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Abstract—This paper proposes a secure steganographic com-
munication algorithm based on the evolution of self-organizing
patterns. The presented algorithm is a modification of a secure
steganographic scheme, presented in our previous work [1].
Algorithm is based on the formation of self-organizing patterns
in a Beddington-deAngelis-type predator-prey model with self-
diffusion. Computational experiments show that the generation
of interpretable target patterns cannot be considered as a safe
encoding of secret visual information because the target pattern
becomes interpretable only when the cover image (initial distri-
bution of preys) leaks the secret to a naked eye. Therefore, we
propose an alternative approach when the cover image represents
the self-organizing pattern which has evolved from initial states
perturbed using the dot-skeleton representation of the secret
image. Such visual communication technique protects both the
secret image and communicating parties.

Index Terms—Visual steganography, self-organizing pattern,
nonlinear evolution.

I. INTRODUCTION

The field of research on pattern formation modelled by
reaction-diffusion systems, which provides a general theo-
retical framework for describing pattern formation in sys-
tems from variant disciplines including biology, chemistry,
physics, etc., seems to be an increasingly interesting area.
One of the classical numerical examples illustrating a va-
riety of irregular spatiotemporal patterns comprises a sim-
ple reaction-diffusion model with finite amplitude perturba-
tions [2]. The phenomenology of a wide variety of two-
and three-dimensional physical-chemical systems displaying
prevalent stripe and bubble morphologies of domain patterns
in equilibrium is discussed in [3]. Patterns specifying dynamic
behavior of chemoresponsive gels undergoing the Belousov-
Zhabotinsky reaction are constructed in [4]. Pattern formation
mechanisms of a reaction-diffusion-advection system, with
one diffusivity, differential advection, and Robin boundary
conditions of Danckwerts type, are investigated in [5]. Time-
periodic forcing of spatially extended patterns near a Turing-
Hopf bifurcation point is studied in [6]. One of the promising
applications of the phenomenon of pattern formation could
be digital image processing when the evolving pattern would
be used to encode the initial image. A digital fingerprint
image is used as the initial condition for the evolution of a
pattern in a model of reaction-diffusion cellular automata [7],
though the possibility to encrypt the initial fingerprint in
the evolved pattern is not discussed in [7]. The dynamic

behavior of predator-prey model has long been and will also
continue to be one of the dominant themes in both ecology
and mathematical ecology due to its universal existence and
importance. Complex dynamics and spatiotemporal pattern
formation in variant predator-prey models are analyzed in [8],
[9], [10], [11].

This paper proposes a secure steganographic communication
algorithm based on the evolution of self-organizing patterns.
The algorithm is a modification of a secure steganographic
scheme, presented in our previous work [1].

In general, cryptography is a method of storing and trans-
mitting data in a form that only those it is intended for
can read and process [12]. Modern cryptography follows a
strongly scientific approach and designs cryptographic algo-
rithms around computational hardness assumptions that are
assumed hard to break by an adversary. But cryptography does
not always provide safe communication. Steganography is a
science of concealing data in a communication in such a way
that only the sender and receiver know of its existence [13].
The advantage of steganography, over cryptography alone, is
that messages do not attract attention to themselves. Therefore,
whereas cryptography protects the contents of a message,
steganography can be said to protect both messages and
communicating parties [14].

As mentioned previously, we will demonstrate that self-
organizing patterns can be effectively exploited as a secure
tool for steganographic communication.

II. THE MODEL OF THE SYSTEM

We exploit a well known predator-prey model with
Beddington-DeAngelis-type functional response with self-
diffusion [8]. The system of differential equations describing
the dynamics of this model can be written:
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where t denotes time; N and P are densities of preys and
predators respectively; β is a maximum consumption rate, B
is a saturation constant; w is a predator interference parameter;
η represents a per capita predator death rate; ε is the conversion
efficiency of food into offspring. It can be noted, that the
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is the Laplacian operator in the two-dimensional space. Self-
diffusion terms d1∇2N and d2∇2P imply the movements
of individuals from a higher to lower concentration region.
Self-diffusion coefficients are denoted by d1 and d2, respec-
tively [8].

Non-zero initial conditions

N (x, y, 0) > 0;P (x, y, 0) > 0 (3)

are set in a rectangular domain (x, y) ∈ Ω = [0, Lx]× [0, Ly],
where Lx and Ly is the size of the system in the directions
of x− and y− axis. Neumann, or zero-flux, conditions are set
on the boundary:

∂N

∂n
=

∂P

∂n
= 0; (x, y) ∈ ∂Ω, (4)

where n is the outward unit normal vector of the smooth
boundary ∂Ω. Zero-flux boundary conditions imply that no
external input is imposed from outside.

