

A Theoretical Model for Probabilistically Based Detection and Mitigation of
Malware Using Self Organizing Taxonomies

Gregory Vert

Department of Computer
Information Systems

Texas A&M Central Texas
(206) 409-1434

greg.vert@ct.tamus.edu

Anitha Chennamaneni
Texas A&M University Central

Texas
(254)519-5463

anitha.chennamaneni@ct.tamus.edu

S.S. Iyengar
FIU School of Computing and

Information Sciences
Florida International University

Miami, Florida
Iyengar@cis.fiu.edu

Abstract – Initial identification of attacks on computer
systems is crucial to defending against them. The wide range of
malware attacks available makes detection and defense a difficult
prospect when looking at software vulnerabilities only. However,
if the data space is reduced to only look at response from
hardware based system state variables, it is possible to detect a
wide range of unknown malware, simply by looking at how
malware affects state variables describing hardware operation. In
this paper, we present a developing theoretical model for the
detection of unknown malware by probabilistic time series based
modeling. Our model lends itself to a new method for responding
to an attack based on fuzzy similarity matrices that lead to
dynamic classification of unknown malware using self-organizing
taxonomies. Such methods can be made adaptive to reflect
general trends in system state variable data over time.

Key-Words: - Taxonomies, Probabilistic, Self Organizing,
Computer Security, Complex Systems

I. INTRODUCTION

With the proliferation of malware, increasingly more
sophisticated approaches have been needed for its mitigation. It
has been estimated that about 10-20 new viruses appear daily [1].

Many information resources are available that will notify users of
new security holes on a subscription basis [2,3,4,5]. There are
also several security databases that will let users browse the
vulnerabilities for various software packages [6,7]. Companies
such as Symantec, Security Focus and CERT keep large
databases of known attacks [6,7,11,12]. Symantec has over
50,000 entries for known internet security related threats [13].
With the proliferation of new viruses daily, these databases will
soon become unwieldy. Yet, with all of the above, the malware
problem only seems to be growing in size instead of going away.
Part of the reason for this is that security, even with all the
information about threat and vulnerability is still a very manual
operation in response and mitigation. Few systems currently have
the ability to mount an automated mitigation to malware activity
partly because of the wide range of software vulnerabilities
malware attempts to exploit.

II. PROBLEM FORMULATION

There has been research attempting to classify different types of
attacks, from Unix specific vulnerabilities [8,9] to network attack
assessment [10]. This research has been important and useful, but
their classification has focused on a specific class of attacks.

Even more key classification is that classification often is focused
on software vulnerabilities. This has lead to a high dimension
data space that describes the key attributes of an attack. This is
often referred to as the needle in the haystack problem. What has
been needed is a method to reduce the high dimension data space
of software vulnerabilities to a lower dimension equivalency.
Such a reduction can be found by looking at state variables
describing the operation of software and malware on the
underlying hardware. This is a new approach developed in the
model theory presented in subsequent sections.

III. PROBLEM SOLUTION

Attack databases, such as Security Focus’ Vulnerability Database
[6] and NIST’s ICAT [7], list information about reported attacks.
Once an attack is known, it often becomes clear about how to
mitigate its effects the next the malware operates. The problem is
trying to figure out and anticipate the unknown malware that next
arrives. With the exploding proliferation of malware anticipation
of the unknown is a steep challenge. The key is to find a method
to for dynamic classification of unknown malware. Dynamic
classification implies self organization in classification schemes.
Very little work has been done in this area because of the
question of how to create classification instances and sub
instances in an automated fashion. One approach that is part of
our model, describes a methodology that can potentially be used
to classify unknown attacks and subsequently respond and
mitigate their threat with the use of self organizing taxonomies.

Hierarchies are a good paradigm for organizing data. Taxonomy
is an important tool in organizing data. Taxonomy makes it easier
to navigate, access and maintain data. However, the construction
of taxonomies manually is time consuming, cumbersome,
expensive and inefficient. Besides, in a dynamic setting, where
change is a constant, taxonomy needs to adapt constantly. The
first part of our model proposed a good taxonomy for
characterizing security hardware vulnerabilities that is unique,
distinctly different from other taxonomies found in the extant
literature which focuses on software vulnerabilities. As stated
previously focus on hardware and its state variables is believed to
reduce the dimension of the data space describing malware
operation against software. Given the expensive and unmountable
nature of manual intervention, later work presented in this paper
may have to found a way to construct the taxonomy in a
completely automated fashion.

