
Securing Your Containers
An Exercise in Secure High Performance Virtual Containers

Adam Miller
Department of Computer Science

Sam Houston State University

Huntsville, TX 77341

ajm023@shsu.edu

Lei Chen

Department of Computer Science

Sam Houston State University

Huntsville, TX 77341

LXC008@shsu.edu

Abstract – In this research we introduce a new way for

container based virtualization to be used in a highly

secure fashion. As the industry requires for condensing

enterprise infrastructure, the need to use virtualization

technologies is becoming a necessity. In the realm of

virtualization technologies there are many popular

hypervisors (also called Virtual Machine Manager, or

VMM), but they all fall short in terms of performance

when compared to container based virtualization

technologies. However, the virtualization technologies

that utilize containers often become victims to security

vulnerabilities in ways that hypervisors are abstracted

away from. In this paper we introduce a security

mechanism that can be used to thwart the shortcomings

of popular container based virtualization technologies.

We incorporate SELinux along with Linux Containers

(LXC) that make use of a recent Linux kernel feature

called cgroups. It shows that by incorporating these two

technologies we are able to achieve both high level of

security and high performance environment where

container based virtual servers can run and be utilized

for the enterprise.

Keywords: Containers, Virtual Machine Manager,

SELinux, virtualization, security, hypervisors

1 Introduction

 Virtualization is the creation of the virtual version of

system and network resources, including hardware,

operating system, storage devices, and network resources

[11]. The essential benefit of virtualization is that

computer processing power is treated as a utility and

service that clients can buy and subscribe. Cloud

computing is considered a natural evolution based on

virtualization. Virtualization aims to centralize

administrative tasks while improving scalability and

workloads.

 In 1967 IBM introduced the System/360 Model 67

which contained the first recorded instance of

virtualization. Nowadays companies such as VMware,

Microsoft, Citrix (formerly XenSource), Red Hat, and

Oracle all offer virtualization products of their own in

order to try and win their place in the industry’s

datacenters. One thing all of these technologies have in

common is that they rely on hypervisor technologies.

 Hypervisors are an abstraction layer between the

virtual machine kernel and the actual hardware allowing

for “fake” hardware resources to be presented to each

virtual operating system while leaving the management of

the actual hardware resource to the hypervisor. This

abstraction layer helps in many ways but at the same time

adds overhead to the system as resource management is no

longer solely dependent on the operating system but upon

the hypervisor. If this overhead could be removed and

containers within the operating system can be created to

allow other “contained” instances of the operating system,

it would thwart the speed impact of hypervisors [1].

 The rest of the paper is structured as follows. Next in

Section 2, we conduct background study of container

based virtualization especially focusing its security

concerns. Section 3 discusses the details of Secure Linux

Containers, including Linux Containers, Research

Environment, Implementation, Process Isolation, Test

Design, and Research Contribution. Simulation,

experiments and results are discussed in Section 4.

Conclusion is drawn in Section 5 and references are listed

in Section 6.

2 Background

 While container based virtualization thwarts the

speed impact of hypervisors, it introduces a new concern

about security allowing different systems to exist within

the same file system hierarchy. There will be an added

layer of security needed in order to enforce this new

virtualization construct. Lowering the number of context

switches can be achieved by reducing the number of

system calls required for the applications running within

these containers [2]. Once the performance gains are

introduced there will be a need to enhance the security

measures by implementing a custom SELinux context per

container.

 The security advancements found in SELinux will

bring the further isolation needed in order to keep the

separate running instances of guest operating systems apart

mailto:ajm023@shsu.edu

from one another by utilizing the SELinux Mandatory

Access Control mechanisms [3][4][5][6][7].

 In the industry there are a number of virtualization

technologies clouding the landscape. The large

commonplace issue is that all of these technologies are

reliant on a hypervisor technology to manage the resources

on the back end. This consequently introduces a heavy

overhead that has proven to impact up to 28.1% higher

CPU utilization [1] when compared to a much lighter

weight solution such as the container based technologies.

The main issue this new paradigm introduces is the

concern of keeping compromised processes from exiting

their directory structure and entering into a neighboring

virtual environment. Our research targets this security

concern and provides a solution to it.

3 Secure virtual containers

3.1 Linux Containers

 There are a number of container based virtualization

technologies today in the open source world, among which

the more prominent ones are OpenVZ and BSD Jails. Our

research focuses on an emerging technology, Linux

Container (LXC), because of its deep roots in reliance on a

Linux kernel level construct that breaks resources into

“control groups” referred to cgroups.

 LXC is based around cgroups which are implemented

and executed via a virtual filesystem. This filesystem is

mounted and its files are modified traditionally using shell

scripts and GNU coreutils as will be demonstrated

throughout the course of the research. The general

hierarchy of the filesystem layout for cgroups is as follows

in Figure 1.

Figure 1. General hierarchy of filesystem layout for

cgroups

 Beyond the virtualization technology itself we will

need to bring in the security aspect. SELinux is the de

facto standard of high security in the Linux environment.

The SELinux concepts revolve around using context for

files, processes, and transactions and using policy to police

these transactions by enforcing mandatory access control.

The basic overview of this in practice is outlined in Figure

2.

Figure 2. Mandatory Access Control

3.2 Research Environment

 In this section we discuss the configuration and setup

of the environment in which the research was performed.

We used a system of modest resources in order to further

highlight the performance gains. The system used in this

research and development is Fedora GNU/Linux

Distribution version 14 (codename Laughlin), and the

version of LXC being used is 0.7.2 as per the release

currently in the stable distribution repository at the time of

this writing. The version of SELinux Utils that was used is

2.0.96 and the version of SELinux Targeted Policy is 3.9.7

also as per the releases available in the stable repositories.

The LXC configuration and test setup was implemented

using the example configuration files found in the LXC

man (7) page for simplicity and ease of standardization.

3.3 Implementation

 One of the most powerful elements of any UNIX-

styled operating system is its shell environment combined

with a special set of Core Utilities (conventionally known

as coreutils). Code listing 1 shows a small example

obtained from the LXC man (7) page that offers a glimpse

into the powerful system level utilities that we have at our

disposal.

Code Listing 1. Example from LXC man page

 This example offers insight into the abilities of the

scripting environment built into the shell of the system that

we used to administer the testing environment.

 Next we need to create our SELinux context and

policy in order to apply to our container. This was done

using a combination of constructs, one being the new

SELinux type and the other being the policy as defined by

code listing 2.

Code Listing 2. SELinx policy module

 This code listing is the SELinux policy module that

provides the simplest configuration needed. We have

created two new types and allowed unconfined types

operating within our container’s context to continue to do

so but nothing else. All non-allowed actions will be denied

so when we create the directory structure that will contain

the root filesystem for the container based virtual machine

it will be necessary to label the entire directory structure

with our my_context_t type as well as set the default

context of the highest level parent directory with this type,

such that its children and processes executed from within it

will inherit these context attributes. It is this premise that

keeps our container secure [3][4][5][6][7].

3.4 Process Isolation

 Now that the core security is in place by isolating an

entire container based virtual environment confined within

its own SELinux context and the policy has been created to

keep the context transactions isolated within itself. The

following is a fraction of the upstream Linux kernel

documentation listed at the time of this writing for the

2.6.35 kernel from kernel.org:

“A *cgroup* associates a set of tasks with a set of

parameters for one or more subsystems.

A *subsystem* is a module that makes use of the task

grouping facilities provided by cgroups to treat groups of

tasks in particular ways. A subsystem is typically a

"resource controller" that schedules a resource or applies

per-cgroup limits, but it may be anything that wants to act

on a group of processes, e.g. a virtualization subsystem.

… ” [8]

 This is relevant as it describes a “subsystem” such as

the LXC system that is being used in the course of this

research. Without this ground work in which we can build

upon, very little of this would be possible.