The first step in analyzing the model is to determine the
equilibria (stationary states) of the non-spatial model obtained
by setting space derivatives equal to zero, i.e.,

r
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B +N + wP
P = 0,

εβN

B +N + wP
P − ηP = 0. (5)

In fact, physically, an equilibrium represents a situation
without ”life”. It may mean no motion of a pendulum, no
reaction in a reactor, no nerve activity, no flutter of an airfoil,
no laser operation, or no circadian rhythms of biological
clocks. And at each equilibrium point, the movement of the
population dynamics vanishes.

In the absence of diffusion, the model has three equilibria
in the positive quadrant [8]:

1) (0, 0) (total extinct) is a saddle point.
2) (K, 0) (extinct of predators or preys-only) is a stable

node if εβ < η or εβ > η and K < − ηB
−εβ+η ; a saddle

if εβ < η and K > − ηB
−εβ+η ; a saddle-node if εβ < η

and K = − ηB
−εβ+η .

3) a non-trivial stationary state (N∗, P ∗) (coexistence of
preys and predators), where
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The numerical model of predator-prey system is based
on standard five-point approximation for 2D Laplacian

with the zero-flux boundary conditions. The concentrations(
Nn+1

ij , Pn+1
ij

)
at the moment (n+ 1) τ at mesh position

(xi, yj) are calculated as [8]:
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where the Laplacian is
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Initially, the entire system is placed in the stationary state
(N∗, P ∗) with a random perturbation. The system evolves
either into steady or time-dependent state after a certain
number of iterations. Different sets of the model parameters
correspond to the special types of final patterns: stripe-like
patterns, regular spotted pattern, the mixture of spotted and
stripe-like patterns or the spiral wave patterns [8].

III. A SECURE COMMUNICATION SYSTEM BASED ON
SELF-ORGANIZING PATTERNS

We use Beddington-DeAngelis-type predator-prey model
with self-diffusion with the following parameter set: d1 =
0.01, d2 = 1, r = 0.5, ε = 1, β = 0.6, K = 2.6, η = 0.25,
ω = 0.4, B = 0.3154. All our numerical simulations employ
the Neumann (zero-flux) boundary conditions with a system
size of 200×200 space units (Lx = Ly = 50). The system in
Eq. (1) is solved numerically in two-dimensional space using
a finite difference approximation for the spatial derivatives and
an explicit Euler method for the time integration (Eq. (7)) with
a time step τ = 0.01 and space step h = 0.25. The scale of
the space and time are average to the Euler method.

The dynamics of the time evolution of preys N is demon-
strated in Fig. 1. Fig. 1(a) presents the equilibrium point
(N∗ = 0.43058;P ∗ = 0.718555) with small random pertur-
bations.

We use the logistic map

xi+1 = µxi (1− xi) (9)

with µ = 4 for the computation of a set of 200× 200 pseudo-
random numbers distributed in the interval [0; 1]. The dynam-
ics of the logistic map depends on the value of parameter
µ. When µ = 4, system in Eq. (9) demonstrates chaotical
behavior and therefore is appropriate for the generation of
random numbers.

The obtained random set distributed in the interval [0; 1] is
linearly transformed into an ε-length interval with zero mean
and is added to the initial concentration of preys:

[N ]|t=0 = N∗ · [1] +
[
Ñ
]
; [P ]|t=0 = P ∗ · [1], (10)

where [1] is a 200× 200 matrix of ones;
[
Ñ
]

is a 200× 200

matrix of pseudo-random numbers distributed uniformly in the
interval [−ε/2; ε/2]. It is clear that the parameter ε must be
significantly lower than the maximum concentrations in the
final N and P patterns; we use ε = 10−3 in computational
experiments illustrated in Fig. 1.



Fig. 1. Dynamics of the time evolution of preys: (a) – the initial distribution
(ε = 10−3); (b) – after 2500 iterations; (c) – after 10000 iterations; (d) – after
25000 iterations; (e) – after 50000 iterations; (f) – after 200000 iterations.

Fig. 1(b), Fig. 1(c), Fig. 1(d) and Fig. 1(e) show the
evolution of the spatial pattern of preys after 2500, 10000,
25000 and 50000 iterations. Time-independent self-organizing
pattern of stripes and spots is obtained after 200000 iterations
(Fig. 1(f)). It is important to note that the pattern shown in
Fig. 1(f) is sensitive to initial conditions. Fig. 2(a) shows the
initial distribution of preys and Fig. 2(b) represents the pattern
after 200000 iterations (all parameters of the system are kept
the same). Different initial perturbations in Eq. (10) (a different
set of pseudo-random numbers) evolve into a pattern of the
same type as shown in Fig. 1(f) but with a different writing.