3.1 Attack Attributes: The first step in taxonomy development
was to come up with a naming notation for hardware based state
variables. We have developed a list of attributes in previous work
to describe hardware state variables and relate them in a fashion
that would support taxonomic trees development. An example of
the notation is:

Network.Protocol.TCP.InPorts

For attributes that have multiple values, we separate the values by
commas, and define ranges using the “En dash” character (–). For
example, a TCP port scan that targets ports 25 (SMTP), 80
(HTTP), and 1024 through 6000 would be defined as:

Network.Protocol.TCP.InPorts = 25, 80, 1024–6000

In previous work our list of state variables included 22 separate
hardware state variable that are thought to change upon the
execution of malware on the hardware. . For the sake of brevity
this list is not included in this paper.

3.2 Node Actionable Response Rules (NARRs):Complex systems
theory makes a general supposition that complex behaviors can
be created through the composition and action of a series of
smaller, simpler rules. In this model actionable rules are
associated with state variables mentioned in section 3.1, and are
simple in form. Our taxonomy is built by clustering state
variables into taxonomic nodes with simple actionable rules to
mitigate the abnormal operation of a variable. As a taxonomy is
processed with current system state information to classify
malware operation, these simple rules at each node in the tree are
applied to system operation if abnormal system operation has
been detected. These are referred to as Node Actionable
Response Rules (NARR) and will be integrated into our
taxonomic model later in this paper. For example a rule in the
Network taxonomy (Figure 1.) might be:

Network.TCP.InPort n= High: NARR = block n

or for the CPU

CPU Usage = High: NARR = Kill process with high use

These action rules are progressively applied to the system as
processing drops through layers of the taxonomies. After each
application system operation is evaluated to see if it has returned
to normal. If not, NARR’s are applied as processing and
classification continues deeper into the taxonomy. Effectively,
this model starts trying to mitigate or counter attack malware
operation. More will be presented about this in section 4.

3.3 Attack Taxonomies:As stated in section 3.1, the first type of
taxonomy developed is based on common attributes of attacks
that originated through a remote connection across a network as
shown in figure 1.

Figure 1: Network Attribute Taxonomy

Figure 1 presents the network attribute taxonomy. In our
hierarchy, child nodes inherit all the attributes and descriptive
properties of their parent nodes, as well as having node specific
attributes. The network attributes specified in the tree help to
define attacks based on the protocol, bandwidth, and action
characteristics of the attack.

In our research we also found an entire category of attacks on
files and file systems as mentioned above. The file system
taxonomy (Figure 2) was developed to structure and organize this
data into a taxonomic model. The attributes in this tree define
what files on the victim’s machine are created, changed, and
deleted.

Figure 2: File System Attribute Taxonomy

Another category of attacks are based on system exploits. Figure
3 presents the exploit attribute taxonomy which was referenced in
section 3.1. The exploit tree defines the vulnerability that an
attacker may use on a victim’s machine. This taxonomy models
common programming errors, improper configurations, and user
errors.

Figure 3: Exploit Attribute Taxonomy

Finally, attacks exist that use services and drivers to gain elevated
system privileges [14]. The kernel taxonomy, mentioned above, is
presented in Figure 4 and shows the types of attacks that are
possible using kernel privileges.

Figure 4: Kernel Attribute Taxonomy

Our initial effort was to consolidate all of the above hard state
variable based taxonomies into a single taxonomy produces what
might be referred to as a taxonomic graph. This taxonomy is
shown in Figure 5, where each box represents the sub taxonomies
presented in Figure 1 through Figure 4.

Ka – Kernel attribute tree
Ea – Exploit attribute tree

Na – Network attribute tree
Fa – File attribute tree

Figure 5: Consolidated Taxonomic Graph

In Figure 5 all leaf nodes are connected to the next subtaxonomic
tree’s root except for the right subtree connection from Ea to Ka.
In this case, only the “operating system” node of the Exploit
subtree is connected to the root of the Kernel subtree.

Input vector V is an n-dimensional feature vector whose attributes
describe the current system data variable data used to populated
the sub taxonomies. It might reflect normal operation or it might
reflect malware operation. This vector contains the same
attributes as those used in the subtrees when selecting and
moving to the next child node. At this point in the development
of our research several thing were realized:

i) an attack can actually branch to two or more child nodes in a
subtree or two or more subtrees in the consolidated taxonomic
graph. The reason is that attacks are typically multi-pronged in
their approaches.

ii) the structure of the taxonomic graph could be different
between attacks and needs to be able somehow to dynamically
self organize.

IV APPROACH

As mentioned when examining the above taxonomy in figure 5, it
was realized that it has limitations, among them are that the static
nature of the taxonomy may limit its ability to detect unknown
types of malware operation on the system. What was needed was
a taxonomic model that had the following properties:

i) the taxonomy algorithm can self organize

ii) the method of malware operation detection
could be probabilistic and quantitative

iii) the method should be adaptive

Borrowing on the work developed, it was realized that the
approach of looking at hardware and state variables describing
hardware operation was a good approach because it limited the
data space that needed to be evaluated for malware operation. In
other words there can be numerous types of vulnerabilities in
software but the fundamental operation of hardware was probably
going to have a typical type of signature for classes of
vulnerabilities thus making detection simpler if it was focused on
hardware response to malware. This relationship can be mapped
as the following:

|hr|< |sv|

where:
|hr| is the cardinality of hardware malware state variable response
 for a given attack
|sv| is the cardinality of software vulnerabilities response for
 a given attack

Media

(operating system)

ROOT

Cracking

Method

Physical Na

Ea

Fa

Fa

V[]

Ka
Ea

In other words, we felt that it is simpler to monitor for malware
activity by watching for state changes in hardware state variable
rather than anticipate every possible way software can operate
when malware is affecting it. What has been developed based on
this concept is based on time series analysis, standard deviation
over time for hardware state variables and affinity analysis in the
creation of self organizing taxonomies.

4.1 Probabilistic Malware Detection:The first component of the
theoretical model argues that standard deviations of a state
variable (sv) (same as a hardware state variable) over time is an
indication of malware in operation, ergo, malware starting to
operate. An example of this would be cpu usage might typically
have an average (µ) utilization of 75% and 38.2% of the time
falls within .05 standard deviation of µ = .75.

38.2% = µ ± .05σ

For a given hardware state variable (hs) a time series of standard
deviations can be calculated with a time window such that the
series can produce σ as it changes over time. Note the times
series is expected to produce a normal distribution unless there is
a malware attack in progress. This could look like the following

t1 t2 t3 t4 t5 …….. tn
σ
1.2 1.4 1.1 1.2 1.25……

where:
tn - is σ at time n

and:

the calculation of σ is done for hs (e.g. cpu usage) using a system
specified time slice that ranges in the form of:

tn ± ts

where:
ts - is a specified time slice e.g. 60 seconds

In the above, the if it is 1:10pm, the sampling time slice would
run for example from 1:09 – 1:10. During which perhaps every
six seconds the cpu usage would be collected and a standard
deviation calculated over this population of 10 samples.

Using the above concept of sampling to calculate standard
deviation of given state variable over a time window, for all sv’s
defined in a system to following would be an examples of many
state variables being sampled and the standard deviation for a
time slice then being stored::

t1 t2 t3 t4 t5 …….. tn
svi σ
1.2 1.4 1.1 1.2 1.25……
svj σ
6 4.5 5 5 5.7……
svz σ
z1 z2 z3 z4 z5……

In the above example the calculated σ stay relatively constant
around a similar values for a given svi with minor predictable
jitter.

Using the above time series during malware initiation and activity
e.g. cpu usage, the time series model would look very different. If
cpu usage had a µ of 50% ± .05σ and malware operation drove
the usage to 97% the calculated value over the time window
hypothetically will change. As an example:

t1 t2 t3 t4 t5 …….. tn
σ
1.2 1.4 1.1 5 1.25……

could be what is observed indicating initialization of malware
operation at t4. From the previous table where multiple hardware
state variables were being watched we can imagine the following
pattern where the malwares original signature initiates in the cpu
and them at the next time moment moves into driving disk usage
up. Such an example might look like the following:

t1 t2 t3 t4 t5 …….. tn
sv spu utilization σ
1.2 1.4 1.1 5 5……
sv disk usage σ
6 4.5 5 5 9……

What the above demonstrates is the following:

i) t4 shows a change in its σ calculation for cpu usage

ii) t5 shows a continued elevated σ for the sv cpu usage and there is
now elevation in the σ for sv disk usage.

The above is the expected time based probabilistic quantitative
signature of malware initiation and operation for only two
hardware state variable. This method could be scaled to many
state variables creating a sophisticated detection mechanism in a
relatively lower dimension data space.

4.2 Taxonomic Self Organization based on σ and Fuzzy
Similarity Matrices: In the previous section, the model
demonstrates the potential ability to detect malware operation in a
probabilistic and time based dynamic fashion. Thus, when the
time series σ state variable analysis detects suspicious changes in
system system, our model suggests a way malware can be
mitigated using the response rules mentioned previously for the
state variables and self organizing taxonomies.

The second component of the model argues for self organization
of the state variables found in the previously presented
taxonomies so that the response rules (NARR) can be applied to
counter the attack. This can be done also quantitatively and
adaptively by the creation of a similarity matrix. In this model the
state variables from the previous static taxonomies, no longer are
owned by a sub tree. Instead they are clustered by association into
taxonomic nodes forming the various levels of the taxonomic
graph. This is self organization and can be accomplished via the
use of similarity analysis of state variables and their σ changes
flagging malware operation.

A similarity matrix is used often in fuzzy set theory to indicate
that some variable has a degree of relation to another variable in a
set [16]. This theory organizes data into sets by the degree of
relation. Set membership traditionally is denoted by a
characteristic function of the form:

In section 4.1, the detection of malware operation was done with
the use of state variable changes in the above time series
detection of malware operation using state variable σ. This can
then be utilized in conjunction with fuzzy similarity based
matrices to create self organizing taxonomies.

The first step in this process is to dynamically build (train) a
similarity matrix based on the degree that a change in one state
variables σ correlates with a change in another state variables σ.
Using the fuzzy function above, this results in the following
logic:

i) ∆ si →∆ sj | u(si,sj) = 1

ii) ∆ si ¬ →∆ sj | u(si,sj) = 0

iii) ii) ∆ si ≈→∆ sj | u(si,sj) = [0,,1]

In more basic terms the above means that if a change in svi always
results in a change in svj then the similarity matrix value is 1, if is
sometimes results in a change then it is results in a similarity
matrix value of:

0 < u(si,sj) < 1
where:

u(si,sj) = can be calculated based on the
percentage of times when svi changes that
there is a corresponding change in svj

Building on the above foundation, the similarity matrix for scpu

usage and sdisk usage might look like the following:

Table I
A sample similarity matrix for state variables where similarity is

calculated base on the percent of times an change in one state
variable results in a change in another variable

 sv1 sdisk

usage 2
scpu

usage 3
sv4 sv5 sv6 svj

sv1 1 0 0 .1 0 0 0
scpu

usage

2

.86 .9 1 .9 .82 .6 .5

sdisk

usage

3

.81 1 .2 .7 .3 0 0

sv4 .7 0 .8 1 0 0 0
sv5 …

sv6 …
svi …

Table I is a partially populated table of state variable similarity
values. In the above table, state variables always have a value of
1 as membership with them selves. The above does illustrate a
few curious findings:

i) ∆ scpu usage ≈→ ∆ sdisk usage = .9 (%) sdisk usage R s cpu usage = strong

ii) i) ∆ sdisk usage ≈→ ∆ scpu usage = .2 sdisk usage R s cpu usage = weak

The above illustrates the fact that relationships (R) in similarity
are not symmetric. From the above table, an increase in cpu usage
usually leads to an increase in disk usage (.9), however, the
opposite is not true (.2) that an increase in disk usage would
result in an increase in cpu usage.

The values in the table are calculated based on u(n) and reflect
the % of times a change in one state variable results in a change
of another state variable.

4.3 Taxonomic Creation and Application to Offensive Mitigation
of Malware Threat: The values in table 1 meet the adaptivity
criteria of our model in that it can be calculated and recalculated
dynamically as the system operates. The above values then
become the basis for the creation of the self organizing taxonomy
once the time series σ analysis of state variables suggests the
need to create a taxonomy with NARR rules in it.

Reiterating, from the previous discussion about the Node
Actionable Response Rules (NARR), each particular state
variable can have a very simple rule associated with it, and the
state variables around found in the static taxonomic nodes. For
instance:

NARR 1: if cpu usage > σ r1 = kill largest process

NARR 2: if disk usage > .5 σ r2 = don’t allow deletion of files
(e.g. malware could be doing a recursive delete of the file system)

where:
NARRn - node actional rule
rn – the specific action to apply for the rule

The similarity matrix shows how to construct dynamically a self
organizing taxonomy with the NARR rules associated with each
state variable. In this method, state variables are not statically
assigned to nodes as they were in the previous section. Instead
state variables are clustered into nodes at various levels in the tree
based on their similarity relations. NARR’s are also clustered
with their state variables at various nodes in the self organizing
taxonomy. The following is the clustering algorithm that builds
the taxonomy:

//create the root node of the taxonomy
if svi change > system set σ for svi
 gather all sv’s from the similarity matrix > .9
 from the row svi
 place them in the taxonomic root node
 with their NARR’s and response rules

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

¬

function membership | [0..1]

|crisp member, full isn if |1

set ofmember n if |0

)(nu

//create the children nodes, stepping for similarity
//values classes n < level < m, e.g. .9top - .8bottom
// level 1,…
for 0 < similarity values < 1
 calculate level boundaries for top and bottom
 values of the class level

 create new child nodei

 gather all svj values in the row svi that fall within
 current level top and bottom ranges

 assign all collected NARR for svj’s to node leveli

The above algorithm, given the similarity matrix in table 1, might
have the following structure upon completion. The initiation of
the trees construction starts when the time series probabilistic
analysis of a given Scpu usage2 σ > system threshold σ (triggering
tree construction):

Figure 7. Sample taxonomy constructed from similarity matrix
(airity = 2)

The above tree may be augmented with what informally we are
calling airity. For the sake of this research, airity is defined to be:

Definition: Airity is the number of child nodes at the same level in
a taxonomy where the level is a similarity range and that range is
sub divided mathematically into sub ranges and NARR response
layers. All child nodes at a given level have a sub class NARR set
applied, system measured and then the next airity of a level in the
tree is applied.

Of note in figure 7, is the use of the airity concept at level 2 in the
tree to create two nodes. Airity divides a levels range and used to
partition the response rules such that the rules first applied have
the highest similarity value. In this case the level 2 node with the
values ranges .85 < similarity < .9, the right most child node
would be applied first in the follow sections algorithm .

A matter of further research is how does a node at one level link
to the child node of a sibling’s at the save level in the tree. This is
shown with a dashed arrow in Figure 7.

Additionally multiple state variables may have abnormal σ’s from
the time series probabilistic analysis method developed earlier. It
is a matter of further research about if new stand alone
taxonomies should be created for these case or if they are hooked
somehow into an existing taxonomy using the magnitude σ’s to
determine where and how trees are joined together.

4.4 Application of the taxonomy to Threat Mitigation: Once the
similarity based, self organized taxonomy has been created, it has
in theory has the ability to start mitigation efforts against the
malware through progressive application of state variable NARR
rules as deeper and deeper nodes in the tree are procesed. The
idea is to only apply enough NARR rules to return the systems
operation to normal as measured by σ. Thus the general method
for this is to:

i) apply a nodes, NARR’s

ii) measure system response

iii) if normal, abort further NARR application,
otherwise proceed to next child node and iterate

The pseudo code algorithm for this might be of the form:

// general algorithm for application of the nodes
//NARR rules
for root node to child nodej
 execute NARR rules for taxonomic nodej

 measure system response
 if system response (σ) normal
 exit
 else
 proceed to next child node on same level or
 next child node
 iterate

Interestingly the above model should create various organizations
of state variables in different nodes over time as they respond to
different types of unknown malware attacks. This is where it is
believed that the model can detect and respond to previously
unknown malware. The summing multiple taxonomies for
unknown and mitigated software over time has the potential to
create elaborate, self adaptive, system specific powerful
taxonomies..

V CONCLUSION

The wide range of malware attacks available makes detection and
defense a difficult prospect when looking at software
vulnerabilities. However, if the data space is reduced to only look
at response from hardware based system state variables, the data
space can be reduced and offers a possibility to detect a wide
range of unknown malware, simply by looking at how it affects
state variables describing hardware operation.

Identification of state variable behavior and mal-behavior can be
done probabilistically, with time series based monitoring of
standard deviations for a given state variable. In conjunction, this
information, when questionable state operation data is found σ,
coupled with a similarity matrix, the model offers a method for

.9 Scpu usage:| NARR 1

.9 Sv4:| NARR Sv4

.86 Sv1:| NARR Sv1

airity = 2

.82 Sv5:| NARR Sv5

.6 Sv6:| NARR Sv6

.5 Svj:| NARR Svj

dynamic creation of malware classification taxonomies.
Borrowing from complex systems behavior, nodes in the
taxonomy can have very simple rules associated with them that
can create complex responses to threat and offer the possibility of
a system that has the capacity to mitigate malware operation in an
automated and adaptive fashion.

This initial work is being further refined and developed. It is at a
theoretical point currently with many further research questions
to be investigated. The future includes building a small prototype
to determine how well the model actually works an to refine its
theory of operation.

References:
[1] Ducklin, Paul. The ABC of Computer Security. Retrieved

April 12, 2003, from http://www.
sophos.com/virusinfo/whitepapers/abc.html

[2] Symantec Corporation. Security Response. Retrieved
March 15, 2003, from http://
securityresponse.symantec.com/

[3] SecurityFocus. What is BugTraq? Retrieved March 15,
2003, from http://www.
securityfocus.com/popups/forums/bugtraq/intro.shtml

[4] NTBugTraq. NTBugTrack Home. Retrieved March 16,
2003, from http://ntbugtraq.ntadvice. com/

[5] SANS Institute. Computer Security Education and
Information Security Training. Retrieved March 20, 2003,
from http://www.sans.org/

[6] SecurityFocus. Vulns Archive. Retrieved March 12, 2003,
from http://www.securityfocus.com/ bid

[7] National Institute of Standards and Technology. ICAT
Metabase. Retrieved March 13, 2003, from
http://icat.nist.gov/icat.cfm

[8] Taimur Aslam. A Taxonomy of Security Faults in the Unix
Operating System. Master’s Thesis, Purdue University,
Department of Computer Sciences, August 1995

[9] M. Bishop. A taxonomy of unix system and network
vulnerabilities. Technical Report CSE-9510, Department of
Computer Science, University of California at Davis, May
1995.

[10] Shostack, Adam and Scott Blake. Towards a Taxonomy of
Network Security Assessment Techniques, July 1999.
Retrieved March 29, 2003, from
htttp://razor.bindview.com/publish/ papers/taxonomy.html

[11] CERT. CERT® Advisory CA-2003-07 Remote Buffer
Overflow in Sendmail. Retrieved April 2, 2003, from
http://www.cert.org/advisories/ CA-2003-07.html

[12] Symantec Corporation. Backdoor.FTP_Ana.D. Retrieved
April 13, 2003, from http://
securityresponse.symantec.com/avcenter/venc/
data/backdoor.ftp_ana.d.html

[13] Symantec Corporation. Security Response. Retrieved April
21, 2003, from http://
securityresponse.symantec.com/avcenter/search.html

[14] SANS Institute, Knark: Linux Kernel Sub-version. Retrieved
April 24, 2003, from
http://www.sans.org/resources/idfaq/knark.php

 [16] Yen, John, Langari, Reza. Fuzzy Logic, Intelligence,
Control and Information, Prentice Hall, 1999.

