
FILES

JAVA CLASS
FILES

JAVA
FILES

In general, the clusters that formed had strong similarity of file
type and frequently consisted of files from the same
programming project. There were cases where a single Java
programming project resulted in multiple clusters, but the
clusters always exclusively consisted of Java source files.
There were a significant number of files, which did not align
and join with other files in a cluster. This appeared to be
especially prevalent with natural language files.

The four Zeus Trojan executable files clustered with benign
executable files, but Zeus Version Two Trojans executable
files did not.

Additional testing was performed to see how the results would
differ when examining the same 1202 files but using “looser”
E-values of 10-250, 10-200, and 10-150, which reduced the amount
of local similarity required.

The following were some of the differences observed when
clustering at E-value 10-200:

• There were 30,680 edges in the network (compared to

9,932 previously).
• A cluster of all 14 executable files was created; including

the Zeus and Zeus version two Trojan executable files.
The Zeus version two executable files were no longer
distinguished from other executable files).

• A large cluster of 259 files was generated consisting of
189 Java class files but also contains 35 related Java files
and 35 Scala files. All files were related to implementing
the same programming project.

• A cluster of 143 Java files from the same project was
created.

• A cluster containing 91 C files from multiple
programming assignments was created (of the 192 total C
files).

• A cluster of 6 of the 8 benign JavaScript files was created
(compared to two separate clusters which contained 5
benign JavaScript files previously).

• There were several clusters that were nearly identical to
those of the 10-300 E-value case:
o A cluster containing 23 C# source files (of the 31

total C# files)
o A cluster containing 23 HTML files (of the 24 total

HTML files)
o A cluster with 19 Java files from the same project.

When further increasing the E-value to 10-150, the following
was observed:

• There were 177,011 edges in the network
• There were 235 files, which had no alignments to any

other files; of these, 169 were natural language files. If
we exclude natural language files, then 6.6% of the
remaining files were un-clustered.

• One cluster contained 453 files which included Java class

files but also some C source code, Java source code and
Scala source code and C# source code.

The observations indicate that the specificity of the clustering
based on file type starts to break down at a higher E-value
setting. In summary, as the E-value increased from 10-300 to
10-150, the number of alignments returned by BLAST increased
substantially, and the level of similarity between files in
clusters appeared to be reduced. For example, Java files from
different projects, which were separated into different clusters
at E-Value 10-300 were being clustered together at E-Value
10-150. Similar results were seen for C source files and Java
class files (byte code files).

B. Rapid Malware Classification
This experiment repurposed the BLAST database created by
the document clustering test. It relies on the fact that there are
Zeus and Zeus version two malware executable files within
the database. The premise is that Zeus and Zeus version two
malware executable files found “in the wild” should align
closely with their counterparts in the database.

Recall that the 1,202 digital artifacts in the BLAST database
were of the following types:

14 executable files 33 JavaScript 319 Java
229 Java “.class” 203 natural language 192 C
45 Scala 46 Perl 9 CGI (Perl)
15 Python 31 C# 24 HTML
18 PNG (image) 17 MP3 (audio) 7 ZIP

The experiment was to find another Trojan executable and see
if it could be identified as such by examining its BLAST
alignments with that BLAST database.

A malware executable was obtained on March 7, 2012, from a
reference at MalwareDomain.com, which identified it as a
Zeus Trojan. Its size and content differed from the four Zeus
Trojan executable files in the BLAST database.

A biological representation of this executable was generated
and BLAST was used to determine its alignments with the
1,202 files in the BLAST database.

At E-value level 10-300, BLAST generated 31 alignments
which were all to the four Zeus Trojan executable files in the
database. This was viewed as a positive result.

At E-value level 10-200, BLAST generated 2,364 alignments,
of which the highest scoring 2355 (99.6%) were to the 4 Zeus
executable files in the database. Of the remaining 9 lowest
scoring alignments -- 7 were to benign executable files and 2
were to Zeus version two executable files. This was also
viewed as a positive result.

C. Plagiarism Detection
A separate investigation was undertaken to investigate
possible plagiarism in student program submissions in a C

programming class taught by one of the authors. The
examination was done using E-value 10-300. Several sets of
programs files were examined. The topic of the assignment,
and whether or not any “boilerplate” code (i.e. assignment
bootstrapping code) was given to the class influenced the
results significantly.
In cases where there was boilerplate code given to the class as
part of the programming assignment, the student submitted
programs all tended to cluster together. The alignments were
observed primarily due to the boilerplate code that was
common to all of the student files. Even in this circumstance,
there were seen clusters with more inter-file alignments.
There was not a clean separation of into components, but the
number of alignments between files was a strong indicator of
those files, which were suspiciously similar in regions other
than the boilerplate.