A. The generation of target patterns

The evolution of self-organizing patterns is sensitive to
initial perturbations. This fact allows construction and manip-
ulation of target patterns by small modifications in the initial
distribution of preys. Fig. 1(f) and Fig. 2(b) illustrates that two
different realizations of initial concentrations of preys result
into apparently similar but locally different patterns of stripes.

Let us assume that the matrix of random perturbations
[
Ñ
]

is modified by adding a positive constant δ to numerical
values of some pixels in the initial distribution of preys. In
general, the initial density of preys then can be described by
the following equation:

[N ]|t=0 = N∗ · [1] +
[
Ñ
]
+ δ · [M ], (11)

where δ is a fixed constant; [M ] is a binary mask matrix

Fig. 2. Time evolution of preys: (a) – the initial density of preys (ε = 10−3;
δ = 0); (b) – the pattern of preys after 200000 iterations. (c) and (e) represent
initial densities of preys distorted by the T-shaped mask at δ/ε = 0.1 and
δ/ε = 1 respectively (the same matrix

[
Ñ
]

is used in all experiments). (d)
and (f) illustrate patterns of preys after 200000 iterations.

holding ones at those pixels where the initial random density
of the preys is increased by δ and zeroes where the random
density of preys is kept unchanged.

It is clear that different levels of δ would lead to the different
patterns when the system evolves in time.

Let us assume that the initial random density of preys
(shown in Fig. 2(a)) is changed by adding a T-shaped mask.
Numerical values of pixels in the zone occupied by the letter
T are incremented by δ; all other pixels remain unchanged.
Fig. 2(c) and 2(e) represent modifications of the initial distri-
bution of preys for different values of δ. It appears that the
striped-spotted pattern of preys mimics the shape of the mask
after 200000 iterations if only δ is sufficiently high. It can be
noted that a larger ratio δ/ε corresponds to a clearer target
image in final patterns (Fig. 2(f)). Unfortunately, the ratio
δ/ε = 0.1 (Fig. 2(c)) does not yield an interpretable pattern
(Fig. 2(d)). But even such relatively small modifications in
the initial distribution of preys are statistically detectable (the
shape of the mask can be seen by a naked eye in Fig. 2(c).

Therefore, such an approach can not be considered as a safe
technique for encoding secret information.

B. A steganographic communication scheme based on the
difference between evolving patterns

Previous computational experiments show that modifica-
tions of the initial random density of preys cannot be consid-



Fig. 3. A steganographic communication scheme based on the difference
between evolving patterns. (a) – the dot-skeleton representation of the secret
image; (b) – the perturbed initial distribution of preys; δ/ε = 0.3; (the initial
distribution of preys is shown in Fig. 1(a)); (c) – time evolution of (b) after
10000 iterations; (d) – the difference between (c) and Fig. 1(c).

ered as a safe encoding of secret visual information – the target
pattern becomes interpretable only when the initial distribution
of preys leaks the secret to a naked eye. Therefore, we propose
an encoding scheme based not on a target pattern but on the
difference between two evolving patterns.

At first we construct the initial random distribution of preys
(Eq. (10)) and compute the density of preys after the system
evolves m iterations in time (Fig. 1(a) and Fig. 1(c)). In the
next step the initial random distribution of preys is perturbed.
We use Eq. (11) for the perturbation, but the mask [M ] now
holds not a target pattern but skeleton dots of the secret image
instead (Fig. 3(a)). It can be noted that the matrix

[
Ñ
]

must
be kept the same in both computational experiments and that
δ is low enough to prevent statistical identification of the
perturbation (we use δ/ε = 0.3 in Fig. 3(b)). Now, the density
of preys is computed after the system evolves m iterations in
time (Fig. 3(c)). In fact, differences between Fig. 1(c) and
Fig. 3(c) are hardly seen. Anyway, we compute the difference
between these two patterns; the resulting image is shown in
Fig. 3(d). It can be noted that the colorbar in Fig. 3(d) shows
the difference in pixel levels (grayscale levels are measured
in the interval [0; 255]), while colorbars in Fig. 3(b) and 3(c)
show actual concentration of preys.

The secure communication system based on the formation
of self-organizing patterns can be described by the schematic
diagram in Fig. (4).

The functionality of the proposed technique is demonstrated
using a computational example illustrated in Fig. 5. The secret
image is shown in Fig. 5(a); its dot-skeleton representation –
in Fig. 5(b) (the distance between dots in the direction of the
x− and y− axis is 7 pixels). The encrypted image is shown
in Fig. 5(c); the evolved pattern from the encrypted image
(after 10000 iterations) is shown in Fig. 5(d). The evolved
pattern from the random perturbation (without the embedded

Fig. 4. Schematic diagram of the secure communication system based on
the formation of self-organizing patterns.

dot-skeleton representation of the secret image) is shown in
Fig. 5(e). The difference between Fig. 5(d) and Fig. 5(e) is
shown in Fig. 5(f).

A naked eye can not see any differences between Fig. 5(d)
and Fig. 5(e). But it is important to note that the actual
difference between Fig. 5(d) and Fig. 5(e) is a smooth image;
the secret information is not hidden at some isolated pixels.
Steganalysis procedures [15] would not be able to detect the



Fig. 5. The illustration of steganographic visual communication system based on self-organizing patterns: (a) – the secret image; (b) – the dot-skeleton
representation of the secret image; (c) – the random initial distribution of preys with the embedded dot-skeleton representation of the secret image; (d) – time
evolution of (c) after 10000 iterations; (e) – time evolution of the random initial distribution of preys without the embedded dot-skeleton representation of the
secret image; (f) – the difference between (d) and (e) reveals the secret image.

fact that some secret information is being transmitted by means
of Fig. 5(d).

IV. ADVANTAGES OF THE PROPOSED COMMUNICATION
SCHEME

As mentioned previously, steganography includes the con-
cealment of information within computer files. Steganographic
coding may be present inside of a transport layer, such as a
document file, image file, program or protocol. Our approach
could be classified as a variant of text steganography inside a
cover image. Various algorithms have been proposed to imple-
ment steganography in digital images. They can be categorized
into three major clusters: algorithms using the spatial domain
such as S-Tools [16], algorithms using the transform domain
such as F5 [17] and algorithms taking an adaptive approach
combined with one of the former two methods, e.g., ABCDE
(A block-based complexity data embedding) [18]. Most of the
existing steganographic methods rely on two factors: the secret
key and the robustness of the algorithm.

A number of different methods exist to utilize the concept of
steganography. Least significant bit (LSB) insertion is a com-
mon and simple approach to embed secret text information in
a cover object. 3 bits in each pixel can be stored by modifying
the LSBs of R, G and B array in a 24-bit image as cover. To
the human eye, the resulting stego image will look identical to
the cover image [19], [20]. The LSB modification concept can
be used to hide data in an image [20], [21]. A random LSB
insertion method is developed in [22] where the secret data
are spread out among the cover image in a seemingly random

diffused manner. An LSB insertion steganographic method
coupled with high security digital layers is presented in [23].
A heuristic approach to hide data using LSB steganography
technique is proposed in [24].

A definitive advantage of the proposed secret communi-
cation scheme is determined by the complexity of physical
processes exploited in the encoding and decoding of secret
visual information. The security of communicating parties
is preserved since the transmittance of visual patterns does
not attract the attention of eavesdroppers. In that respect
our technique outperforms classical steganographic algorithms
where some pixels of the cover image are modified in order
to conceal a secret message in the cover image [13]. We
transmit a smooth pattern which has evolved from perturbed
initial conditions. It would be impossible to trace a perturbed
pixel in the digital image of the evolved pattern.

V. CONCLUDING REMARKS

A new steganographic communication scheme based on
evolving patterns is proposed in this paper. We use the
perturbed pattern of preys to hide the skeleton of the secret
image.

We have exploited the well-known Beddington-DeAngelis-
type predator-prey model with self-diffusion for the generation
of evolving patterns. The ability to encrypt images in a
self-organizing pattern is based on the sensitivity to initial
conditions in the evolution of this pattern. In principle any
nonlinear physical model of evolving patterns in isotropic
systems, which have as equilibrium stripe-like patterns (the



reaction-diffusion model, the two-phase flow model, the model
of competing species, the disordered plane wave model, etc.)
could be used as the algorithm for the computation of evolving
Turing’s patterns.

The storage capacity of secret information is relatively small
and is predetermined by the average width of stripes in the
evolving pattern. Nevertheless, the ability of the proposed
scheme to hide information and to avoid suspicion outper-
forms traditional steganographic techniques if the security of
communication is considered as a primary objective.
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