3.5 Test Design

 With the LXC containers setup and configured, the

SELinux policy and contexts in place, and the subsystem

running we are ready to start to run some services within

the environment in order to test the implementation. The

easiest way to do this is to run an old outdated version of

some server software with known vulnerabilities so that we

can identify if our SELinux enforcement will actually

protect the environment. The likely candidate is to run an

older version of a web service program like Apache but to

make it simple we chose to run a version of an interpreted

module based language within the apache environment.

Here we use php because of its wide popularity. It is target

to many exploits and one of which we can use is a simple

directory traversal exploit which will afford us the ability

to determine if the SELinux containers are truly functional

and can be done without causing any heavy amount of

damage to our testing environment. Another reason why

this is a solid example to show the security measures being

enforced is that directory traversal vulnerabilities are often

not due to an exploit in the implementation language such

as php but of the code itself that was used to develop the

web aspplication. The following listing (Code Listing 3) is

an example of php code that leaves the server it is run on

open to directory traversal. (NOTE: This code was

obtained from wikipedia.org on 05/04/2011, author

unknown.)

Code Listing 3. Example of php code with traversal

vulnerabilities

 This could easily be exploited by an attacker using a

properly constructed HTTP GET request to the server

which would then warrant a response of either a directory

listing or the contents of a file pending the permissions and

SELinux context in place. The expected result of our

research is that the potential attacker would not be able to

obtain system level information by exploiting this aspect of

our system regardless of the bugs introduced by novice

web developers.

3.6 Research Contribution

 The publication landscape in this field focuses on the

architecture of the entire virtual stack with enhancements

proposed in the area of hypervisor algorithms, resource

management, and performance enhancements. These

topics range from publications that cover the top to bottom

architectures that are used in virtual environments [9] to

those of performance characteristics based on the

differences between various virtualization approaches [10].

 With the introduction of the new research we can

utilize the emerging technology based on highly

developmental frameworks that are reliant on constructs

which are now formally part of the upstream Operating

System kernel. The system that has formed around this

kernel by using the GNU userspace has been the basis for

the currently most widely used Enterprise UNIX-styled

Operating System as produced by Red Hat. By proposing

research based upon already existing proven technologies

that are heavily used in the industry, it is hoped that the

methods could be quickly implemented in such markets.

Another aspect of this research is built upon SELinux

which is an enhancement originally introduced by the

United States of America National Security Agency and

is largely advocated as a default inclusion in the Red

Hat Enterprise Linux Operating System. We used these

two primary elements to combine for a more powerful

secured virtualization construct.

 The formal outline is simply that the performance

gains of container based virtualization combined with the

mandatory access control of SELinux will offer both

enhanced performance and high level of security for virtual

environments.

4 Simulation, experiments, and results

 In this section we walk through the simulation

environment that was utilized, the experiments performed

upon the environment and present the results that were

found in order to show that the research performed

enforces the proposed result.

4.1 Simulation Preparation

 We use the LXC constructs in order to define the

container in which to run our virtual GNU/Linux

environment. At the time of the writing the current stable

release of Fedora GNU/Linux is 14 which is used in this

research. We first configure an LXC environment using

the example files provided by the LXC utilities manual

pages in order to create a base LXC container. Then a

utility called febootstrap is made for creating miminal

bootstrapped operating systems within our previously

constructed container. Figure 3 shows a screenshot of the

creation of that contained virtual instance.

 From here we initialize the apache instance and run a

piece of known vulnerable php code in order to attempt the

exploit against files from an adjacent container.

4.2 LXC Without SELinux Context

In this scenario we assume that the file permissions in

an adjacent container were accidentally left in the state of

“chmod 777” which allows all users all access to the files.

In a situation where someone was running a virtual private

server hosting company or similar business unit this is not

an uncommon occurrence. In the following output we see

that this directory traversal was easily obtained. Figures 4

and 5 show the HTTP GET request and successful

response from the server respectively.

Figure 3. Creating contained virtual instance

Figure 4. HTTP GET request

Figure 5. Successful HTTP response

 The output here shows that we are able to obtain the

output from the vulnerable containers. This was the

expected result and shows how this can be problematic in

practice.

4.3 SELinux Enforcing

 In the second scenario we have a configuration

identical to the first in respect to the virtual container, but

on the back end we are enforcing SELinux policy and we

can see that the attempt to perform a directory traversal is

thwarted by our SELinux enforcement. Figure 6 shows the

screenshot.

Figure 6. Attempt to perform directory traversal forbidden

5 Conclusion and future work

 In this research we have shown that not only can we

obtain highly available, high performance, and highly

scalable virtualization infrastructure using container based

virtualization [1] but we can also provide a high level of

security inside these containers using the new paradigm

enforced by SELinux. These concepts combined have

proven to alleviate the host server administration needs

concerned with the virtual containers from impeding upon

one another. Future work will be to explore options of this

application and to fine tune the approach for more

sophisticated architectures.

6 References

[1] Stephen Soltesz, Herbert Potzl, Marc E.

Fiuczynski, Andy Bavier, and Larry Peterson.

“Container-base operating system virtualization: a

scalable, high-performance alternative to hypervisors.”

Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007

(EuroSys '07), ACM, New York, NY, USA, 275-287.

[2] Yih Huang, Angelos Stavrou, Anup K. Ghosh, and

Sushil Jajodia. “Efficiently tracking application

interactions using lightweight virtualization.”

Proceedings of the 1st ACM workshop on Virtual

machine security (VMSec '08). ACM, New York, NY,

USA, 19-28.

[3] Giorgio Zanin and Luigi Vincenzo Mancini.

“Towards a formal model for security policies

specification and validation in the SELinux system.”

Proceedings of the ninth ACM symposium on Access

control models and technologies (SACMAT ’04).

ACM, New York, NY, USA, 136-145.

[4] Gaoshou Zhai, Wenlin Ma, Minli Tian, Na Yang,

Chengyu Liu, and Hengsheng Yang. “Design and

implementation of a tool for analyzing SELinux

secure policy.” Proceedings of the 2nd International

Conference on Interaction Sciences: Information

Technology, Culture and Human (ICIS ’09). ACM,

New York, NY, USA, 446-451.

[5] Bjorn Vogel and Bernd Steinke. “Using SELinux

security enforcement in Linux-based embedded

devices.” Proceedings of the 1st international

conference on MOBILe Wireless MiddleWARE,

Operating Systems, and Applications (MOBILWARE

’08). ICST, Brussels, Belgium, Belgium, Article 15 , 5

pages.

[6] Fabrizio Baiardi, Daniele Sgandurra. “Securing a

Community Cloud.” Distributed Computing Systems

Workshops, International Conference on, pp. 32-41,

IEEE 30th International Conference on Distributed

Computing Systems Workshops, 2010.

[7] Gaoshou Zhai, Yaodong Li. “Analysis and Study of

Security Mechanisms inside Linux Kernel.” Security

Technology, International Conference on, pp. 58-61,

International Conference on Security Technology,

2008

[8] Kernel Docmentation on cgroups maintained by kernel

developers abroad, the following were listed or

original authors/modifiers: Written by Paul Menage

<menage@google.com> based on

Documentation/cgroups/ cpusets.txt

[9] Jeff Daniels. “Server virtualization architecture and

implementation.” Crossroads 16, 1 (September 2009),

8-12.

[10] Jeanna Neefe Matthews, Wenjin Hu, Madhujith

Hapuarachchi, Todd Deshane, Demetrios Dimatos,

Gary Hamilton, Michael McCabe, and James Owens.

“Quantifying the performance isolation properties of

virtualization systems.” Proceedings of the 2007

workshop on Experimental computer science (ExpCS

'07). ACM, New York, NY, USA , Article 6.

[11] Virtualization, retrieved on June 20
th

 from

http://en.wikipedia.org/wiki/Virtualization

mailto:menage@google.com