When no boilerplate code was given, there tended to be fewer
alignments. In this case, the alignments that were found
showed suspiciously similar code between different student
submissions.

5. Further Research and Conclusions

The specific uses of bioinformatics tools in this project gives
only a taste of what the tools could be used for in the future.
There are tools for classification of biologic objects, such as
Restriction Enzymes, which may be of use in classifying
computer artifacts – given a biological representation of those
artifacts. One caveat is that there may be strong Biological
assumptions made by those tools that would not be satisfied by
biological representations of arbitrary digital artifacts

An intriguing possibility is to create a BLAST database
containing sequences representing known malware including
strains of malware executable files and JavaScript malware.
This could be used as a possible rapid malware identification
mechanism. A digital artifact whose biological representation
aligns closely with any sequences in that database could be
considered to be a likely malware executable. The “Rapid
Malware Detection” test that was done indicates that this
could be an effective identification mechanism.

It may be found that it is beneficial to have different BLAST
databases for different types of artifacts. Just as there are
different biologic databases for nucleotides and proteins,
perhaps it may be useful to have databases that are specific to
viruses as opposed to malware JavaScript source files.

The specific outputs produced by this project can be improved
in various ways:

• The Cytoscape visualization can be improved to change

the size of a node or the width of an edge based on the
size of the alignment. Multiple edges between two
artifacts might be able to be condensed into a single edge
using a color scheme to indicate the number of alignments

• A visual map of the alignments of two digital artifacts
could be produced. This would be analogous to a
“homolog map” in Biological domain which shows the
positions of related genes in the genomes of two species.

• A Cytoscape plugin could be created to allow an viewing
the original format of any alignment and remove those not
of concern or highlight those of concern.

This paper presented a novel method for clustering digital
artifacts, identifying a digital artifact as similar to known
malware, and detecting plagiarism by using a synthetic DNA
representation of the digital artifacts and using the
bioinformatics BLAST tool. It demonstrates that the
classification power of bioinformatics tools that are used in
biology problems can also be used in other domains.

The success of using BLAST to examine nucleotide
representations of computer artifacts can be partly attributed to
the fact that BLAST does not make strong assumptions about
the chemical differences between nucleotides when processing
a nucleotide database. This is not true when using BLAST
with protein databases. It may be possible to use BLAST with
synthetic protein definitions by providing specialized scoring
matrices to BLAST which do not make biologic assumptions
that would not hold.

6. REFERENCES
[1] Distler, Dennis, and Charles Hornat. "Malware Analysis: An

Introduction." Sans Reading Room. Sans, 14 Dec. 2007.
[2] Kendall, Kris. "Practical Malware Analysis." Blackhat, 2007. Web. 11

Jan. 2012. <http://www.blackhat.com/presentations/bh-dc-
07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf>.

[3] Watson JD, Crick FH, “Molecular Structure of Nucleic Acids: A
Structure for Deoxyribose Nucleic Acid", Nature, 1953, Vol 171

[4] Elson D, Chargaff E, "On the deoxyribonucleic acid content of sea
urchin gametes".Experienti, 1952, Vol 8

[5] Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. Basic
local alignment search tool, 1990, J. Mol. Biol, Vol 215

[6] Pagni M, Jongeneel CV, Making sense of score statistics for sequence
alignments, Briefings in Bioinformatics, 2001, Vol 2

[7] Krauthammer M, Rzhetsky A, Morozov P, Friedman C, Using BLAST
for identifying gene and protein names in journal articles,

[8] Altschul, S. et al, Gapped BLAST and PSI-BLAST; Nucleic Acids
Research, 1997, Vol. 25, No.17,

[9] Shannon, P. et al. Cytoscape: A Software Environment for Integrated
Models of Biomolecular Interaction Networks; Genome Research, 2003,
Vol. 13, Pgs. 2498-2504

[10] McGinnis S and Madden T, BLAST: at the core of a powerful and
diverse set of sequence analysis tools, Nucleic Acids Research, 2004,

[11] Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison, 1988, Proc. Natl Acad. Sci. USA,

[12] Mount, D., Comparison of the PAM and BLOSUM Amino Acid
Substitution Matrices, 2008, Cold Spring Harbor Protocols,
doi:10.1101/pdb.ip59

[13] Cline, M. et al, Integration of Biological Networks and Gene Expression
Data using Cytoscape, Nature Protocols, 2007, Vol 2, Pgs 2366-2382

[14] Moreno-Hagelsieb G and Latimer K, Choosing BLAST options for
better detection of orthologs as reciprocal best hits, Bioinformatics,
2008, Vol 24

[15] HTTP://BLAST.NCBI.NLM.NIH.GOV/
[16] ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST

