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Abstract – Initial identification of attacks on computer 
systems is crucial to defending against them. The wide range of 
malware attacks available makes detection and defense a difficult 
prospect when looking at software vulnerabilities only. However, 
if the data space is reduced to only look at response from 
hardware based system state variables, it is possible to detect a 
wide range of unknown malware, simply by looking at how 
malware affects state variables describing hardware operation. In 
this paper, we present a developing theoretical model for the 
detection of unknown malware by probabilistic time series based 
modeling. Our model lends itself to a new method for responding 
to an attack based on fuzzy similarity matrices that lead to 
dynamic classification of unknown malware using self-organizing 
taxonomies. Such methods can be made adaptive to reflect 
general trends in system state variable data over time.  
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I. INTRODUCTION 
 
With the proliferation of malware, increasingly more 
sophisticated approaches have been needed for its mitigation. It 
has been estimated that about 10-20 new viruses appear daily [1]. 
 
Many information resources are available that will notify users of 
new security holes on a subscription basis [2,3,4,5]. There are 
also several security databases that will let users browse the 
vulnerabilities for various software packages [6,7]. Companies 
such as Symantec, Security Focus and CERT keep large 
databases of known attacks [6,7,11,12]. Symantec has over 
50,000 entries for known internet security related threats [13]. 
With the proliferation of new viruses daily, these databases will 
soon become unwieldy. Yet, with all of the above, the malware 
problem only seems to be growing in size instead of going away. 
Part of the reason for this is that security, even with all the 
information about threat and vulnerability is still a very manual 
operation in response and mitigation. Few systems currently have 
the ability to mount an automated mitigation to malware activity 
partly because of the wide range of software vulnerabilities 
malware attempts to exploit.  

II. PROBLEM FORMULATION 
 

There has been research attempting to classify different types of 
attacks, from Unix specific vulnerabilities [8,9] to network attack 
assessment [10]. This research has been important and useful, but 
their classification has focused on a specific class of attacks. 

Even more key classification is that classification often is focused 
on software vulnerabilities. This has lead to a high dimension 
data space that describes the key attributes of an attack. This is 
often referred to as the needle in the haystack problem. What has 
been needed is a method to reduce the high dimension data space 
of software vulnerabilities to a lower dimension equivalency. 
Such a reduction can be found by looking at state variables 
describing the operation of software and malware on the 
underlying hardware.  This is a new approach developed in the 
model theory presented in subsequent sections.  
 

III. PROBLEM SOLUTION 
 
Attack databases, such as Security Focus’ Vulnerability Database 
[6] and NIST’s ICAT [7], list information about reported attacks. 
Once an attack is known, it often becomes clear about how to 
mitigate its effects the next the malware operates. The problem is 
trying to figure out and anticipate the unknown malware that next 
arrives. With the exploding proliferation of malware anticipation 
of the unknown is a steep challenge. The key is to find a method 
to for dynamic classification of unknown malware. Dynamic 
classification implies self organization in classification schemes. 
Very little work has been done in this area because of the 
question of how to create classification instances and sub 
instances in an automated fashion. One approach that is part of 
our model, describes a methodology that can potentially be used 
to classify unknown attacks and subsequently respond and 
mitigate their threat with the use of self organizing taxonomies. 
 
Hierarchies are a good paradigm for organizing data. Taxonomy 
is an important tool in organizing data. Taxonomy makes it easier 
to navigate, access and maintain data.  However, the construction 
of taxonomies manually is time consuming, cumbersome, 
expensive and inefficient. Besides, in a dynamic setting, where  
change is a constant, taxonomy needs to adapt constantly. The 
first part of our model proposed a good taxonomy for 
characterizing security hardware vulnerabilities that is unique, 
distinctly different from other taxonomies found in the extant 
literature which focuses on software vulnerabilities. As stated 
previously focus on hardware and its state variables is believed to 
reduce the dimension of the data space describing malware 
operation against software. Given the expensive and unmountable 
nature of manual intervention, later work presented in this paper 
may have to found a way to construct the taxonomy in a 
completely automated fashion.  
 



 

3.1  Attack Attributes: The first step in taxonomy development 
was to come up with a naming notation for hardware based state 
variables. We have developed a list of attributes in previous work 
to describe hardware state variables and relate them in a fashion 
that would support taxonomic trees development. An example of 
the notation is: 
 

Network.Protocol.TCP.InPorts 
 
For attributes that have multiple values, we separate the values by 
commas, and define ranges using the “En dash” character (–). For 
example, a TCP port scan that targets ports 25 (SMTP), 80 
(HTTP), and 1024 through 6000 would be defined as: 
 

Network.Protocol.TCP.InPorts = 25, 80, 1024–6000 
 
In previous work our list of state variables included 22 separate 
hardware state variable that are thought to change upon the 
execution of malware on the hardware. . For the sake of brevity 
this list is not included in this paper.  
 
3.2  Node Actionable Response Rules (NARRs):Complex systems 
theory makes a general supposition that complex behaviors can 
be created through the composition and action of a series of 
smaller, simpler rules. In this model actionable rules are 
associated with state variables mentioned in section 3.1,  and are 
simple in form. Our taxonomy is built by clustering state 
variables into taxonomic nodes with simple actionable rules to 
mitigate the abnormal operation of  a variable. As a taxonomy is 
processed with current system state information to classify 
malware operation, these simple rules at each node in the tree are 
applied to system operation if abnormal system operation has 
been detected. These are referred to as Node Actionable 
Response Rules (NARR) and will be integrated into our 
taxonomic model later in this paper. For example a rule in the 
Network taxonomy (Figure 1.) might be:  
 
Network.TCP.InPort n= High: NARR = block n 
 
or for the CPU 
 
CPU Usage = High: NARR = Kill process with high use 
 
These action rules are progressively applied to the system as 
processing drops through layers of the taxonomies. After each 
application system operation is evaluated to see if it has returned 
to normal. If not, NARR’s are applied as processing and 
classification continues deeper into the taxonomy. Effectively, 
this model starts trying to mitigate or counter attack malware 
operation. More will be presented about this in section 4.  
 
3.3  Attack Taxonomies:As stated in section 3.1, the first type of 
taxonomy developed is based on common attributes of attacks 
that originated through a remote connection across a network as 
shown in figure 1. 
 
 

 
Figure 1: Network Attribute Taxonomy 

 
Figure 1 presents the network attribute taxonomy. In our 
hierarchy, child nodes inherit all the attributes and descriptive 
properties of their parent nodes, as well as having node specific 
attributes. The network attributes specified in the tree help to 
define attacks based on the protocol, bandwidth, and action 
characteristics of the attack. 
 
In our research we also found an entire category of attacks on 
files and file systems as mentioned above. The file system 
taxonomy (Figure 2) was developed to structure and organize this 
data into a taxonomic model. The attributes in this tree define 
what files on the victim’s machine are created, changed, and 
deleted.  

Figure 2: File System Attribute Taxonomy 

 
Another category of attacks are based on system exploits. Figure 
3 presents the exploit attribute taxonomy which was referenced in 
section 3.1. The exploit tree defines the vulnerability that an 
attacker may use on a victim’s machine. This taxonomy models 
common programming errors, improper configurations, and user 
errors. 
 



 

 
Figure 3: Exploit Attribute Taxonomy 

 
Finally, attacks exist that use services and drivers to gain elevated 
system privileges [14]. The kernel taxonomy, mentioned above, is 
presented in Figure 4 and shows the types of attacks that are 
possible using kernel privileges. 

 
Figure 4: Kernel Attribute Taxonomy 

 
Our initial effort was to consolidate all of the above hard state 
variable based taxonomies into a single taxonomy produces what 
might be referred to as a taxonomic graph. This taxonomy is 
shown in Figure 5, where each box represents the sub taxonomies 
presented in Figure 1 through Figure 4.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Ka  – Kernel attribute tree 
Ea  – Exploit attribute tree 

Na  – Network attribute tree 
Fa – File attribute tree 

Figure 5: Consolidated Taxonomic Graph 

 
In Figure 5 all leaf nodes are connected to the next subtaxonomic 
tree’s root except for the right subtree connection from Ea to Ka. 
In this case, only the “operating system” node of the Exploit 
subtree is connected to the root of the Kernel subtree.  
 
Input vector V is an n-dimensional feature vector whose attributes 
describe the current system data variable data used to populated 
the sub taxonomies. It might reflect normal operation or it might 
reflect malware operation. This vector contains the same 
attributes as those used in the subtrees when selecting and 
moving to the next child node. At this point in the development 
of our research several thing were realized: 
 
i) an attack can actually branch to two or more child nodes in a 
subtree or two or more subtrees in the consolidated taxonomic 
graph. The reason is that attacks are typically multi-pronged in 
their approaches. 
 
ii) the structure of the taxonomic graph could be different 
between attacks and needs to be able somehow to dynamically 
self organize.  

 
 

IV  APPROACH 
 

As mentioned when examining the above taxonomy in figure 5, it 
was realized that it has limitations, among them are that the static 
nature of the taxonomy may limit its ability to detect unknown 
types of malware operation on the system. What was needed was 
a taxonomic model that had the following properties: 
 
i) the taxonomy algorithm can self organize 
 
ii) the method of malware operation detection 
could be probabilistic and quantitative 
 
iii) the method should be adaptive 
 
Borrowing on the work developed, it was realized that the 
approach of looking at hardware and state variables describing 
hardware operation was a good approach because it limited the 
data space that needed to be evaluated for malware operation. In 
other words there can be numerous types of vulnerabilities in 
software but the fundamental operation of hardware was probably 
going to have a typical type of signature for classes of 
vulnerabilities thus making detection simpler if it was focused on 
hardware response to malware. This relationship can be mapped 
as the following: 
 

|hr|< |sv| 
  

where:  
|hr|  is the cardinality of hardware malware state variable response 
      for a given attack 
|sv|  is the cardinality of software vulnerabilities response for  
      a given attack 
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In other words, we felt that it is simpler to monitor for malware 
activity by watching for state changes in hardware state variable 
rather than anticipate every possible way software can operate 
when malware is affecting it.  What has been developed based on 
this concept is based on time series analysis, standard deviation 
over time for hardware state variables and affinity analysis in the 
creation of self organizing taxonomies.   
 
4.1 Probabilistic Malware Detection:The first component of the 
theoretical model argues that standard deviations of a state 
variable (sv) (same as a hardware state variable) over time is an 
indication of malware in operation, ergo, malware starting to 
operate. An example of this would be cpu usage might typically 
have an average (µ) utilization of 75% and 38.2% of the time 
falls within .05 standard deviation of µ = .75. 

 
38.2% = µ ± .05σ 

 
For a given hardware state variable (hs) a time series of standard 
deviations can be calculated with a time window such that the 
series can produce σ as it changes over time. Note the times 
series is expected to produce a normal distribution unless there is 
a malware attack in progress. This could look like the following 

 
t1        t2     t3      t4    t5 …….. tn 
σ 
1.2    1.4    1.1    1.2   1.25…… 
 

where:  
tn  - is σ at time n 

 
and:  

 
the calculation of σ is done for hs (e.g. cpu usage) using a system 
specified time slice that ranges in the form of: 
 

tn ± ts 
 

where: 
ts  - is a specified time slice e.g. 60 seconds 
 
In the above, the if it is 1:10pm, the sampling time slice would 
run for example from 1:09 – 1:10. During which perhaps every 
six seconds the cpu usage would be collected and a standard 
deviation calculated over this population of 10 samples. 

 
Using the above concept of sampling to calculate standard 
deviation of given state variable over a time window, for all sv’s 
defined in a system to following would be an examples of many 
state variables being sampled and the standard deviation for a 
time slice then being stored:: 
 

t1        t2     t3      t4    t5 …….. tn 
svi σ 
1.2    1.4    1.1    1.2   1.25…… 
svj σ 
6        4.5     5     5      5.7…… 
svz σ 
z1        z2      z3    z4       z5…… 
 

In the above example the calculated σ stay relatively constant 
around a similar values for a given svi with minor predictable 
jitter.  
 
Using the above time series during malware initiation and activity 
e.g. cpu usage, the time series model would look very different. If 
cpu usage had a µ of 50% ± .05σ   and malware operation drove 
the usage to 97% the calculated value over the time window 
hypothetically will change. As an example: 
 

t1        t2     t3      t4    t5 …….. tn 
σ 
1.2    1.4    1.1      5    1.25…… 

 
could be what is observed indicating initialization of malware 
operation at t4.  From the previous table where multiple hardware 
state variables were being watched we can imagine the following 
pattern where the malwares original signature initiates in the cpu 
and them at the next time moment moves into driving disk usage 
up. Such an example might look like the following: 

 
t1        t2     t3      t4    t5 …….. tn 
sv spu utilization σ 
1.2    1.4    1.1      5    5…… 
sv disk usage σ 
6        4.5     5       5      9…… 
 

What the above demonstrates is the following: 
 
i) t4 shows a change in its σ calculation for cpu  usage 
 
ii) t5 shows a continued elevated σ for the sv cpu usage and there is 
now elevation in the σ for sv disk usage.  

 
The above is the expected time based probabilistic quantitative 
signature of malware initiation and operation for only two 
hardware state variable. This method could be scaled to many 
state variables creating a sophisticated detection mechanism in a 
relatively lower dimension data space.   

 
4.2  Taxonomic Self Organization based on  σ and Fuzzy 
Similarity Matrices: In the previous section, the model 
demonstrates the potential ability to detect malware operation in a 
probabilistic and time based dynamic fashion. Thus, when the 
time series σ state variable analysis detects suspicious changes in 
system system, our model suggests a way malware can be 
mitigated using the response rules mentioned previously for the 
state variables and self organizing taxonomies. 
 
The second component of the model argues for self organization 
of the state variables found in the previously presented 
taxonomies so that the response rules (NARR) can be applied to 
counter the attack.  This can be done also quantitatively and 
adaptively by the creation of a similarity matrix. In this model the 
state variables from the previous static taxonomies, no longer are 
owned by a sub tree. Instead they are clustered by association into 
taxonomic nodes forming the various levels of the taxonomic 
graph. This is self organization and can be accomplished via the 
use of similarity analysis of state variables and their σ changes 
flagging malware operation. 
 



 

A similarity matrix is used often in fuzzy set theory to indicate 
that some variable has a degree of relation to another variable in a 
set [16]. This theory organizes data into sets by the degree of 
relation. Set membership traditionally is denoted by a  
characteristic function of the form: 

 
 
 
 
 
 
 

In section 4.1, the detection of malware operation was done with 
the use of state variable changes in the above time series 
detection of malware operation using state variable σ. This can 
then be utilized in conjunction with fuzzy similarity based 
matrices to create self organizing taxonomies. 
 
The first step in this process is to dynamically build (train) a 
similarity matrix based on the degree that a change in one state 
variables σ correlates with a change in another state variables σ.  
Using the fuzzy function above, this results in the following 
logic: 
 
i) ∆ si →∆ sj     | u(si,sj) = 1 
 
ii) ∆ si ¬ →∆ sj     | u(si,sj) = 0 
 
iii) ii) ∆ si ≈→∆ sj     | u(si,sj) = [0,,1] 

 
In more basic terms the above means that if a change in svi always 
results in a change in svj then the similarity matrix value is 1, if is 
sometimes results in a change then it is  results in a similarity 
matrix value of: 
 

0 < u(si,sj) < 1 
where:  
 
u(si,sj) = can be calculated based on the  
percentage of  times when svi changes that  
there is a corresponding change in svj 

 
Building on the above foundation, the similarity matrix for scpu 

usage and sdisk usage  might look like the following: 
 

Table I 
A sample similarity matrix for state variables where similarity is 

calculated base on the percent of times an change in one state 
variable results in a change in another variable 

 
 sv1 sdisk 

usage 2 
scpu 

usage 3 
sv4 sv5 sv6 svj 

sv1 1 0 0 .1 0 0 0 
scpu 

usage 

2 

.86 .9 1 .9 .82 .6 .5 

sdisk 

usage 

3 

.81 1 .2 .7 .3 0 0 

sv4 .7 0 .8 1 0 0 0 
sv5 …       

sv6 …       
svi …       

 
Table I is a partially populated table of state variable similarity 
values. In the above table, state variables always have a value of 
1 as membership with them selves. The above does illustrate a 
few curious findings: 
 
i) ∆ scpu usage ≈→ ∆ sdisk usage = .9 (%)    sdisk usage R s cpu usage = strong 
 
ii) i) ∆ sdisk usage ≈→ ∆ scpu usage = .2  sdisk usage R s cpu usage = weak 
 
The above illustrates the fact that relationships (R)  in similarity 
are not symmetric. From the above table, an increase in cpu usage 
usually leads to an increase in disk usage (.9), however, the 
opposite is not true (.2) that an increase in disk usage would 
result in an increase in cpu usage.  
 
The values in the table are calculated based on u(n) and reflect 
the % of times a change in one state variable results in a change 
of another state variable. 
 
4.3 Taxonomic Creation and Application to Offensive Mitigation 
of Malware Threat: The values in table 1 meet the adaptivity 
criteria of our model in that it can be calculated and recalculated 
dynamically as the system operates. The above values then 
become the basis for the creation of the self organizing taxonomy 
once the time series σ analysis of state variables suggests the 
need to create a taxonomy with NARR rules in it. 
 
Reiterating, from the previous discussion about the Node 
Actionable Response Rules (NARR), each particular state 
variable can have a very simple rule associated with it, and the 
state variables around found in the static taxonomic nodes.  For 
instance: 
 
NARR 1: if cpu usage > σ r1 = kill largest process 
 
NARR 2: if disk usage > .5 σ  r2 = don’t  allow deletion of files 
(e.g. malware could be doing a recursive delete of the file system) 
 
where:  
NARRn  - node actional rule 
rn – the specific action to apply for the rule 
 
The similarity matrix shows how to construct dynamically a self 
organizing taxonomy with the NARR rules associated with each 
state variable. In this method, state variables are not statically 
assigned to nodes as they were in the previous section. Instead 
state variables are clustered into nodes at various levels in the tree 
based on their similarity relations. NARR’s are also clustered 
with their state variables at various nodes in the self organizing 
taxonomy. The following is the clustering algorithm that builds 
the taxonomy: 

 
//create the root node of the taxonomy 
if svi change > system set σ for svi 
     gather all sv’s from the similarity matrix > .9 
        from the row svi  
     place them in the taxonomic root node 
       with their NARR’s and response rules 
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//create the children nodes, stepping for similarity 
//values classes  n < level < m,  e.g. .9top - .8bottom 
// level 1,…   
for 0 < similarity values < 1  
      calculate level boundaries for top and bottom 
         values of the class level 
 
      create new child nodei 

        gather all svj values in the row svi that fall within 
       current level top and bottom ranges 
 
     assign all collected NARR for svj’s to node leveli  
 

The above algorithm, given the similarity matrix in table 1, might 
have the following structure upon completion. The initiation of 
the trees construction starts when the time series probabilistic 
analysis of a  given Scpu usage2 σ > system threshold σ (triggering 
tree construction): 
 

 
 

Figure 7. Sample taxonomy constructed from similarity matrix 
(airity = 2) 

 
The above tree may be augmented with what informally we are 
calling airity. For the sake of this research, airity is defined to be:  

 
Definition: Airity is the number of child nodes at the same level in 
a taxonomy where the level is a similarity range and that range is 
sub divided mathematically into sub ranges and NARR response 
layers. All child nodes at a given level have a sub class NARR set 
applied, system measured and then the next airity of a level in the 
tree is applied. 
 
Of note in figure 7, is the use of the airity concept at level 2 in the 
tree to create two nodes. Airity divides a levels range and used to 
partition the response rules such that the rules first applied have 
the highest similarity value. In this case the level 2 node with the 
values ranges   .85  < similarity < .9, the right most child node 
would be applied first in the follow sections algorithm . 
 
A matter of further research is how does a node at one level link 
to the child node of a sibling’s at the save level in the tree. This is 
shown with a dashed arrow in Figure 7.  

Additionally multiple state variables may have abnormal σ’s from 
the time series probabilistic analysis method developed earlier. It 
is a matter of further research about if new stand alone 
taxonomies should be created for these case or if they are hooked 
somehow into an existing taxonomy using the magnitude σ’s to 
determine where and how trees are joined together. 

  
4.4 Application of the taxonomy to Threat Mitigation: Once the 
similarity based, self organized taxonomy has been created, it has 
in theory has the ability to start mitigation efforts against the 
malware through progressive application of state variable NARR 
rules as deeper and deeper nodes in the tree are procesed. The 
idea is to only apply enough NARR rules to return the systems 
operation to normal as measured by  σ. Thus the general method 
for this is to: 

 
i) apply a nodes, NARR’s 
 
ii) measure system response 
 
iii) if normal, abort further NARR application,  
otherwise proceed to next child node and iterate 
 
The pseudo code algorithm for this might be of the form: 

 
// general algorithm for application of the nodes  
//NARR rules 
for root node to child nodej 
     execute NARR rules for taxonomic nodej 

         measure system response 
     if system response (σ) normal  
 exit 
     else 
          proceed to next child node on same level or 
            next child node 
        iterate 
 

Interestingly the above model should create various organizations 
of state variables in different nodes over time as they respond to 
different types of unknown malware attacks. This is where it is 
believed that the model can detect and respond to previously 
unknown malware. The summing multiple taxonomies for 
unknown and mitigated software over time has the potential to 
create elaborate, self adaptive, system specific powerful 
taxonomies..  

 
 

V  CONCLUSION 
 
The wide range of malware attacks available makes detection and 
defense a difficult prospect when looking at software 
vulnerabilities. However, if the data space is reduced to only look 
at response from hardware based system state variables, the data 
space can be reduced and offers a possibility to detect a wide 
range of unknown malware, simply by looking at how it affects 
state variables describing hardware operation.  

 
Identification of state variable behavior and mal-behavior can be 
done probabilistically, with time series based monitoring of 
standard deviations for a given state variable. In conjunction, this 
information, when questionable state operation data is found σ,   
coupled with a similarity matrix, the model offers  a method for 

.9 Scpu usage:| NARR 1 

.9 Sv4:| NARR Sv4 

.86 Sv1:| NARR Sv1 

airity = 2 

.82 Sv5:| NARR Sv5 

 

.6 Sv6:| NARR Sv6 

 

.5 Svj:| NARR Svj 

 



 

dynamic creation of malware classification taxonomies. 
Borrowing from complex systems behavior, nodes in the 
taxonomy can have very simple rules associated with them that 
can create complex responses to threat and offer the possibility of 
a system that has the capacity to mitigate malware operation in an 
automated and adaptive fashion. 

 
This initial work is being further refined and developed. It is at a 
theoretical point currently with many further research questions 
to be investigated. The future includes building a small prototype 
to determine how well the model actually works an to refine its 
theory of operation.  
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